Jump To The First Citation Point In The Article1
Abrahams, A., Anderson, A., Choquet-Bruhat, Y., and York Jr, J. W., ``Einstein and Yang-Mills theories in hyperbolic form without gauge fixing'', Phys. Rev. Lett., 75, 3377-3381, (1996). For a related online version see: A. Abrahams, et al., ``Einstein and Yang-Mills theories in hyperbolic form without gauge fixing'', (June, 1995), [Online Los Alamos Archive Preprint]: cited on December 19, 1999, External Linkhttp://xxx.lanl.gov/abs/gr-qc/9506072 .
Jump To The First Citation Point In The Article2
Andersson, L., and Chrusciel, P. T., ``On `hyperboloidal' Cauchy data for vacuum Einstein equations and obstructions to smoothness of `null-infinity''', Phys. Rev. Lett., 70 (19), 2829-2832, (1993). For a related online version see: L. Andersson, et al., ``On `hyperboloidal' Cauchy data for vacuum Einstein equations and obstructions to smoothness of `null-infinity''', (April, 1993), [Online Los Alamos Archive Preprint]: cited on December 19, 1999, External Linkhttp://xxx.lanl.gov/abs/gr-qc/9304019 .
Jump To The First Citation Point In The Article3
Andersson, L., and Chrusciel, P. T., ``On hyperboloidal Cauchy data for vacuum Einstein equations and obstructions to smoothness of scri'', Commun. Math. Phys., 161 (3), 533-568, (1994).
Jump To The First Citation Point In The Article4
Andersson, L., Chrusciel, P. T., and Friedrich, H., ``On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einstein's field equations'', Commun. Math. Phys., 149, 587-612, (1992).
Jump To The First Citation Point In The Article5
Arnowitt, R., Deser, S., and Misner, C. W., ``The dynamics of general relativity'', in Witten, Louis, ed., Gravitation: An Introduction to Current Research, 227-265, (Wiley, New York, 1962).
Jump To The First Citation Point In The Article6
Ashtekar, A., ``Asymptotic structure of the gravitational field at spatial infinity'', in Held, A., ed., General Relativity and Gravitation, chapter 2, 37-70, (Plenum Press, New York, 1980).
Jump To The First Citation Point In The Article7
Ashtekar, A., ``Asymptotic properties of isolated systems: recent developments'', in Bertotti, B., de Felice, F., and Pascolini, A., eds., General Relativity and Gravitation, 37-68, (D. Reidel Publishing Company, Dordrecht, 1984).
Jump To The First Citation Point In The Article8
Ashtekar, A., Asymptotic quantization, (Bibliopolis, Naples, 1987).
Jump To The First Citation Point In The Article9
Ashtekar, A., Bombelli, L., and Reula, O., ``The covariant phase space of asymptotically flat gravitational fields'', in Francaviglia, M., ed., Mechanics, analysis and geometry: 200 years after Lagrange, 417-450, (North-Holland Publishing Co., Amsterdam, 1991).
Jump To The First Citation Point In The Article10
Ashtekar, A., and Hansen, R. O., ``A unified treatment of null and spatial infinity. I. Universal structure, asymptotic symmetries and conserved quantities at spatial infinity'', J. Math. Phys., 19, 1542-1566, (1978).
Jump To The First Citation Point In The Article11
Ashtekar, A., and Romano, J., ``Spatial infinity as a boundary of space-time'', Class. Quantum Grav., 9, 1069-1100, (1992).
Jump To The First Citation Point In The Article12
Ashtekar, A., and Streubel, M., ``Symplectic geometry of radiative modes and conserved quantities at null infinity'', Proc. R. Soc. London, Ser. A, 376, 585-607, (1981).
Jump To The First Citation Point In The Article13
Ashtekar, A., and Xanthopoulos, B., ``Isometries compatible with the asymptotic flatness at null infinity: A complete description'', J. Math. Phys., 19, 2216-2222, (1978).
Jump To The First Citation Point In The Article14
Bartnik, R., ``The spherically symmetric Einstein-Yang-Mills equations'', in Perjes, Z., ed., Physics Today: Proceedings of the 1988 Hungarian Relativity Workshop, Tihany, 221-240, (Nova Science Publishers, New York, 1992).
Jump To The First Citation Point In The Article15
Bateman, H., ``The transformations of the electrodynamical equations'', Proc. London Math. Soc. 2, 8, 223-264, (1910).
Jump To The First Citation Point In The Article16
Baumgarte, T. W., and Shapiro, S. L., ``On the numerical integration of Einstein's field equations'', Phys. Rev. D, 59, 024007, (1999). For a related online version see: T. W. Baumgarte, et al., ``On the Numerical Integration of Einstein's Field Equations'', (October, 1998), [Online Los Alamos Archive Preprint]: cited on December 19, 1999, External Linkhttp://xxx.lanl.gov/abs/gr-qc/9810065 .
Jump To The First Citation Point In The Article17
Beig, R., ``Integration of Einstein's equations near spatial infinity'', Proc. R. Soc. London, Ser. A, 391, 295-304, (1984).
Jump To The First Citation Point In The Article18
Beig, R., and Schmidt, B. G., ``Einstein's equations near spatial infinity'', Commun. Math. Phys., 87, 65-80, (1982).
Jump To The First Citation Point In The Article19
Beig, R., and Simon, W., ``Proof of a multipole conjecture due to Geroch'', Commun. Math. Phys., 78, 75-82, (1980).
Jump To The First Citation Point In The Article20
Bicák, J., and Schmidt, B. G., ``Asymptotically flat radiative space-times with boost-rotation symmetry'', Phys. Rev. D, 40, 1827-1853, (1989).
Jump To The First Citation Point In The Article21
Bishop, N. T., ``Some aspects of the characteristic initial value problem'', in d' Inverno, R. A., ed., Approaches to Numerical Relativity, 20-33, (Cambridge University Press, Cambridge, 1993).
Jump To The First Citation Point In The Article22
Bishop, N. T., Gómez, R., Isaacson, R. A., Lehner, L., Szilagy, B., and Winicour, J., ``Cauchy Characteristic Matching'', in Iyer, B., ed., On the black hole trail, 383-408, (Kluwer, Dodrecht, 1998).
Jump To The First Citation Point In The Article23
Bonazzola, S., Gourgoulhon, E., and Marck, J.-A., ``Spectral methods in general relativistic astrophysics'', J. Comput. Appl. Math., 109, 433-473, (1999).
Jump To The First Citation Point In The Article24
Bondi, H., Pirani, F. A. E., and Robinson, I., ``Gravitational waves in general relativity III. Exact plane waves'', Proc. R. Soc. London, Ser. A, 251, 519-533, (1959).
Jump To The First Citation Point In The Article25
Bondi, H., van der Burg, M. G. J., and Metzner, A. W. K., ``Gravitational waves in general relativity VII. Waves from axi-symmetric isolated systems'', Proc. R. Soc. London, Ser. A, 269, 21-52, (1962).
Jump To The First Citation Point In The Article26
Bonnor, W. B., and Rotenberg, M. A., ``Gravitational waves from isolated sources'', Proc. R. Soc. London, Ser. A, 289, 247-274, (1966).
Jump To The First Citation Point In The Article27
Choquet-Bruhat, Y., and York, J. W., ``The Cauchy Problem'', in Held, A., ed., General Relativity and Gravitation, volume 1, chapter 4, 99-172, (Plenum Press, New York, 1980).
Jump To The First Citation Point In The Article28
Christodoulou, D., ``The formation of black holes and singularities in spherically symmetric gravitational collapse'', Commun. Pure Appl. Math., 44, 339-373, (1991).
Jump To The First Citation Point In The Article29
Christodoulou, D., and Klainermann, S., The global nonlinear stability of the Minkowski space, (Princeton University Press, Princeton, 1993).
Jump To The First Citation Point In The Article30
Chrusciel, P. T., MacCallum, M. A., and Singleton, D., ``Gravitational waves in general relativity. XIV. Bondi expansions and the `polyhomogeneity' of tex2html_wrap_inline6006 '', Philos. Trans. R. Soc. London, Ser. A, 350 (1692), 113-141, (1995). For a related online version see: P. T. Chrusciel, et al., ``Gravitational waves in general relativity. XIV. Bondi expansions and the ``polyhomogeneity'' of tex2html_wrap_inline6006 '', (May, 1993), [Online Los Alamos Archive Preprint]: cited on December 19, 1999, External Linkhttp://xxx.lanl.gov/abs/gr-qc/9305021 .
Jump To The First Citation Point In The Article31
Cunningham, E., ``The principle of relativity in electrodynamics and an extension thereof'', Proc. London Math. Soc. 2, 8, 77-98, (1910).
Jump To The First Citation Point In The Article32
Cutler, C., and Wald, R. M., ``Existence of radiating Einstein-Maxwell solutions which are tex2html_wrap_inline4675 on all of tex2html_wrap_inline3849 and tex2html_wrap_inline3847 '', Class. Quantum Grav., 6, 453-466, (1989).
Jump To The First Citation Point In The Article33
Dixon, W. G., ``Analysis of the Newman-Unti integration procedure for asymptotically flat space-times'', J. Math. Phys., 11, 1238-1248, (1970).
Jump To The First Citation Point In The Article34
Ehlers, J., and Sachs, R. K., ``Erhaltungssätze für die Wirkung in elektromagnetischen und gravischen Strahlungsfeldern'', Z. Phys., 155, 498-506, (1959).
Jump To The First Citation Point In The Article35
Einstein, A., ``Über Gravitationswellen'', Sitz. Ber. Preuss. Akad. Wiss., 154-167, (1918).
Jump To The First Citation Point In The Article36
Engquist, B., and Majda, A., ``Absorbing boundary conditions for the numerical simulation of waves'', Math. Comput., 31 (139), 629-651, (1977).
Jump To The First Citation Point In The Article37
Frauendiener, J., ``Geometric description of energy-momentum pseudotensors'', Class. Quantum Grav., 6, L237-L241, (1989).
Jump To The First Citation Point In The Article38
Frauendiener, J., ``Numerical treatment of the hyperboloidal initial value problem for the vacuum Einstein equations. II. The evolution equations'', Phys. Rev. D, 58, 064003, (1998). For a related online version see: J. Frauendiener, ``Numerical treatment of the hyperboloidal initial value problem for the vacuum Einstein equations. II. The evolution equations'', (December, 1997), [Online Los Alamos Archive Preprint]: cited on December 19, 1999, External Linkhttp://xxx.lanl.gov/abs/gr-qc/9712052 .
Jump To The First Citation Point In The Article39
Frauendiener, J., ``Numerical treatment of the hyperboloidal initial value problem for the vacuum Einstein equations. I. The conformal field equations'', Phys. Rev. D, 58, 064002, (1998). For a related online version see: J. Frauendiener, ``Numerical treatment of the hyperboloidal initial value problem for the vacuum Einstein equations. I. The conformal field equations'', (December, 1997), [Online Los Alamos Archive Preprint]: cited on December 19, 1999, External Linkhttp://xxx.lanl.gov/abs/gr-qc/9712050 .
Jump To The First Citation Point In The Article40
Frauendiener, J., ``Calculating initial data for the conformal field equations by pseudo-spectral methods'', J. Comput. Appl. Math., 109 (1-2), 475-491, (1999). For a related online version see: J. Frauendiener, ``Calculating initial data for the conformal field equations by pseudo-spectral methods'', (June, 1998), [Online Los Alamos Archive Preprint]: cited on December 19, 1999, External Linkhttp://xxx.lanl.gov/abs/gr-qc/9806103 .
Jump To The First Citation Point In The Article41
Frauendiener, J., Conformal methods in numerical relativity, Habilitationsschrift, (Universität Tübingen, Tübingen, 1999).
Jump To The First Citation Point In The Article42
Frauendiener, J., ``Numerical treatment of the hyperboloidal initial value problem for the vacuum Einstein equations. III. On the determination of radiation'', Class. Quantum Grav., 17 (2), 373-387, (2000). For a related online version see: J. Frauendiener, ``Numerical treatment of the hyperboloidal initial value problem for the vacuum Einstein equations. III. On the determination of radiation'', (August, 1998), [Online Los Alamos Archive Preprint]: cited on December 19, 1999, External Linkhttp://xxx.lanl.gov/abs/gr-qc/9808072 .
Jump To The First Citation Point In The Article43
Friedrich, H., ``On the regular and the asymptotic characteristic initial value problem for Einstein's vacuum field equations'', in Walker, M., ed., Proceedings of the third Gregynog relativity workshop, Gravitational Radiation Theory, number MPI-PAE / Astro 204 in Max-Planck Green Report, (Max-Planck-Institut f. Physik und Astrophysik, München, 1979).
Jump To The First Citation Point In The Article44
Friedrich, H., ``The asymptotic characteristic initial value problem for Einstein's vacuum field equations as an initial value problem for a first-order quasilinear symmetric hyperbolic system'', Proc. R. Soc. London, Ser. A, 378, 401-421, (1981).
Jump To The First Citation Point In The Article45
Friedrich, H., ``On the regular and the asymptotic characteristic initial value problem for Einstein's vacuum field equations'', Proc. R. Soc. London, Ser. A, 375, 169-184, (1981).
Jump To The First Citation Point In The Article46
Friedrich, H., ``On the existence of analytic null asymptotically flat solutions of Einstein's field equations'', Proc. R. Soc. London, Ser. A, 381, 361-371, (1982).
Jump To The First Citation Point In The Article47
Friedrich, H., ``Cauchy problems for the conformal vacuum field equations in general relativity'', Commun. Math. Phys., 91, 445-472, (1983).
Jump To The First Citation Point In The Article48
Friedrich, H., ``On the hyperbolicity of Einstein's and other gauge field equations'', Commun. Math. Phys., 100, 525-543, (1985).
Jump To The First Citation Point In The Article49
Friedrich, H., ``On purely radiative space-times'', Commun. Math. Phys., 103, 36-65, (1986).
Jump To The First Citation Point In The Article50
Friedrich, H., ``On the existence of n-geodesically complete or future complete solutions of Einstein's field equations with smooth asymptotic structure'', Commun. Math. Phys., 107, 587-609, (1986).
Jump To The First Citation Point In The Article51
Friedrich, H., ``On static and radiative space-times'', Commun. Math. Phys., 119, 51-73, (1988).
Jump To The First Citation Point In The Article52
Friedrich, H., ``On the global existence and the asymptotic behavior of solutions to the Einstein-Maxwell-Yang-Mills equations'', J. Differ. Geom., 34, 275-345, (1991).
Jump To The First Citation Point In The Article53
Friedrich, H., ``Asymptotic structure of space-time'', in Janis, A. I., and Porter, J. R., eds., Recent Advances in General Relativity: Essays in Honour of E. T. Newman, 146-181, (Birkhäuser Inc., Boston, 1992).
Jump To The First Citation Point In The Article54
Friedrich, H., ``Einstein equations and conformal structure: Existence of anti-de Sitter-type space-times'', J. Geom. Phys., 17, 125-184, (1995).
Jump To The First Citation Point In The Article55
Friedrich, H., ``Hyperbolic reductions for Einstein's field equations'', Class. Quantum Grav., 13, 1451-1469, (1996).
Jump To The First Citation Point In The Article56
Friedrich, H., ``Einstein's equation and conformal structure'', in Huggett, S. A., Mason, L. J., Tod, K. P., Tsou, S. S., and Woodhouse, N. M. J., eds., The Geometric Universe: Science, Geometry and the Work of Roger Penrose, 81-98, (Oxford University Press, Oxford, 1998).
Jump To The First Citation Point In The Article57
Friedrich, H., ``Gravitational fields near space-like and null infinity'', J. Geom. Phys., 24, 83-163, (1998).
Jump To The First Citation Point In The Article58
Friedrich, H., and Kánnár, J., ``Bondi-type systems near space-like infinity and the calculation of the NP-constants'', J. Math. Phys., 41 (4), 2195-2232, (2000). For a related online version see: H. Friedrich, et al., ``Bondi-type systems near space-like infinity and the calculation of the NP-constants'', (November, 1999), [Online Los Alamos Archive Preprint]: cited on December 19, 1999, External Linkhttp://xxx.lanl.gov/abs/gr-qc/9910077 .
Jump To The First Citation Point In The Article59
Friedrich, H., and Nagy, G., ``The initial boundary value problem for Einstein's vacuum field equations'', Commun. Math. Phys., 201, 619-655, (1998).
Jump To The First Citation Point In The Article60
Friedrich, H., and Schmidt, B. G., ``Conformal geodesics in general relativity'', Proc. R. Soc. London, Ser. A, 414 (1846), 171-195, (1987).
Jump To The First Citation Point In The Article61
Frittelli, S., and Reula, O., ``On the Newtonian limit of general relativity'', Commun. Math. Phys., 166, 221-235, (1994).
Jump To The First Citation Point In The Article62
Geroch, R., ``Local characterization of singularities in general relativity'', J. Math. Phys., 9, 450-465, (1968).
Jump To The First Citation Point In The Article63
Geroch, R., ``Multipole moments. I. Flat space'', J. Math. Phys., 11 (6), 1955-1961, (1970).
Jump To The First Citation Point In The Article64
Geroch, R., ``Multipole moments. II. Curved space'', J. Math. Phys., 11 (8), 2580-2588, (1970).
Jump To The First Citation Point In The Article65
Geroch, R., ``Space-time structure from a global point of view'', in Sachs, R. K., ed., General Relativity and Cosmology, 71-103, (Academic Press, New York, 1971).
Jump To The First Citation Point In The Article66
Geroch, R., ``Asymptotic Structure of Space-time'', in Esposito, F. P., and Witten, L., eds., Asymptotic Structure of Space-Time, 1-105, (Plenum Press, New York, 1977).
Jump To The First Citation Point In The Article67
Geroch, R., Held, A., and Penrose, R., ``A space-time calculus based on pairs of null directions'', J. Math. Phys., 14, 874-881, (1973).
Jump To The First Citation Point In The Article68
Geroch, R., and Horowitz, G. T., ``Asymptotically simple does not imply asymptotically minkowskian'', Phys. Rev. Lett., 40 (4), 203-206, (1978).
Jump To The First Citation Point In The Article69
Geroch, R., and Winicour, J., ``Linkages in general relativity'', J. Math. Phys., 22, 803-812, (1981).
Jump To The First Citation Point In The Article70
Glass, E. N., and Goldberg, J. N., ``Newman-Penrose constants and their invariant transformations'', J. Math. Phys., 11 (12), 3400-3412, (1970).
Jump To The First Citation Point In The Article71
Goldberg, J. N., ``Invariant transformations and Newman-Penrose constants'', J. Math. Phys., 8 (11), 2161-2166, (1967).
Jump To The First Citation Point In The Article72
Goldberg, J. N., ``Invariant transformations, conservation laws and energy-momentum'', in Held, A., ed., General Relativity and Gravitation, volume 1, chapter 15, 469-489, (Plenum Press, New York, 1980).
Jump To The First Citation Point In The Article73
Gustafsson, B., Kreiss, H.-O., and Oliger, J., Time dependent problems and difference methods, (Wiley, New York, 1995).
Jump To The First Citation Point In The Article74
Hansen, R., ``Multipole moments of stationary space-times'', J. Math. Phys., 15, 46-52, (1974).
Jump To The First Citation Point In The Article75
Hawking, S. W., and Ellis, G. F. R., The large scale structure of space-time, (Cambridge University Press, Cambridge, 1973).
Jump To The First Citation Point In The Article76
Hübner, P., Numerische und analytische Untersuchungen von (singulären,) asymptotisch flachen Raumzeiten mit konformen Techniken, PhD thesis, (Ludwig-Maximilians-Universität, München, 1993).
Jump To The First Citation Point In The Article77
Hübner, P., ``Method for calculating the global structure of (singular) spacetimes'', Phys. Rev. D, 53 (2), 701-721, (1994). For a related online version see: P. Hübner, ``Method for calculating the global structure of (singular) spacetimes'', (September, 1994), [Online Los Alamos Archive Preprint]: cited on December 19, 1999, External Linkhttp://xxx.lanl.gov/abs/gr-qc/9409029 .
Jump To The First Citation Point In The Article78
Hübner, P., ``General relativistic scalar-field models and asymptotic flatness'', Class. Quantum Grav., 12 (3), 791-808, (1995). For a related online version see: P. Hübner, ``General relativistic scalar-field models and asymptotic flatness'', (August, 1994), [Online Los Alamos Archive Preprint]: cited on December 19, 1999, External Linkhttp://xxx.lanl.gov/abs/gr-qc/9408012 .
Jump To The First Citation Point In The Article79
Hübner, P., ``Numerical approach to the global structure of space-time'', Helv. Phys. Acta, 69, 317-320, (1996).
Jump To The First Citation Point In The Article80
Hübner, P., ``More about vacuum spacetimes with toroidal null infinities'', Class. Quantum Grav., 15, L21-L25, (1998).
Jump To The First Citation Point In The Article81
Hübner, P., ``How to avoid artificial boundaries in the numerical calculation of black hole space-times'', Class. Quantum Grav., 16 (7), 2145-2164, (1999). For a related online version see: P. Hübner, ``How to avoid artificial boundaries in the numerical calculation of black hole space-times'', (April, 1999), [Online Los Alamos Archive Preprint]: cited on December 19, 1999, External Linkhttp://xxx.lanl.gov/abs/gr-qc/9804065 .
Jump To The First Citation Point In The Article82
Hübner, P., ``A scheme to numerically evolve data for the conformal Einstein equation'', Class. Quantum Grav., 16 (9), 2823-2843, (1999). For a related online version see: P. Hübner, ``A scheme to numerically evolve data for the conformal Einstein equation'', (March, 1999), [Online Los Alamos Archive Preprint]: cited on December 19, 1999, External Linkhttp://xxx.lanl.gov/abs/gr-qc/9903088 .
Jump To The First Citation Point In The Article83
Huggett, S. A., Mason, L. J., Tod, K. P., Tsou, S. S., and Woodhouse, N. M. J., eds., The Geometric Universe: Science, Geometry and the Work of Roger Penrose, (Oxford University Press, Oxford, 1998).
Jump To The First Citation Point In The Article84
Hungerbühler, R., Lösung kugelsymmetrischer Systeme in der Allgemeinen Relativitätstheorie mit Pseudospektralmethoden, Diplomarbeit, (Universität Tübingen, Tübingen, 1997).
Jump To The First Citation Point In The Article85
Isenberg, J., and Park, J., ``Asymptotically hyberbolic nonconstant mean curvature solutions of the Einstein constraint equations'', Class. Quantum Grav., 14, A189-A201, (1997).
Jump To The First Citation Point In The Article86
Jordan, P., Ehlers, J., and Sachs, R. K., ``Beiträge zur Theorie der reinen Gravitationsstrahlung'', Akad. Wiss. Lit. Mainz, Abh. Math. Nat. Kl., 1, 1-85, (1961).
Jump To The First Citation Point In The Article87
Kánnár, J., ``Hyperboloidal initial data for the vacuum Einstein equations with cosmological constant'', Class. Quantum Grav., 13 (11), 3075-3084, (1996).
Jump To The First Citation Point In The Article88
Kánnár, J., ``On the existence of tex2html_wrap_inline6016 solutions to the asymptotic characteristic initial value problem in general elativity'', Proc. R. Soc. London, Ser. A, 452, 945-952, (1996).
Jump To The First Citation Point In The Article89
Kozameh, C. N., ``Dynamics of null surfaces in general relativity'', in Dadhich, N., and Narlikar, J., eds., Gravitation and Relativity: At the turn of the Millennium. Proceedings of the GR-15 Conference, 139-152, (IUCAA, Pune, India, 1998).
Jump To The First Citation Point In The Article90
Lichnerowicz, A., Théories relativistes de la gravitation et de l'électromagnétisme, (Masson et Cie, Paris, 1955).
Jump To The First Citation Point In The Article91
Lichnerowicz, A., ``Sur les ondes et radiations gravitationnelles'', Comptes Rendus Acad. Sci., 246, 893-896, (1958).
Jump To The First Citation Point In The Article92
Marder, L., ``Gravitational waves in general relativity I. Cylindrical waves'', Proc. R. Soc. London, Ser. A, 244, 524-537, (1958).
Jump To The First Citation Point In The Article93
Marder, L., ``Gravitational waves in general relativity II. The reflexion of cylindrical waves'', Proc. R. Soc. London, Ser. A, 246, 133-143, (1958).
Jump To The First Citation Point In The Article94
Marder, L., ``Gravitational waves in general relativity V. An exact spherical wave'', Proc. R. Soc. London, Ser. A, 261, 91-96, (1961).
Jump To The First Citation Point In The Article95
McCarthy, P. J., ``Representations of the Bondi-Metzner-Sachs group I. Determination of the representations'', Proc. R. Soc. London, Ser. A, 330, 517-535, (1972).
Jump To The First Citation Point In The Article96
McCarthy, P. J., ``Structure of the Bondi-Metzner-Sachs group'', J. Math. Phys., 13 (11), 1837-1842, (1972).
Jump To The First Citation Point In The Article97
McCarthy, P. J., ``Representations of the Bondi-Metzner-Sachs group II. Properties and classification of the representations'', Proc. R. Soc. London, Ser. A, 333, 317-336, (1973).
Jump To The First Citation Point In The Article98
McLennan, J. A., ``Conformal invariance and conservation laws for relativistic wave equations for zero rest mass'', Nuovo Cimento, 3, 1360-1379, (1956).
Jump To The First Citation Point In The Article99
Newman, E. T., ``Heaven and its properties'', Gen. Relativ. Gravit., 7, 107-111, (1976).
Jump To The First Citation Point In The Article100
Newman, E. T., and Penrose, R., ``An approach to gravitational radiation by a method of spin coefficients'', J. Math. Phys., 3, 896-902, (1962). Errata 4 (1963), 998.
Jump To The First Citation Point In The Article101
Newman, E. T., and Penrose, R., ``Note on the Bondi-Metzner-Sachs group'', J. Math. Phys., 7, 863-879, (1966).
Jump To The First Citation Point In The Article102
Newman, E. T., and Penrose, R., ``New conservation laws for zero rest-mass fields in asymptotically flat space-time'', Proc. R. Soc. London, Ser. A, 305, 175-204, (1968).
Jump To The First Citation Point In The Article103
Newman, E. T., and Tod, K. P., ``Asymptotically flat space-times'', in Held, A., ed., General Relativity and Gravitation, volume 2, chapter 1, 1-36, (Plenum Press, New York, 1980).
Jump To The First Citation Point In The Article104
Newman, E. T., and Unti, T. W. J., ``Behavior of asymptotically flat empty spaces'', J. Math. Phys., 3, 891-901, (1962).
Jump To The First Citation Point In The Article105
Newman, R. P. A. C., ``The global structure of simple space-times'', Commun. Math. Phys., 123, 17-52, (1989).
Jump To The First Citation Point In The Article106
Penrose, R., ``A generalized inverse for matrices'', Proc. Cambridge Philos. Soc., 51, 406-413, (1955).
Jump To The First Citation Point In The Article107
Penrose, R., ``A spinor approach to general relativity'', Ann. Phys. (N. Y.), 10, 171-201, (1960).
Jump To The First Citation Point In The Article108
Penrose, R., ``The light cone at infinity'', in Infeld, L., ed., Relativistic Theories of Gravitation, 369-373, (Pergamon Press, Oxford, 1964).
Jump To The First Citation Point In The Article109
Penrose, R., ``Zero rest-mass fields including gravitation: asymptotic behaviour'', Proc. R. Soc. London, Ser. A, 284, 159-203, (1965).
Jump To The First Citation Point In The Article110
Penrose, R., ``Structure of space-time'', in DeWitt, C. M., and Wheeler, J. A., eds., Battelle Rencontres, 121-235, (W. A. Benjamin, Inc., New York, 1968).
Jump To The First Citation Point In The Article111
Penrose, R., ``Relativistic symmetry groups'', in Barut, A. O., ed., Group Theory in non-linear Problems, chapter 1, 1-58, (D. Reidel Publishing Company, Dordrecht, 1974).
Jump To The First Citation Point In The Article112
Penrose, R., ``Nonlinear gravitons and curved twistor theory'', Gen. Relativ. Gravit., 7, 31-52, (1976).
Jump To The First Citation Point In The Article113
Penrose, R., ``Null hypersurface initial data for classical fields of arbitrary spin and for general relativity'', Gen. Relativ. Gravit., 12, 225-264, (1980). originally published in Aerospace Research Laboratories Report 63-56 (P. G. Bergmann).
Jump To The First Citation Point In The Article114
Penrose, R., ``Quasi-local mass and angular momentum in general relativity'', Proc. R. Soc. London, Ser. A, 381, 53-63, (1982).
Jump To The First Citation Point In The Article115
Penrose, R., ``The central programme of twistor theory'', Chaos Solitons Fractals, 10 (2-3), 581-611, (1999).
Jump To The First Citation Point In The Article116
Penrose, R., ``Some remarks on twistor theory'', in Harvey, A., ed., On Einstein's Path: Essays in Honor of Engelbert Schücking, chapter 25, 353-366, (Springer, New York, 1999).
Jump To The First Citation Point In The Article117
Penrose, R., and Rindler, W., Spinors and Spacetime, volume 1, (Cambridge University Press, Cambridge, 1984).
Jump To The First Citation Point In The Article118
Penrose, R., and Rindler, W., Spinors and Spacetime, volume 2, (Cambridge University Press, Cambridge, 1986).
Jump To The First Citation Point In The Article119
Pirani, F. A. E., ``Invariant formulation of gravitational radiation theory'', Phys. Rev., 105, 1089-1099, (1957).
Jump To The First Citation Point In The Article120
Pirani, F. A. E., ``Gravitational waves in general relativity IV. The gravitational field of a fast-moving particle'', Proc. R. Soc. London, Ser. A, 252, 96-101, (1959).
Jump To The First Citation Point In The Article121
Rendall, A. D., ``Local and global existence theorems for the Einstein equations'', (January, 1998), [Article in Online Journal Living Reviews in Relativity]: cited on December 19, 1999, http://www.livingreviews.org/Articles/Volume1/1998-4rendall .
Jump To The First Citation Point In The Article122
Robinson, D. C., ``Conserved quantities of Newman and Penrose'', J. Math. Phys., 10 (9), 1745-1753, (1969).
Jump To The First Citation Point In The Article123
Rosen, N., ``Plane polarised waves in the general theory of relativity'', Phys. Z. Sowjetunion, 12, 366-372, (1937).
Jump To The First Citation Point In The Article124
Sachs, R. K., ``Propagation laws for null and type III gravitational waves'', Z. Phys., 157, 462-477, (1960).
Jump To The First Citation Point In The Article125
Sachs, R. K., ``Gravitational waves in general relativity VI. The outgoing radiation condition'', Proc. R. Soc. London, Ser. A, 264, 309-338, (1961).
Jump To The First Citation Point In The Article126
Sachs, R. K., ``Asymptotic symmetries in gravitational theories'', Phys. Rev., 128, 2851-2864, (1962).
Jump To The First Citation Point In The Article127
Sachs, R. K., ``Gravitational waves in general relativity VIII. Waves in asymptotically flat space-time'', Proc. R. Soc. London, Ser. A, 270, 103-127, (1962).
Jump To The First Citation Point In The Article128
Sachs, R. K., ``Characteristic initial value problem for gravitational theory'', in Infeld, L., ed., Relativistic Theories of Gravitation, 93-105, (Pergamon Press, Oxford, 1964).
Jump To The First Citation Point In The Article129
Sachs, R. K., ``Gravitational radiation'', in DeWitt, C. M., and DeWitt, B., eds., Relativity, Groups and Topology, 523-562, (Gordon and Breach, New York, 1964).
Jump To The First Citation Point In The Article130
Sachs, R. K., and Bergmann, P. G., ``Structure of particles in linearized gravitational theory'', Phys. Rev., 112 (2), 674-680, (1958).
Jump To The First Citation Point In The Article131
Schmidt, B. G., ``A new definition of conformal and projective infinity of space-times'', Commun. Math. Phys., 36, 73-90, (1974).
Jump To The First Citation Point In The Article132
Schmidt, B. G., ``Conformal bundle boundaries'', in Esposito, F. P., and Witten, L., eds., Asymptotic structure of space-time, 429-440, (Plenum Press, New York, 1977).
Jump To The First Citation Point In The Article133
Schmidt, B. G., ``Asymptotic structure of isolated systems'', in Ehlers, J., ed., Isolated Gravitating Systems in General Relativity, 11-49, (Academic Press, New York - London, 1978).
Jump To The First Citation Point In The Article134
Schmidt, B. G., ``On the uniqueness of boundaries at infinity of asymptotically flat spacetimes'', Class. Quantum Grav., 8, 1491-1504, (1991).
Jump To The First Citation Point In The Article135
Schmidt, B. G., ``Vacuum space-times with toroidal null infinities'', Class. Quantum Grav., 13, 2811-2816, (1996).
Jump To The First Citation Point In The Article136
Simon, W., and Beig, R., ``The multipole structure of stationary space-times'', J. Math. Phys., 24 (5), 1163-1171, (1983).
Jump To The First Citation Point In The Article137
Sommers, P., ``The geometry of the gravitational field at space-like infinity'', J. Math. Phys., 19, 549-554, (1978).
Jump To The First Citation Point In The Article138
Streubel, M., ```Conserved' quantities for isolated gravitational systems'', Gen. Relativ. Gravit., 9 (6), 551-561, (1978).
Jump To The First Citation Point In The Article139
Trautman, A., ``Boundary Conditions at infinity for physical theories'', Bull. Acad. Polon. Sci. Cl. III, 6, 403-406, (1958).
Jump To The First Citation Point In The Article140
Trautman, A., ``Radiation and boundary conditions in the theory of gravitation'', Bull. Acad. Polon. Sci. Cl. III, 6, 407-412, (1958).
Jump To The First Citation Point In The Article141
Trefethen, L. N., ``Group velocity in finite difference schemes'', SIAM Rev., 24, 113-136, (1982).
Jump To The First Citation Point In The Article142
Trefethen, L. N., ``Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations'', graduate textbook, privately published, (1996).
Jump To The First Citation Point In The Article143
Valiente Kroon, J. A., ``Conserved quantities for polyhomogeneous space-times'', Class. Quantum Grav., 15, 2479-2491, (1998). For a related online version see: J. A. Valiente Kroon, ``Conserved Quantities for Polyhomogeneous Space-Times'', (May, 1998), [Online Los Alamos Archive Preprint]: cited on December 19, 1999, External Linkhttp://xxx.lanl.gov/abs/gr-qc/9805094 .
Jump To The First Citation Point In The Article144
Valiente Kroon, J. A., ``Logarithmic Newman-Penrose constants for arbitrary polyhomogeneous spacetimes'', Class. Quantum Grav., 16, 1653-1665, (1999). For a related online version see: J. A. Valiente Kroon, ``Logarithmic Newman-Penrose constants for arbitrary polyhomogeneous spacetimes'', (December, 1998), [Online Los Alamos Archive Preprint]: cited on December 19, 1999, External Linkhttp://xxx.lanl.gov/abs/gr-qc/9812004 .
Jump To The First Citation Point In The Article145
Wald, R. M., General Relativity, (Chicago University Press, Chicago, 1984).
Jump To The First Citation Point In The Article146
Winicour, J., ``Characteristic evolution and matching'', (May, 1998), [Article in Online Journal Living Reviews in Relativity]: cited on December 19, 1999, http://www.livingreviews.org/Articles/Volume1/1998-5winicour .
Jump To The First Citation Point In The Article147
Winicour, J., ``Angular momentum in general relativity'', in Held, A., ed., General Relativity and Gravitation, volume 1, chapter 3, 71-96, (Plenum Press, New York, 1980).
Jump To The First Citation Point In The Article148
Winicour, J., ``Logarithmic asymptotic flatness'', Found. Phys., 15, 605-616, (1985).

image Conformal Infinity
Jörg Frauendiener
http://www.livingreviews.org/lrr-2000-4
© Max-Planck-Gesellschaft. ISSN 1433-8351
Problems/Comments to livrev@aei-potsdam.mpg.de