References

1 Abrahams, A.M., Bernstein, D.H., Hobill, D.W., Seidel, E., and Smarr, L.L., “Numerically generated black-hole spacetimes: Interaction with gravitational waves”, Phys. Rev. D, 45, 3544–3558, (1992).
2 Abrahams, A.M., and Evans, C.R., “Critical behavior and scaling in vacuum axisymmetric gravitational collapse”, Phys. Rev. Lett., 70, 2980–2983, (1993).
3 Abrahams, A.M., and Price, R.H., “Black-hole collisions from Brill-Lindquist initial data: Predictions of perturbation theory”, Phys. Rev. D, 53, 1972–1976, (1996). [External Linkgr-qc/9509020].
4 Anderson, A., and York Jr, J.W., “Hamiltonian Time Evolution for General Relativity”, Phys. Rev. Lett., 81, 1154–1157, (1998). [External Linkgr-qc/9807041].
5 Arbona, A., Bona, C., Carot, J., Mas, L., Massó, J., and Stella, J., “Stuffed black holes”, Phys. Rev. D, 57, 2397–2402, (1998). [External Linkgr-qc/9710111].
6 Arnowitt, R., Deser, S., and Misner, C.W., “The dynamics of general relativity”, in Witten, L., ed., Gravitation: An Introduction to Current Research, pp. 227–265, (Wiley, New York, 1962). [External LinkDOI], [External LinkADS].
7 Asada, H., “Formulation for the internal motion of quasiequilibrium configurations in general relativity”, Phys. Rev. D, 57, 7292–7298, (1998). [External Linkgr-qc/9804003].
8 Bardeen, J.M., “A Variational Principle for Rotating Stars in General Relativity”, Astrophys. J., 162, 71–95, (1970).
9 Bardeen, J.M., and Wagoner, R.V., “Relativistic Disks. I. Uniform Rotation”, Astrophys. J., 167, 359–423, (1971).
10 Baumgarte, T.W., “Innermost stable circular orbit of binary black holes”, Phys. Rev. D, 62, 024018, 1–8, (2000). [External LinkDOI], [External LinkADS].
11 Baumgarte, T.W., Cook, G.B., Scheel, M.A., Shapiro, S.L., and Teukolsky, S.A., “Binary Neutron Stars in General Relativity: Quasi-Equilibrium Models”, Phys. Rev. Lett., 79, 1182–1185, (1997). [External Linkgr-qc/9704024].
12 Baumgarte, T.W., Cook, G.B., Scheel, M.A., Shapiro, S.L., and Teukolsky, S.A., “General relativistic models of binary neutron stars in quasiequilibrium”, Phys. Rev. D, 57, 7299–7311, (1998). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9709026].
13 Baumgarte, T.W., Cook, G.B., Scheel, M.A., Shapiro, S.L., and Teukolsky, S.A., “The Stability of Relativistic Neutron Stars in Binary Orbit”, Phys. Rev. D, 57, 6181–6184, (1998). [External Linkgr-qc/9705023].
14 Bildsten, L., and Cutler, C., “Tidal interactions of inspiraling compact binaries”, Astrophys. J., 400, 175–180, (1992).
15 Bishop, N.T., Isaacson, R.A., Maharaj, M., and Winicour, J., “Black hole data via a Kerr–Schild approach”, Phys. Rev. D, 57, 6113–6118, (1998). [External Linkgr-qc/9711076].
16 Bocquet, M., Bonazzola, S., Gourgoulhon, E., and Novak, J., “Rotating neutron star models with a magnetic field”, Astron. Astrophys., 301, 757–775, (1995). [External LinkADS], [External Linkgr-qc/9503044].
17 Bona, C., and Massó, J., “Harmonic synchronizations of spacetime”, Phys. Rev. D, 38, 2419–2422, (1988).
18 Bonazzola, S., Gourgoulhon, E., and Marck, J.-A., “A relativistic formalism to compute quasi-equilibrium configurations of non-synchronized neutron star binaries”, Phys. Rev. D, 56, 7740–7749, (1997). [External Linkgr-qc/9710031].
19 Bonazzola, S., Gourgoulhon, E., and Marck, J.-A., “Numerical approach for high precision 3D relativistic star models”, Phys. Rev. D, 58, 104020, 1–14, (1998). [External LinkDOI], [External LinkADS], [External Linkastro-ph/9803086].
20 Bonazzola, S., Gourgoulhon, E., and Marck, J.-A., “Numerical Models of Irrotational Binary Neutron Stars in General Relativity”, Phys. Rev. Lett., 82, 892–895, (1999). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9810072].
21 Bonazzola, S., Gourgoulhon, E., Salgado, M., and Marck, J.-A., “Axisymmetric rotating relativistic bodies: A new numerical approach for ‘exact’ solutions”, Astron. Astrophys., 278, 421–443, (1993). [External LinkADS].
22 Bonazzola, S., and Schneider, J., “An Exact Study of Rigidly and Rapidly Rotating Stars in General Relativity with Application to the Crab Pulsar”, Astrophys. J., 191, 273–286, (1974).
23 Bowen, J.M., “General form for the longitudinal momentum of a spherically symmetric source”, Gen. Relativ. Gravit., 11, 227–231, (1979).
24 Bowen, J.M., “General solution for flat-space longitudinal momentum”, Gen. Relativ. Gravit., 14, 1183–1191, (1982).
25 Bowen, J.M., and York Jr, J.W., “Time-asymmetric initial data for black holes and black-hole collisions”, Phys. Rev. D, 21, 2047–2056, (1980).
26 Bowen, J.W., Rauber, J., and York Jr, J.W., “Two black holes with axisymmetric parallel spins: Initial data”, Class. Quantum Grav., 1, 591–610, (1984).
27 Brandt, S., and Brügmann, B., “A simple construction of initial data for multiple black holes”, Phys. Rev. Lett., 78, 3606–3609, (1997). [External Linkgr-qc/9703066].
28 Brandt, S.R., and Seidel, E., “Evolution of distorted rotating black holes. I: Methods and tests”, Phys. Rev. D, 52, 856–869, (1995). [External Linkgr-qc/9412072].
29 Brandt, S.R., and Seidel, E., “Evolution of distorted rotating black holes. II: Dynamics and analysis”, Phys. Rev. D, 52, 870–886, (1995). [External Linkgr-qc/9412073].
30 Brandt, S.R., and Seidel, E., “Evolution of distorted rotating black holes. III: Initial data”, Phys. Rev. D, 54, 1403–1416, (1996). [External Linkgr-qc/9601010].
31 Brill, D.R., and Lindquist, R.W., “Interaction Energy in Geometrostatics”, Phys. Rev., 131, 471–476, (1963). [External LinkDOI], [External LinkADS].
32 Butterworth, E.M., “On the structure and stability of rapidly rotating fluid bodies in general relativity. II. The structure of uniformly rotating pseudopolytropes”, Astrophys. J., 204, 561–572, (1976).
33 Butterworth, E.M., “On the Structure and Stability of Rapidly Rotating Fluid Bodies in General Relativity. III. Beyond the Angular Velocity Peak”, Astrophys. J., 231, 219–223, (1979).
34 Butterworth, E.M., and Ipser, J.R., “Rapidly Rotating Fluid Bodies in General Relativity”, Astrophys. J. Lett., 200, L103–L106, (1975).
35 Butterworth, E.M., and Ipser, J.R., “On the structure and stability of rapidly rotating fluid bodies in general relativity. I. The numerical method for computing structure and its application to uniformly rotating homogeneous bodies”, Astrophys. J., 204, 200–233, (1976).
36 Cantor, M., and Kulkarni, A.D., “Physical distinctions between normalized solutions of the two-body problem of general relativity”, Phys. Rev. D, 25, 2521–2526, (1982).
37 Choquet-Bruhat, Y., and York, J.W., “The Cauchy problem”, in Held, A., ed., General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, vol. 1, pp. 99–172, (Plenum, New York, 1980).
38 Cook, G.B., “Initial data for axisymmetric black-hole collisions”, Phys. Rev. D, 44, 2983–3000, (1991).
39 Cook, G.B., “Three-dimensional initial data for the collision of two black holes. II. Quasicircular orbits for equal-mass black holes”, Phys. Rev. D, 50, 5025–5032, (1994). [External LinkDOI], [External LinkADS].
40 Cook, G.B., and Abrahams, A.M., “Horizon Structure of Initial-Data Sets for Axisymmetric Two-Black-Hole Collisions”, Phys. Rev. D, 46, 702–713, (1992).
41 Cook, G.B., Choptuik, M.W., Dubal, M.R., Klasky, S.A., Matzner, R.A., and Oliveira, S.R., “Three-dimensional initial data for the collision of two black holes”, Phys. Rev. D, 47, 1471–1490, (1993).
42 Cook, G.B., and Scheel, M.A., “Well-behaved harmonic time slices of a charged, rotating, boosted black hole”, Phys. Rev. D, 56, 4775–4781, (1997).
43 Cook, G.B., Shapiro, S.L., and Teukolsky, S.A., “Spin-up of a rapidly rotating star by angular momentum loss: Effects of general relativity”, Astrophys. J., 398, 203–223, (1992).
44 Cook, G.B., Shapiro, S.L., and Teukolsky, S.A., “Rapidly rotating neutron stars in general relativity: Realistic equations of state”, Astrophys. J., 424, 823–845, (1994). [External LinkDOI], [External LinkADS].
45 Cook, G.B., Shapiro, S.L., and Teukolsky, S.A., “Rapidly rotating polytropes in general relativity”, Astrophys. J., 422, 227–242, (1994).
46 Cook, G.B., Shapiro, S.L., and Teukolsky, S.A., “Testing a simplified version of Einstein’s equations for numerical relativity”, Phys. Rev. D, 53, 5533–5540, (1996). [External Linkgr-qc/9512009].
47 Damour, T., Jaranowski, P., and Schäfer, G., “On the determination of the last stable orbit for circular general relativistic binaries at the third post-Newtonian approximation”, Phys. Rev. D, 62, 084011, 1–21, (2000). [External LinkADS].
48 Doran, C., “A new form of the Kerr solution”, Phys. Rev. D, 61, 067503, 1–4, (2000). [External Linkgr-qc/9910099].
49 Flanagan, É.É., “Possible Explanation for Star-Crushing Effect in Binary Neutron Star Simulations”, Phys. Rev. Lett., 82, 1354–1357, (1999). [External Linkastro-ph/9811132].
50 Friedman, J.L., and Ipser, J.R., “Erratum: Rapidly rotating relativistic stars”, Philos. Trans. R. Soc. London, Ser. A, 341(1662), 561, (1992).
51 Friedman, J.L., and Ipser, J.R., “Rapidly rotating relativistic stars”, Philos. Trans. R. Soc. London, Ser. A, 340(1658), 391–422, (1992).
52 Friedman, J.L., Ipser, J.R., and Parker, L., “Rapidly rotating neutron star models”, Astrophys. J., 304, 115–139, (1986).
53 Friedman, J.L., Ipser, J.R., and Sorkin, R.D., “Turning-point method for axisymmetric stability of rotating relativistic stars”, Astrophys. J., 325, 722–274, (1988).
54 Garat, A., and Price, R.H., “Nonexistence of conformally flat slices of the Kerr spacetime”, Phys. Rev. D, 61, 124011, 1–4, (2000). [External Linkgr-qc/0002013].
55 Gourgoulhon, E., “Relations between three formalisms for irrotational binary neutron stars in general relativity”, arXiv e-print, (1998). [External Linkgr-qc/9804054].
56 Gourgoulhon, E., and Bonazzola, S., “Noncircular axisymmetric stationary spacetimes”, Phys. Rev. D, 48, 2635–2652, (1993).
57 Gourgoulhon, E., Grandclément, P., Taniguchi, K., Marck, J.-A., and Bonazzola, S., “Quasiequilibrium sequences of synchronized and irrotational binary neutron stars in general relativity: Method and tests”, Phys. Rev. D, 63, 064029, 1–27, (2001). [External LinkDOI], [External LinkADS], [External Linkgr-qc/0007028].
58 Grandclément, P., Bonazzola, S., Gourgoulhon, E., and Marck, J.-A., “A Multidomain Spectral Method for Scalar and Vectorial Poisson Equations with Noncompact Sources”, J. Comput. Phys., 170, 231–260, (2001). [External LinkDOI], [External LinkADS], [External Linkgr-qc/0003072].
59 Gullstrand, A., “Allgemeine Lösung des statischen Einkörperproblems in der Einsteinschen Gravitationstheorie”, Ark. Mat. Astron. Fys., 16, 1–15, (1922).
60 Hough, J., and Rowan, S., “Gravitational Wave Detection by Interferometry (Ground and Space)”, Living Rev. Relativity, 3, lrr-2000-3, (2000). URL (cited on 31 October 2000):
http://www.livingreviews.org/lrr-2000-3.
61 Kley, W., and Schäfer, G., “Relativistic dust disks and the Wilson–Mathews approach”, Phys. Rev. D, 60, 027501, 1–4, (1999). [External Linkgr-qc/9812068].
62 Kochanek, C.S., “Coalescing Binary Neutron Stars”, Astrophys. J., 398, 234–247, (1992).
63 Komatsu, H., Eriguchi, Y., and Hachisu, I., “Rapidly rotating general relativistic stars – I. Numerical method and its application to uniformly rotating polytropes”, Mon. Not. R. Astron. Soc., 237, 355–379, (1989).
64 Komatsu, H., Eriguchi, Y., and Hachisu, I., “Rapidly rotating general relativistic stars – II. Differentially rotating polytropes”, Mon. Not. R. Astron. Soc., 239, 153–171, (1989).
65 Kraus, P., and Wilczek, F., “Some applications of a simple stationary line element for the Schwarzschild geometry”, Mod. Phys. Lett. A, 9, 3713–3719, (1994). [External Linkgr-qc/9406042].
66 Kulkarni, A.D., “Time-asymmetric initial data for the N black hole problem in general relativity”, J. Math. Phys., 25, 1028–1034, (1984).
67 Kulkarni, A.D., Shepley, L.C., and York Jr, J.W., “Initial data for N black holes”, Phys. Lett. A, 96, 228–230, (1983).
68 Lake, K., “A Class of Quasi-Stationary Regular Line Elements for the Schwarzschild Geometry”, arXiv e-print, (1994). [External Linkgr-qc/9407005].
69 Lichnerowicz, A., “L’integration des équations de la gravitation relativiste et le problème des n corps”, J. Math. Pures Appl., 23, 37–63, (1944).
70 Lindquist, R.W., “Initial-Value Problem on Einstein-Rosen Manifolds”, J. Math. Phys., 4, 938–950, (1963). [External LinkDOI], [External LinkADS].
71 Lousto, C.O., and Price, R.H., “Improved initial data for black hole collisions”, Phys. Rev. D, 57, 1073–1083, (1998). [External Linkgr-qc/9708022].
72 Marronetti, P., Mathews, G.J., and Wilson, J.R., “Binary neutron-star systems: From the Newtonian regime to the last stable orbit”, Phys. Rev. D, 58, 107503, 1–4, (1998). [External Linkgr-qc/9803093].
73 Marronetti, P., Mathews, G.J., and Wilson, J.R., “Irrotational binary neutron stars in quasiequilibrium”, Phys. Rev. D, 60, 087301, 1–4, (1999). [External Linkgr-qc/9906088].
74 Marsa, R.L., and Choptuik, M.W., “Black-hole-scalar-field interactions in spherical symmetry”, Phys. Rev. D, 54, 4929–4943, (1996). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9607034].
75 Martel, K., and Poisson, E., “Regular coordinate systems for Schwarzschild and other spherical spacetimes”, Am. J. Phys., 69, 476–480, (2001). [External Linkgr-qc/0001069].
76 Mathews, G.J., Marronetti, P., and Wilson, J.R., “Relativistic hydrodynamics in close binary systems: Analysis of neutron-star collapse”, Phys. Rev. D, 58, 043003, 1–13, (1998). [External Linkgr-qc/9710140].
77 Mathews, G.J., and Wilson, J.R., “Revised relativistic hydrodynamical model for neutron-star binaries”, Phys. Rev. D, 61, 127304, 1–4, (2000). [External Linkgr-qc/9911047].
78 Matzner, R.A., Huq, M.F., and Shoemaker, D., “Initial Data and Coordinates for Multiple Black Hole Systems”, Phys. Rev. D, 59, 024015, 1–6, (1999). [External Linkgr-qc/9805023].
79 Misner, C.W., “The Method of Images in Geometrostatics”, Ann. Phys. (N.Y.), 24, 102–117, (1963). [External LinkDOI], [External LinkADS].
80 Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, 1973).
81 Ó Murchadha, N., and York Jr, J.W., “Existence and uniqueness of solutions of the Hamiltonian constraint of general relativity on compact manifolds”, J. Math. Phys., 14, 1551–1557, (1973).
82 Ó Murchadha, N., and York Jr, J.W., “Initial-value problem of general relativity. I. General formulation and physical interpretation”, Phys. Rev. D, 10, 428–436, (1974).
83 Ó Murchadha, N., and York Jr, J.W., “Initial-value problem of general relativity. II. Stability of solution of the initial-value equations”, Phys. Rev. D, 10, 437–446, (1974).
84 Ó Murchadha, N., and York Jr, J.W., “Gravitational Potentials: A Constructive Approach to General Relativity”, Gen. Relativ. Gravit., 7, 257–261, (1976).
85 Oppenheimer, J.R., and Volkoff, G.M., “On Massive Neutron Cores”, Phys. Rev., 55, 374–381, (1939).
86 Painlevé, P., “La mécanique classique et la theorie de la relativité”, C. R. Acad. Sci., 173, 677–680, (1921).
87 Pfeiffer, H.P., Teukolsky, S.A., and Cook, G.B., “Quasi-circular orbits for spinning binary black holes”, Phys. Rev. D, 62, 104018, 1–11, (2000). [External LinkDOI], [External LinkADS], [External Linkgr-qc/0006084].
88 Rieth, R., “On the validity of Wilson’s approach to general relativity”, in Królak, A., ed., Mathematics of Gravitation. Part II: Gravitational Wave Detection, Proceedings of the Workshop on Mathematical Aspects of Theories of Gravitation, held in Warsaw, February 29 - March 30, 1996, Banach Center Publications, vol. 41, pp. 71–74, (Polish Academy of Sciences, Institute of Mathematics, Warsaw, Poland, 1997).
89 Robertson, H.P., and Noonan, T.W., Relativity and Cosmology, (Saunders, Philadelphia, 1968).
90 Shapiro, S.L., and Teukolsky, S.A., “Gravitational Collapse to Neutron Stars and Black Holes: Computer Generation of Spherical Spacetimes”, Astrophys. J., 235, 199–215, (1980). [External LinkADS].
91 Shapiro, S.L., and Teukolsky, S.A., “Gravitational collapse of rotating spheroids and the formation of naked singularities”, Phys. Rev. D, 45, 2006–2012, (1992).
92 Shibata, M., “A relativistic formalism for computation of irrotational binary stars in quasiequilibrium states”, Phys. Rev. D, 58, 024012, 1–5, (1998). [External Linkgr-qc/9803085].
93 Smarr, L.L., Čadež, A., DeWitt, B., and Eppley, K., “Collision of two black holes: Theoretical framework”, Phys. Rev. D, 14, 2443–2452, (1976).
94 Smarr, L.L., and York Jr, J.W., “Kinematical conditions in the construction of spacetime”, Phys. Rev. D, 17, 2529–2551, (1978). [External LinkDOI].
95 Sorkin, R.D., “A Criterion for the Onset of Instability at a Turning Point”, Astrophys. J., 249, 254–257, (1981). [External LinkDOI], [External LinkADS].
96 Sorkin, R.D., “A Stability Criterion for Many-Parameter Equilibrium Families”, Astrophys. J., 257, 847–854, (1982).
97 Stergioulas, N., “Rotating Stars in Relativity”, Living Rev. Relativity, 1, lrr-1998-8, (1998). URL (cited on 18 July 2000):
http://www.livingreviews.org/lrr-1998-8.
98 Stergioulas, N., and Friedman, J.L., “Comparing models of rapidly rotating relativistic stars constructed by two numerical methods”, Astrophys. J., 444, 306–311, (1995). [External Linkastro-ph/9411032].
99 Teukolsky, S.A., “Irrotational Binary Neutron Stars in Quasiequilibrium in General Relativity”, Astrophys. J., 504, 442–449, (1998). [External Linkgr-qc/9803082].
100 Thornburg, J., “Coordinates and boundary conditions for the general relativistic initial data problem”, Class. Quantum Grav., 4, 1119–1131, (1987).
101 Uryū, K., and Eriguchi, Y., “New numerical method for constructing quasiequilibrium sequences of irrotational binary neutron stars in general relativity.”, Phys. Rev. D, 61, 124023, 1–19, (2000). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9908059].
102 Uryū, K., Shibata, M., and Eriguchi, Y., “Properties of general relativistic, irrotational binary neutron stars in close quasiequilibrium orbits: Polytropic equations of state”, Phys. Rev. D, 62, 104015, 1–15, (2000). [External Linkgr-qc/0007042].
103 Wilson, J.R., “Models of Differentially Rotating Stars”, Astrophys. J., 176, 195–204, (1972).
104 Wilson, J.R., and Mathews, G.J., “Relativistic hydrodynamics”, in Evans, C.R., Finn, L.S., and Hobill, D.W., eds., Frontiers in Numerical Relativity, Proceedings of the International Workshop on Numerical Relativity, University of Illinois at Urbana-Champaign, USA, 9 – 13 May 1988, pp. 306–314, (Cambridge University Press, Cambridge; New York, 1989).
105 Wilson, J.R., and Mathews, G.J., “Instabilities in Close Neutron Star Binaries”, Phys. Rev. Lett., 75, 4161–4164, (1995).
106 Wilson, J.R., Mathews, G.J., and Marronetti, P., “Relativistic numerical model for close neutron-star binaries”, Phys. Rev. D, 54, 1317–1331, (1996). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9601017].
107 York Jr, J.W., “Gravitational Degrees of Freedom and the Initial-Value Problem”, Phys. Rev. Lett., 26, 1656–1658, (1971).
108 York Jr, J.W., “Role of Conformal Three-Geometry in the Dynamics of Gravitation”, Phys. Rev. Lett., 28, 1082–1085, (1972). [External LinkDOI].
109 York Jr, J.W., “Conformally invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial-value problem of general relativity”, J. Math. Phys., 14, 456–464, (1973).
110 York Jr, J.W., “Covariant decompositions of symmetric tensors in the theory of gravitation”, Ann. Inst. Henri Poincare A, 21, 319–332, (1974).
111 York Jr, J.W., “Kinematics and Dynamics of General Relativity”, in Smarr, L.L., ed., Sources of Gravitational Radiation, Proceedings of the Battelle Seattle Workshop, July 24 – August 4, 1978, pp. 83–126, (Cambridge University Press, Cambridge; New York, 1979). [External LinkADS].
112 York Jr, J.W., “Energy and Momentum of the Gravitational Field”, in Tipler, F.J., ed., Essays in General Relativity: A Festschrift for Abraham Taub, pp. 39–58, (Academic Press, New York, 1980).
113 York Jr, J.W., “Initial data for N black holes”, Physica A, 124, 629–637, (1984).
114 York Jr, J.W., “Initial Data for Collisions of Black Holes and Other Gravitational Miscellany”, in Evans, C.R., Finn, L.S., and Hobill, D.W., eds., Frontiers in Numerical Relativity, Proceedings of the International Workshop on Numerical Relativity, University of Illinois at Urbana-Champaign, U.S.A., May 9 – 13, 1988, pp. 89–109, (Cambridge University Press, Cambridge; New York, 1989).
115 York Jr, J.W., “Conformal ‘Thin-Sandwich’ Data for the Initial-Value Problem of General Relativity”, Phys. Rev. Lett., 82, 1350–1353, (1999). [External Linkgr-qc/9810051].
116 York Jr, J.W., and Piran, T., “The Initial Value Problem and Beyond”, in Matzner, R.A., and Shepley, L.C., eds., Spacetime and Geometry: The Alfred Schild Lectures, pp. 147–176, (University of Texas Press, Austin, 1982).