References

1 Abrahams, A.M., and Evans, C.R., “Critical behavior and scaling in vacuum axisymmetric gravitational collapse”, Phys. Rev. Lett., 70, 2980–2983, (1993). [External LinkDOI].
2 Abrahams, A.M., Heiderich, K.H., Shapiro, S.L., and Teukolsky, S.A., “Vacuum initial data, singularities, and cosmic censorship”, Phys. Rev. D, 46, 2452–2463, (1992).
3 Andersson, L., and Rendall, A.D., “Quiescent cosmological singularities”, Commun. Math. Phys., 218, 479–511, (2001). [External LinkDOI], [External Linkgr-qc/0001047].
4 Anninos, P., “Computational Cosmology: From the Early Universe to the Large Scale Structure”, Living Rev. Relativity, 4, lrr-2001-2, (2001). URL (cited on 2 December 2001):
http://www.livingreviews.org/lrr-2001-2.
5 Anninos, P., Centrella, J.M., and Matzner, R.A., “Nonlinear wave solutions to the planar vacuum Einstein equations”, Phys. Rev. D, 43, 1825–1838, (1991).
6 Anninos, P., Centrella, J.M., and Matzner, R.A., “Numerical methods for solving the planar vacuum Einstein equations”, Phys. Rev. D, 43, 1808–1824, (1991).
7 Ashtekar, A., Beetle, C., Dreyer, O., Fairhurst, S., Krishnan, B., Lewandowski, J., and Wisniewski, J., “Generic Isolated Horizons and Their Applications”, Phys. Rev. Lett., 85, 3564–3567, (2000). [External LinkDOI], [External Linkgr-qc/0006006].
8 Bañados, M., Teitelboim, C., and Zanelli, J., “The Black Hole in Three Dimensional Space Time”, Phys. Rev. Lett., 69, 1849–1851, (1992). [External LinkDOI].
9 Barrabès, C., Gramain, A., Lesigne, E., and Letelier, P.S., “Geometric inequalities and the hoop conjecture”, Class. Quantum Grav., 9, L105–L110, (1992). [External LinkDOI].
10 Barrabès, C., Israel, W., and Letelier, P.S., “Analytic models of nonspherical collapse, cosmic censorship and the hoop conjecture”, Phys. Lett. A, 160, 41–44, (1991). [External LinkDOI].
11 Barrow, J.D., “Chaotic Behaviour in General Relativity”, Phys. Rep., 85, 1–49, (1982). [External LinkDOI].
12 Barrow, J.D., and Levin, J., “Chaos in the Einstein–Yang–Mills Equations”, Phys. Rev. Lett., 80, 656–659, (1998). [External LinkDOI], [External Linkgr-qc/9706065].
13 Barrow, J.D., and Tipler, F.J., “Analysis of the Generic Singularity Studies by Belinskii, Khalatnikov, and Lifshitz”, Phys. Rep., 56, 371–402, (1979). [External LinkDOI].
14 Bartnik, R., and McKinnon, J., “Particlelike Solutions of the Einstein–Yang–Mills Equations”, Phys. Rev. Lett., 61, 141–144, (1988). [External LinkDOI].
15 Belanger, Z.B., Adaptive Mesh Refinement in the T2 Symmetric Spacetime, Masters Thesis, (Oakland University, Rochester, MI, 2001).
16 Belinskii, V.A., “Turbulence of a gravitational field near a cosmological singularity”, J. Exp. Theor. Phys. Lett., 56, 421–425, (1992).
17 Belinskii, V.A., and Khalatnikov, I.M., “General Solution of the Gravitational Equations with a Physical Singularity”, Sov. Phys. JETP, 30, 1174–1180, (1969).
18 Belinskii, V.A., and Khalatnikov, I.M., “On the Nature of the Singularities in the General Solution of the Gravitational Equations”, Sov. Phys. JETP, 29, 911–917, (1969).
19 Belinskii, V.A., and Khalatnikov, I.M., “General Solution of the Gravitational Equations with a Physical Oscillatory Singularity”, Sov. Phys. JETP, 32, 169–172, (1971).
20 Belinskii, V.A., and Khalatnikov, I.M., “Effect of scalar and vector fields on the nature of the cosmological singularity”, Sov. Phys. JETP, 36, 591–597, (1973).
21 Belinskii, V.A., Khalatnikov, I.M., and Lifshitz, E.M., “A general solution of the Einstein equations with a time singularity”, Adv. Phys., 13, 639–667, (1982). [External LinkDOI].
22 Belinskii, V.A., Lifshitz, E.M., and Khalatnikov, I.M., “Oscillatory Approach to the Singularity Point in Relativistic Cosmology”, Sov. Phys. Usp., 13, 745–765, (1971).
23 Berger, B.K., “Quantum graviton creation in a model universe”, Ann. Phys. (N.Y.), 83, 458–490, (1974). [External LinkDOI].
24 Berger, B.K., “Comments on the Computation of Liapunov Exponents for the Mixmaster Universe”, Gen. Relativ. Gravit., 23, 1385–1402, (1991). [External LinkDOI].
25 Berger, B.K., “How to Determine Approximate Mixmaster Parameters from Numerical Evolution of Einstein’s Equations”, Phys. Rev. D, 49, 1120–1123, (1994). [External Linkgr-qc/9308016].
26 Berger, B.K., “Comment on the ‘Chaotic’ Singularity in Some Magnetic Bianchi VI0 Cosmologies”, Class. Quantum Grav., 13, 1273–1276, (1996). [External LinkDOI], [External Linkgr-qc/9512005].
27 Berger, B.K., “Numerical Investigation of Cosmological Singularities”, in Hehl, F.W., Puntigam, R.A., and Ruder, H., eds., Relativity and Scientific Computing: Computer Algebra, Numerics, Visualization, 152nd WE-Heraeus seminar on Relativity and Scientific Computing, Bad Honnef, Germany, September 18 – 22, 1995, pp. 152–169, (Springer, Berlin; New York, 1996). [External Linkgr-qc/9512004].
28 Berger, B.K., “Numerical Investigation of Singularities”, in Francaviglia, M., Longhi, G., Lusanna, L., and Sorace, E., eds., General Relativity and Gravitation, Proceedings of the 14th International Conference on General Relativity and Gravitation: Florence, Italy, 6 – 12 August 1995, pp. 57–78, (World Scientific, Singapore; River Edge, NJ, 1997). [External Linkgr-qc/9512003].
29 Berger, B.K., “Numerical Approaches to Spacetime Singularities”, Living Rev. Relativity, 1, lrr-1998-7, (1998). URL (cited on 3 May 1998):
http://www.livingreviews.org/lrr-1998-7.
30 Berger, B.K., “On the Nature of the Generic Big Bang”, arXiv e-print, (1998). [External Linkgr-qc/9801010].
31 Berger, B.K., “Approach to the Singularity in Spatially Inhomogeneous Cosmologies”, in Weikard, R., and Weinstein, G., eds., Differential Equations and Mathematical Physics, Proceedings of an international conference held at the University of Alabama in Birmingham, March 16 – 20, 1999, AMS/IP Studies in Advanced Mathematics, vol. 16, (American Mathematical Society, Providence, RI, 2000). [External Linkgr-qc/0106009].
32 Berger, B.K., “Influence of Scalar Fields on the Approach to the Singularity in Spatially Inhomogeneous Cosmologies”, Phys. Rev. D, 61, 023508, (2000). [External Linkgr-qc/9907083].
33 Berger, B.K., “A Spectral Symplectic Method for Numerical Investigation of Cosmological Singularities”, lecture notes, University of California, Santa Barbara, (2000). URL (cited on 20 January 2000):
External Linkhttp://online.itp.ucsb.edu/online/numrel00/berger/.
34 Berger, B.K., Chruściel, P.T., Isenberg, J.A., and Moncrief, V., “Global Foliations of Vacuum Spacetimes with T2 Isometry”, Ann. Phys. (N.Y.), 260, 117–148, (1997). [External LinkDOI], [External Linkgr-qc/9702007].
35 Berger, B.K., Chruściel, P.T., and Moncrief, V., “On ‘Asymptotically Flat’ Space-Times with G2-Invariant Cauchy Surfaces”, Ann. Phys. (N.Y.), 237, 322–354, (1995). [External LinkDOI], [External Linkgr-qc/9404005].
36 Berger, B.K., and Garfinkle, D., “Phenomenology of the Gowdy Model on T3 ×R”, Phys. Rev. D, 57, 4767–4777, (1998). [External Linkgr-qc/9710102].
37 Berger, B.K., Garfinkle, D., Isenberg, J.A., Moncrief, V., and Weaver, M., “The singularity in generic gravitational collapse is spacelike, local, and oscillatory”, Mod. Phys. Lett. A, 13, 1565–1574, (1998). [External Linkgr-qc/9805063].
38 Berger, B.K., Garfinkle, D., and Moncrief, V., “Numerical Study of Cosmological Singularities”, in Burko, L.M., and Ori, A., eds., Internal Structure of Black Holes and Spacetime Singularities, An international research workshop, Haifa, June 29 – July 3, 1997, Annals of the Israel Physical Society, vol. 13, pp. 441–457, (Institute of Physics; Israel Physical Society, Bristol; Philadelphia; Jerusalem, 1998). [External Linkgr-qc/9709073].
39 Berger, B.K., Garfinkle, D., and Strasser, E., “New algorithm for Mixmaster dynamics”, Class. Quantum Grav., 14, L29–L36, (1997). [External LinkDOI], [External Linkgr-qc/9609072].
40 Berger, B.K., Garfinkle, D., and Swamy, V., “Detection of Computer Generated Gravitational Waves in Numerical Cosmologies”, Gen. Relativ. Gravit., 27, 511–527, (1995). [External LinkDOI], [External Linkgr-qc/9405069].
41 Berger, B.K., Isenberg, J.A., and Weaver, M., “Oscillatory Approach to the Singularity in Vacuum Spacetimes with T2 Isometry”, Phys. Rev. D, 64, 084006, (2001). [External Linkgr-qc/0104048]. Erratum: Phys. Rev. D 67 (2003) 129901.
42 Berger, B.K., and Moncrief, V., “Numerical Investigations of Cosmological Singularities”, Phys. Rev. D, 48, 4676–4687, (1993). [External Linkgr-qc/9307032].
43 Berger, B.K., and Moncrief, V., “Evidence for an oscillatory singularity in generic U(1) symmetric cosmologies on T3 × R”, Phys. Rev. D, 58, 064023, 1–8, (1998). [External Linkgr-qc/9804085].
44 Berger, B.K., and Moncrief, V., “Numerical Evidence that the Singularity in Polarized U(1) Symmetric Cosmologies on T3 × R is Velocity Dominated”, Phys. Rev. D, 57, 7235–7240, (1998). [External Linkgr-qc/9801078].
45 Berger, B.K., and Moncrief, V., “Signature for local Mixmaster dynamics in U(1) symmetric cosmologies”, Phys. Rev. D, 62, 123501, 1–9, (2000). [External Linkgr-qc/0006071].
46 Bizoń, P., “How to Make a Tiny Black Hole?”, Acta Cosm., 22, 81, (1996). [External Linkgr-qc/9606060].
47 Bizoń, P., and Chmaj, T., “Formation and critical collapse of Skyrmions”, Phys. Rev. D, 58, 041501, 1–4, (1998). [External Linkgr-qc/9801012].
48 Bizoń, P., Chmaj, T., and Tabor, Z., “Dispersion and collapse of wave maps”, Nonlinearity, 13, 1411–1423, (2000). [External LinkDOI], [External Linkmath-ph/9912009].
49 Bizoń, P., and Tabor, Z., “On blowup for Yang–Mills fields”, Phys. Rev. D, 64, 121701, 1–4, (2001). [External LinkDOI], [External Linkmath-ph/0105016].
50 Bonanno, A., Droz, S., Israel, W., and Morsink, S.M., “Structure of the Spherical Black Hole Interior”, Proc. R. Soc. London, Ser. A, 450, 553–567, (1995). [External Linkgr-qc/9411050].
51 Brady, P.R., and Chambers, C.M., “Non-Linear Instability of Kerr-Type Cauchy Horizons”, Phys. Rev. D, 51, 4177–4186, (1995). [External Linkgr-qc/9501025].
52 Brady, P.R., Chambers, C.M., and Gonçalves, S.M.C.V., “Phases of massive scalar field collapse”, Phys. Rev. D, 56, R6057–R6061, (1997). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9709014].
53 Brady, P.R., Chambers, C.M., Krivan, W., and Laguna, P., “Telling tails in the presence of a cosmological constant”, Phys. Rev. D, 55, 7538–7545, (1997). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9611056].
54 Brady, P.R., Droz, S., and Morsink, S.M., “Late-Time Singularity inside Nonspherical Black Holes”, Phys. Rev. D, 58, 084034, (1998). [External Linkgr-qc/9805008].
55 Brady, P.R., Moss, I.G., and Myers, R.C., “Cosmic Censorship: As Strong as Ever”, Phys. Rev. Lett., 80, 3432–3435, (1998). [External LinkDOI], [External Linkgr-qc/9801032].
56 Brady, P.R., and Smith, J.D., “Black Hole Singularities: A Numerical Approach”, Phys. Rev. Lett., 75, 1256–1259, (1995). [External LinkDOI], [External LinkADS], [External Linkgr-qc/950607].
57 Breitenlohner, P., Lavrelashvili, G., and Maison, D., “Mass Inflation and Chaotic Behavior Inside Hairy Black Holes”, Nucl. Phys. B, 524, 427–443, (1998). [External LinkDOI], [External Linkgr-qc/9703047].
58 Breitenlohner, P., Lavrelashvili, G., and Maison, D., “Non-Abelian Black Holes: The Inside Story”, in Burko, L.M., and Ori, A., eds., Internal Structure of Black Holes and Spacetime Singularities, An international research workshop, Haifa, June 29 – July 3, 1997, Annals of the Israel Physical Society, pp. 172–193, (Institute of Physics; Israel Physical Society, Bristol; Philadelphia; Jerusalem, 1998). [External Linkgr-qc/9708036].
59 Breitenlohner, P., Lavrelashvili, G., and Maison, D., “Mass Inflation Inside Non-Abelian Black Holes”, in Piran, T., ed., The Eighth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, Proceedings of the meeting held at the Hebrew University of Jerusalem, June 22 – 27, 1997, (World Scientific, Singapore, 1999). [External Linkgr-qc/9711024].
60 Brill, D.R., “On the Positive Definite Mass of the Bondi–Weber–Wheeler Time-Symmetric Gravitational Waves”, Ann. Phys. (N.Y.), 7, 466–483, (1959). [External LinkDOI].
61 Browne, M.W., “A Bet on a Cosmic Scale, And a Concession, Sort Of”, New York Times, (February 12, 1997), p. 1.
62 Burd, A.B., Buric, N., and Ellis, G.F.R., “A Numerical Analysis of Chaotic Behavior in Bianchi IX Models”, Gen. Relativ. Gravit., 22, 349–363, (1990). [External LinkDOI].
63 Burko, L.M., “Structure of the Black Hole’s Cauchy-Horizon Singularity”, Phys. Rev. Lett., 79, 4958–4961, (1997). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9710112].
64 Burko, L.M., “Homogeneous Spacelike Singularities Inside Spherical Black Holes”, in Burko, L.M., and Ori, A., eds., Internal Structure of Black Holes and Spacetime Singularities, An international research workshop, Haifa, June 29 – July 3, 1997, Annals of the Israel Physical Society, (Institute of Physics; Israel Physical Society, Bristol; Philadelphia; Jerusalem, 1998). [External Linkgr-qc/9711012].
65 Burko, L.M., “The Singularity in Supercritical Collapse of a Spherical Scalar Field”, Phys. Rev. D, 58, 084013, (1998). [External Linkgr-qc/9803059].
66 Burko, L.M., “Singularity Deep inside the Charged Black Hole Core”, Phys. Rev. D, 59, 024011, (1999). [External Linkgr-qc/9809073].
67 Burko, L.M., and Ori, A., “Late-time evolution of nonlinear gravitational collapse”, Phys. Rev. D, 56, 7820–7832, (1997). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9703067].
68 Burko, L.M., and Ori, A., “Analytic Study of the Null Singularity inside Spherical Charged Black Holes”, Phys. Rev. D, 57, 7084–7088, (1998). [External Linkgr-qc/9711032].
69 Carretero-Gonzalez, R., Nunuz-Yepez, H.N., and Salas-Brito, A.L., “Evidence of Chaotic Behavior in Jordan–Brans–Dicke Cosmology”, Phys. Lett. A, 188, 48, (1994). [External LinkDOI].
70 Chambers, C.M., “The Cauchy Horizon in Black Hole-de Sitter Spacetimes”, in Burko, L.M., and Ori, A., eds., Internal Structure of Black Holes and Spacetime Singularities, An international research workshop, Haifa, June 29 – July 3, 1997, Annals of the Israel Physical Society, (Institute of Physics; Israel Physical Society, Bristol; Philadelphia; Jerusalem, 1998). [External Linkgr-qc/9709025].
71 Chambers, C.M., Brady, P.R., and Gonçalves, S.M.C.V., “Phases of Massive Scalar Field Collapse”, in Piran, T., ed., The Eighth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, Proceedings of the meeting held at the Hebrew University of Jerusalem, June 22 – 27, 1997, (World Scientific, Singapore, 1999). [External Linkgr-qc/9710014].
72 Chambers, C.M., Brady, P.R., Krivan, W., and Laguna, P., “Some Cosmological Tails of Collapse”, in Piran, T., ed., The Eighth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, Proceedings of the meeting held at the Hebrew University of Jerusalem, June 22 – 27, 1997, (World Scientific, Singapore, 1999). [External Linkgr-qc/9710015].
73 Chandrasekhar, S., and Hartle, J.B., “On Crossing the Cauchy Horizon of a Reissner–Nordström Black Hole”, Proc. R. Soc. London, Ser. A, 384, 301–315, (1982).
74 Chernoff, D.F., and Barrow, J.D., “Chaos in the Mixmaster Universe”, Phys. Rev. Lett., 50, 134–137, (1983). [External LinkDOI].
75 Chiba, T., “Apparent Horizon Formation and Hoop Conjecture in Non-axisymmetric Spaces”, Phys. Rev. D, 60, 044003, (1999). [External Linkgr-qc/9904054]. Erratum: Phys. Rev. D 60 (1999) 089902.
76 Chiba, T., Nakamura, T., Nakao, K., and Sasaki, M., “Hoop Conjecture for Apparent Horizon Formation”, Class. Quantum Grav., 11, 431–441, (1994). [External LinkDOI].
77 Choptuik, M.W., “Universality and scaling in gravitational collapse of a massless scalar field”, Phys. Rev. Lett., 70, 9–12, (1993). [External LinkDOI], [External LinkADS].
78 Choptuik, M.W., “Animations of SU(2) EYM Collapse”, personal homepage, University of British Columbia, (1999). URL (cited on 20 June 2001):
External Linkhttp://laplace.physics.ubc.ca/People/matt/Movies/YM/.
79 Choptuik, M.W., Chmaj, T., and Bizoń, P., “Critical Behavior in Gravitational Collapse of a Yang–Mills Field”, Phys. Rev. Lett., 77, 424–427, (1996). [External LinkDOI], [External Linkgr-qc/9603051].
80 Christodoulou, D., “A mathematical theory of gravitational collapse”, Commun. Math. Phys., 109, 613–647, (1987). [External LinkDOI], [External LinkADS].
81 Christodoulou, D., “The Instability of Naked Singularities in the Gravitational Collapse of a Scalar Field”, Ann. Math. (2), 149, 183–217, (1999). [External LinkDOI].
82 Chruściel, P.T., “On Space-Time with U(1) × U(1) Symmetric Compact Cauchy Surfaces”, Ann. Phys. (N.Y.), 202, 100–150, (1990). [External LinkDOI].
83 Chruściel, P.T., Isenberg, J.A., and Moncrief, V., “Strong cosmic censorship in polarised Gowdy spacetimes”, Class. Quantum Grav., 7, 1671–1680, (1990). [External LinkDOI].
84 Coley, A.A., “No chaos in brane-world cosmology”, Class. Quantum Grav., 19, L45–L56, (2002). [External LinkDOI], [External Linkhep-th/0110117].
85 Cornish, N.J., and Levin, J., “The Mixmaster Universe is Chaotic”, Phys. Rev. Lett., 78, 998–1001, (1997). [External LinkDOI], [External Linkgr-qc/9605029].
86 Cornish, N.J., and Levin, J.J., “Mixmaster universe: A chaotic Farey tale”, Phys. Rev. D, 55, 7489–7510, (1997). [External Linkgr-qc/9612066].
87 Cotsakis, S., Demaret, J., DeRop, Y., and Querella, L., “Mixmaster Universe in Fourth-Order Gravity Theories”, Phys. Rev. D, 48, 4595–4603, (1993).
88 Damour, T., and Henneaux, M., “Chaos in superstring cosmology”, Phys. Rev. Lett., 85, 920–923, (2000). [External LinkDOI], [External Linkhep-th/0003139].
89 Damour, T., and Henneaux, M., “Oscillatory behaviour in homogeneous string cosmology models”, Phys. Lett. B, 488, 108–116, (2000). [External Linkhep-th/0006171]. Erratum: Phys. Lett. B 491 (2000) 377.
90 Deruelle, N., and Langlois, D., “Long Wavelength Iteration of Einstein’s Equations near a Spacetime Singularity”, Phys. Rev. D, 52, 2007–2019, (1995). [External Linkgr-qc/94110].
91 Donets, E.E., Gal’tsov, D.V., and Zotov, M.Y., “Internal Structure of Einstein–Yang–Mills Black Holes”, Phys. Rev. D, 56, 3459–3465, (1997). [External Linkgr-qc/9612067].
92 Droz, S., “Numerical Investigation of Black Hole Interiors”, Helv. Phys. Acta, 69, 257–260, (1996). [External Linkgr-qc/9608034].
93 Eardley, D.M., Hirschmann, E.W., and Horne, J.H., “S duality at the black hole threshold in gravitational collapse”, Phys. Rev. D, 52, R5397–R5401, (1995). [External Linkgr-qc/9505041].
94 Eardley, D.M., Isenberg, J.A., Marsden, J., and Moncrief, V., “Homothetic and Conformal Symmetries of Solutions to Einstein’s Equations”, Commun. Math. Phys., 106, 137–158, (1986). [External LinkDOI].
95 Eardley, D.M., Liang, E., and Sachs, R., “Velocity-Dominated Singularities in Irrotational Dust Cosmologies”, J. Math. Phys., 13, 99–107, (1972). [External LinkDOI].
96 Echeverria, F., “Gravitational Collapse of an Infinite, Cylindrical Dust Shell”, Phys. Rev. D, 47, 2271–2282, (1993).
97 Ellis, G.F.R., and Schmidt, B.G., “Singular Space-Times”, Gen. Relativ. Gravit., 8, 915–953, (1977). [External LinkDOI].
98 Evans, C.R., and Coleman, J.S., “Critical Phenomena and Self-Similarity in the Gravitational Collapse of Radiation Fluid”, Phys. Rev. Lett., 72, 1782–1785, (1994). [External LinkDOI], [External Linkgr-qc/9402041].
99 Ferraz, K., Francisco, G., and Matsas, G.E.A., “Chaotic and Nonchaotic Behavior in the Mixmaster Dynamics”, Phys. Lett. A, 156, 407–409, (1991). [External LinkDOI].
100 Finn, L.S., “A Numerical Approach to Binary Black Hole Coalescence”, in Francaviglia, M., Longhi, G., Lusanna, L., and Sorace, E., eds., General Relativity and Gravitation, Proceedings of the 14th International Conference on General Relativity and Gravitation: Florence, Italy, 6 – 12 August 1995, pp. 147–166, (World Scientific, Singapore; River Edge, NJ, 1997). [External Linkgr-qc/9603004].
101 Fleck, J.A., Morris, J.R., and Feit, M.D., “Time-Dependent Propagation of High Energy Laser Beams through the Atmosphere”, Appl. Phys., 10, 129–160, (1976). [External LinkDOI].
102 Francisco, G., and Matsas, G.E.A., “Qualitative and Numerical Study of Bianchi IX Models”, Gen. Relativ. Gravit., 20, 1047–1054, (1988). [External LinkDOI].
103 Friedrich, H., “On Static and Radiative Space-Times”, Commun. Math. Phys., 119, 51–73, (1988). [External LinkDOI].
104 Gal’tsov, D.V., and Donets, E.E., “Power-law mass inflation in Einstein–Yang–Mills–Higgs black holes”, C. R. Acad. Sci. Ser. IIB, 325, 649–657, (1997). [External LinkDOI], [External Linkgr-qc/9706067].
105 Gal’tsov, D.V., Donets, E.E., and Zotov, M.Y., “Singularities Inside Non-Abelian Black Holes”, J. Exp. Theor. Phys. Lett., 65, 895–901, (1997). [External Linkgr-qc/9706063].
106 Gal’tsov, D.V., Donets, E.E., and Zotov, M.Y., “Singularities inside Hairy Black Holes”, in Piran, T., ed., The Eighth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, Proceedings of the meeting held at the Hebrew University of Jerusalem, June 22 – 27, 1997, pp. 539–541, (World Scientific, Singapore, 1999). [External Linkgr-qc/9712003].
107 Garfinkel, D., and Meyer, K., “Scale invariance and critical gravitational collapse”, Phys. Rev. D, 59, 064003, 1–5, (1999). [External Linkgr-qc/9806052].
108 Garfinkle, D., “Asymptotically Flat Space-Times Have No Conformal Killing Fields”, J. Math. Phys., 28, 28–32, (1987). [External LinkDOI].
109 Garfinkle, D., “Choptuik scaling in null coordinates”, Phys. Rev. D, 51, 5558–5561, (1995). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9412008].
110 Garfinkle, D., “Choptuik scaling and the scale invariance of Einstein’s equation”, Phys. Rev. D, 56, 3169–3173, (1997). [External Linkgr-qc/9612015].
111 Garfinkle, D., “Numerical Simulations of Gowdy Spacetimes on S2 × S1 × R”, Phys. Rev. D, 60, 104010, (1999). [External Linkgr-qc/9906019].
112 Garfinkle, D., “Exact solution for (2+1)-dimensional critical collapse”, Phys. Rev. D, 63, 044007, 1–5, (2001). [External LinkDOI], [External Linkgr-qc/0008023].
113 Garfinkle, D., “Harmonic coordinate method for simulating generic singularities”, Phys. Rev. D, 65, 044029, 1–6, (2002). [External LinkDOI], [External LinkADS].
114 Garfinkle, D., and Duncan, G.C., “Scaling of curvature in subcritical gravitational collapse”, Phys. Rev. D, 58, 064024, 1–4, (1998). [External Linkgr-qc/9802061].
115 Garfinkle, D., and Duncan, G.C., “Numerical Evolution of Brill Waves”, Phys. Rev. D, 63, 044011, (2001). [External Linkgr-qc/0006073].
116 Garfinkle, D., and Gundlach, C., “Symmetry-seeking spacetime coordinates”, Class. Quantum Grav., 16, 4111–4123, (1999). [External Linkgr-qc/9908016].
117 Gentle, A.P., and Miller, W.A., “A fully (3+1)-dimensional Regge calculus model of the Kasner cosmology”, Class. Quantum Grav., 15, 389–405, (1998). [External LinkDOI], [External Linkgr-qc/9706034].
118 Gnedin, M.L., and Gnedin, N.Y., “Destruction of the Cauchy horizon in the Reissner–Nordström black hole”, Class. Quantum Grav., 10, 1083–1102, (1993). [External LinkDOI], [External LinkADS].
119 Goldwirth, D.S., and Piran, T., “Gravitational collapse of massless scalar field and cosmic censorship”, Phys. Rev. D, 36, 3575–3581, (1987). [External LinkDOI], [External LinkADS].
120 Gonçalves, S.M.C.V., and Moss, I.G., “Black Hole Formation from Massive Scalar Fields”, Class. Quantum Grav., 14, 2607–2615, (1997). [External LinkDOI], [External Linkgr-qc/9702059].
121 Gowdy, R.H., “Gravitational Waves in Closed Universes”, Phys. Rev. Lett., 27, 826, (1971).
122 Grubisić, B., “Velocity Dominance near a Crushing Singularity”, in Brown, J.D., Chu, M.T., Ellison, D.C., and Plemmons, R.J., eds., Proceedings of the Cornelius Lanczos International Centenary Conference, Proceedings of the conference held in Raleigh, North Carolina, December 12 – 17, 1993, (SIAM, Philadelphia, 1994). [External Linkgr-qc/9404056].
123 Grubisić, B., and Moncrief, V., “Asymptotic Behavior of the T3 × R Gowdy Space-times”, Phys. Rev. D, 47, 2371–2382, (1993). [External Linkgr-qc/9209006].
124 Grubisić, B., and Moncrief, V., “Mixmaster Spacetime, Geroch’s Transformation, and Constants of Motion”, Phys. Rev. D, 49, 2792–2800, (1994). [External Linkgr-qc/9309007].
125 Gundlach, C., “The Choptuik Spacetime as an Eigenvalue Problem”, Phys. Rev. Lett., 75, 3214–3217, (1995). [External LinkDOI], [External Linkgr-qc/9507054].
126 Gundlach, C., “Critical phenomena in gravitational collapse”, in Chruściel, P.T., ed., Mathematics of Gravitation, Part I: Lorentzian Geometry and Einstein Equations, Proceedings of the Workshop on Mathematical Aspects of Theories of Gravitation, held in Warsaw, Poland, February 29 – March 30, 1996, Banach Center Publications, vol. 41, pp. 143–152, (Polish Academy of Sciences, Institute of Mathematics, Warsaw, 1997). [External Linkgr-qc/9606023].
127 Gundlach, C., “Echoing and scaling in Einstein–Yang–Mills critical collapse”, Phys. Rev. D, 55, 6002–6013, (1997). [External Linkgr-qc/9610069].
128 Gundlach, C., “Understanding critical collapse of a scalar field”, Phys. Rev. D, 55, 695–713, (1997). [External Linkgr-qc/9604019].
129 Gundlach, C., “Critical phenomena in gravitational collapse”, Adv. Theor. Math. Phys., 2, 1–49, (1998). [External Linkgr-qc/9712084].
130 Gundlach, C., “Nonspherical perturbations of critical collapse and cosmic censorship”, Phys. Rev. D, 57, 7075–7079, (1998). [External Linkgr-qc/9710066].
131 Gundlach, C., “Critical Phenomena in Gravitational Collapse”, Living Rev. Relativity, 2, lrr-1999-4, (1999). URL (cited on 28 May 2001):
http://www.livingreviews.org/lrr-1999-4.
132 Gundlach, C., and Martín-García, J.M., “Charge scaling and universality in critical collapse”, Phys. Rev. D, 54, 7353–7360, (1996). [External Linkgr-qc/9606072].
133 Halpern, P., “Chaos in the Long-Term Behavior of Some Bianchi-type VIII Models”, Gen. Relativ. Gravit., 19, 73–94, (1987). [External LinkDOI].
134 Hamadé, R.S., Horne, J.H., and Stewart, J.M., “Continuous self-similarity and S-duality”, Class. Quantum Grav., 13, 2241–2253, (1996). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9511024].
135 Hamadé, R.S., and Stewart, J.M., “The spherically symmetric collapse of a massless scalar field”, Class. Quantum Grav., 13, 497–512, (1996). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9506044].
136 Hara, T., Koike, T., and Adachi, S., “Renormalization group and critical behavior in gravitational collapse”, arXiv e-print, (1996). [External Linkgr-qc/9607010].
137 Harada, T., Iguchi, H., and Nakao, K., “Naked Singularity Explosion”, Phys. Rev. D, 61, 101502, (2000). [External Linkgr-qc/0003036].
138 Harada, T., Iguchi, H., and Nakao, K., “Power, Energy, and Spectrum of a Naked Singularity Explosion”, Phys. Rev. D, 62, 084037, (2000). [External Linkgr-qc/0005114].
139 Hawking, S.W., “The Occurrence of Singularities in Cosmology. III. Causality and Singularities”, Proc. R. Soc. London, Ser. A, 300, 182–201, (1967).
140 Hawking, S.W., and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, 1973). [External LinkGoogle Books].
141 Hawking, S.W., and Penrose, R., “The singularities of gravitational collapse and cosmology”, Proc. R. Soc. London, Ser. A, 314, 529–548, (1970).
142 Hern, S.D., Numerical Relativity and Inhomogeneous Cosmologies, Ph.D. Thesis, (Cambridge University, Cambridge, 2000). [External Linkgr-qc/0004036].
143 Hern, S.D., and Stewart, J.M., “The Gowdy T3 Cosmologies Revisited”, Class. Quantum Grav., 15, 1581–1593, (1998). [External LinkDOI], [External Linkgr-qc/9708038].
144 Hirschmann, E.W., and Eardley, D.M., “Critical exponents and stability at the black hole threshold for a complex scalar field”, Phys. Rev. D, 52, 5850–5856, (1995). [External Linkgr-qc/9506078].
145 Hirschmann, E.W., and Eardley, D.M., “Universal scaling and echoing in gravitational collapse of a complex scalar field”, Phys. Rev. D, 51, 4198–4207, (1995). [External Linkgr-qc/9412066].
146 Hirschmann, E.W., and Eardley, D.M., “Criticality and bifurcation in the gravitational collapse of a self-coupled scalar field”, Phys. Rev. D, 56, 4696–4705, (1997). [External Linkgr-qc/9511052].
147 Hobill, D.W., Bernstein, D.H., Welge, M., and Simkins, D., “The Mixmaster cosmology as a dynamical system”, Class. Quantum Grav., 8, 1155–1171, (1991). [External LinkDOI].
148 Hobill, D.W., Burd, A., and Coley, A.A., eds., Deterministic Chaos in General Relativity, Proceedings of the NATO Advanced Research Workshop, held July 25 – 30, 1993, in Kananaskis, Alberta, Canada, (Plenum, New York, 1994).
149 Hobill, D.W., and Webster, P.S., “Trapped Surface Structure in Brill Wave Evolution”, personal communication. Talk presented at GR16 and private communication.
150 Hod, S., “Radiative Tail of Realistic Rotating Gravitational Collapse”, Phys. Rev. Lett., 84, 10–13, (2000). [External LinkDOI], [External Linkgr-qc/9907096].
151 Hod, S., and Piran, T., “Critical behavior and universality in gravitational collapse of a charged scalar field”, Phys. Rev. D, 55, 3485–3496, (1997). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9606093].
152 Hod, S., and Piran, T., “Fine-structure of Choptuik’s mass-scaling relation”, Phys. Rev. D, 55, 440–442, (1997). [External Linkgr-qc/9606087].
153 Hod, S., and Piran, T., “The Inner Structure of Black Holes”, Gen. Relativ. Gravit., 30, 1555–1562, (1998). [External LinkDOI], [External Linkgr-qc/9902008].
154 Hod, S., and Piran, T., “Mass Inflation in Dynamical Gravitational Collapse of a Charged Scalar Field”, Phys. Rev. Lett., 81, 1554–1557, (1998). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9803004].
155 Hübner, P., “Method for calculating the global structure of (singular) spacetimes”, Phys. Rev. D, 53(2), 701–721, (1994). [External Linkgr-qc/940902].
156 Hübner, P., “Numerical approach to the global structure of space-time”, Helv. Phys. Acta, 69, 316–320, (1996).
157 Hübner, P., “How to avoid artificial boundaries in the numerical calculation of black hole space-times”, Class. Quantum Grav., 16(7), 2145–2164, (1999). [External Linkgr-qc/9804065].
158 Husa, S., Lechner, C., Pürrer, M., Thornburg, J., and Aichelburg, P.C., “Type II critical collapse of a self-gravitating nonlinear σ model”, Phys. Rev. D, 62, 104007, 1–11, (2000). [External LinkDOI], [External LinkADS], [External Linkgr-qc/0002067].
159 Iguchi, H., and Harada, T., “Physical Aspects of Naked Singularity Explosion: How Does a Naked Singularity Explode?”, Class. Quantum Grav., 18, 3681–3700, (2001). [External LinkDOI], [External Linkgr-qc/0107099].
160 Iguchi, H., Nakao, K., and Harada, T., “Gravitational Waves around a Naked Singularity: Odd-Parity Perturbation of Lemaître–Tolman–Bondi Space-Time”, Phys. Rev. D, 57, 7262–7273, (1998). [External Linkgr-qc/9804015].
161 Iguchi, H., Nakao, K., and Harada, T., “Gravitational Waves around a Naked Singularity. II — Even-Parity Perturbation —”, Prog. Theor. Phys., 103, 53–72, (2000). [External Linkgr-qc/9911063].
162 Iguchi, O., Hosoya, A., and Koike, T., “Renormalization Group Approach to the Einstein Equation in Cosmology”, Phys. Rev. D, 57, 3340–3350, (1998). [External Linkgr-qc/9709042].
163 Isenberg, J.A., and Kichenassamy, S., “Asymptotic behaviour in polarized T2-symmetric vacuum space-times”, J. Math. Phys., 40, 340–352, (1999). [External LinkDOI].
164 Isenberg, J.A., and Moncrief, V., “Asymptotic Behaviour of the Gravitational Field and the Nature of Singularities in Gowdy Spacetimes”, Ann. Phys. (N.Y.), 199, 84–122, (1990). [External LinkDOI].
165 Isenberg, J.A., and Moncrief, V., “Asymptotic behavior of polarized and half-polarized U(1) symmetric vacuum spacetimes”, Class. Quantum Grav., 19, 5361–5386, (2002). [External LinkDOI].
166 Israel, W., “The Formation of Black Holes in Nonspherical Collapse and Cosmic Censorship”, Can. J. Phys., 64, 120–127, (1986).
167 Israel, W., “Must Nonspherical Collapse Produce Black Holes? A Gravitational Confinement Theorem”, Phys. Rev. Lett., 56, 789–791, (1986). [External LinkDOI].
168 Jantzen, R.T., “Finite-Dimensional Einstein–Maxwell–Scalar Field System”, Phys. Rev. D, 33, 2121–2135, (1986).
169 Jantzen, R.T., “Spatially Homogeneous Dynamics: A Unified Picture”, in Ruffini, R., and Melchiorri, F., eds., Gamow Cosmology, Proceedings of the International School of Physics ‘Enrico Fermi’, Course 86, Varenna, Italy, 13 – 23 July 1982, pp. 61–147, (North-Holland; Elsevier, Amsterdam; New York, 1986). [External Linkgr-qc/0102035].
170 Johnson, G., “What a Physicist Finds Obscene”, New York Times, (February 16, 1997), p. 4.
171 Kasner, E., “Solutions of the Einstein Equations Involving Functions of Only One Variable”, Trans. Amer. Math. Soc., 27, 155–162, (1925). [External LinkDOI].
172 Khalatnikov, I.M., Lifshitz, E.M., Khanin, K.M., Shchur, L.N., and Sinai, Y.G., “On the Stochasticity in Relativistic Cosmology”, J. Stat. Phys., 38, 97–114, (1985). [External LinkDOI].
173 Kichenassamy, S., and Rendall, A.D., “Analytic description of singularities in Gowdy spacetimes”, Class. Quantum Grav., 15, 1339–1355, (1998). [External LinkDOI].
174 Kirillov, A.A., “The Nature of the Spatial Distribution of Metric Inhomogeneities in the General Solution of the Einstein Equations near a Cosmological Singularity”, J. Exp. Theor. Phys., 76, 355–358, (1993).
175 Kirillov, A.A., and Kochnev, A.A., “Cellular Structure of Space near a Singularity in Time in Einstein’s Equations”, J. Exp. Theor. Phys. Lett., 46, 435–438, (1987).
176 Koike, T., Hara, T., and Adachi, S., “Critical Behavior in Gravitational Collapse of Radiation Fluid: A Renormalization Group (Linear Perturbation) Analysis”, Phys. Rev. Lett., 74, 5170–5173, (1995). [External LinkDOI].
177 LeBlanc, V.G., “Asymptotic states of magnetic Bianchi I cosmologies”, Class. Quantum Grav., 14, 2281–2301, (1997). [External LinkDOI].
178 LeBlanc, V.G., Kerr, D., and Wainwright, J., “Asymptotic states of magnetic Bianchi VI0 cosmologies”, Class. Quantum Grav., 12, 513–541, (1995). [External LinkDOI].
179 Libson, J., Massó, J., Seidel, E., Suen, W.-M., and Walker, P., “Event horizons in numerical relativity: Methods and tests”, Phys. Rev. D, 53, 4335–4350, (1996). [External Linkgr-qc/9412068].
180 Liebling, S.L., Hirschmann, E.W., and Isenberg, J.A., “Critical phenomena in nonlinear sigma models”, J. Math. Phys., 41(8), 5691–5700, (2000). [External LinkDOI], [External Linkmath-ph/9911020].
181 Ma, P.K.-H., and Wainwright, J., “A Dynamical Systems Approach to the Oscillatory Singularity in Bianchi Cosmologies”, in Hobill, D.W., Burd, A., and Coley, A.A., eds., Deterministic Chaos in General Relativity, Proceedings of the NATO Advanced Research Workshop, held July 25 – 30, 1993, in Kananaskis, Alberta, Canada, NATO ASI Series B, vol. 332, (Plenum, New York, 1994).
182 MacCallum, M., “Anisotropic and Inhomogeneous Relativistic Cosmologies”, in Hawking, S.W., and Israel, W., eds., General Relativity: An Einstein Centenary Survey, (Cambridge University Press, Cambridge; New York, 1979).
183 Maison, D., “Non-universality of critical behaviour in spherically symmetric gravitational collapse”, Phys. Lett. B, 366, 82–84, (1996). [External LinkDOI], [External Linkgr-qc/9504008].
184 Massó, J., Seidel, E., Suen, W.-M., and Walker, P., “Event Horizons in Numerical Relativity II: Analyzing the Horizon”, Phys. Rev. D, 59, 064015, (1999). [External Linkgr-qc/9804059].
185 Mellor, F., and Moss, I.G., “Stability of black holes in de Sitter space”, Phys. Rev. D, 41, 403–409, (1990).
186 Mellor, F., and Moss, I.G., “A Reassessment of the Stability of the Cauchy Horizon in de Sitter Space”, Class. Quantum Grav., 9, L43–L46, (1992). [External LinkDOI].
187 Misner, C.W., “Mixmaster Universe”, Phys. Rev. Lett., 22, 1071–1074, (1969). [External LinkDOI].
188 Moncrief, V., “Global Properties of Gowdy Spacetimes with T3 × R Topology”, Ann. Phys. (N.Y.), 132, 87–107, (1981). [External LinkDOI].
189 Moncrief, V., “Finite-Difference Approach to Solving Operator Equations of Motion in Quantum Theory”, Phys. Rev. D, 28, 2485–2490, (1983).
190 Moncrief, V., “Reduction of Einstein’s Equations for Vacuum Space-Times with Spacelike U(1) Isometry Groups”, Ann. Phys. (N.Y.), 167, 118–142, (1986). [External LinkDOI].
191 Moncrief, V., “Spacetime Singularities and Cosmic Censorship”, in Francaviglia, M., Longhi, G., Lusanna, L., and Sorace, E., eds., General Relativity and Gravitation, Proceedings of the 14th International Conference on General Relativity and Gravitation: Florence, Italy, 6 – 12 August 1995, pp. 259–276, (World Scientific, Singapore; River Edge, NJ, 1997).
192 Montani, G., “On the General Behavior of the Universe near the Cosmological Singularity”, Class. Quantum Grav., 12, 2505–2517, (1995). [External LinkDOI].
193 Moser, A.A., Matzner, R.A., and Ryan Jr, M.P., “Numerical Solutions for Symmetric Bianchi Type IX Universes”, Ann. Phys. (N.Y.), 79, 558–579, (1973). [External LinkDOI].
194 Motter, A.E., and Letelier, P.S., “Mixmaster Chaos”, Phys. Lett. A, 285, 127–131, (2001). [External LinkDOI], [External Linkgr-qc/0011001].
195 Nakamura, T., and Sato, H., “General Relativistic Collapse of Non-Rotating, Axisymmetric Stars”, Prog. Theor. Phys., 67, 1396–1405, (1982). [External LinkDOI], [External LinkADS].
196 Nakamura, T., Shapiro, S.L., and Teukolsky, S.A., “Naked Singularities and the Hoop Conjecture: An Analytic Exploration”, Phys. Rev. D, 38, 2972–2978, (1988).
197 Nakamura, T., Shibata, M., and Nakao, K., “Naked Singularity Dries Up?”, Prog. Theor. Phys., 89, 821–831, (1993). [External LinkDOI].
198 Nakao, K., Iguchi, H., and Harada, T., “Newtonian Analysis of Gravitational Waves from Naked Singularity”, Phys. Rev. D, 63, 084003, (2001). [External Linkastro-ph/0006057].
199 Niemeyer, J.C., and Jedamzik, K., “Near-Critical Gravitational Collapse and the Initial Mass Function of Primordial Black Holes”, Phys. Rev. Lett., 80, 5481–5484, (1998). [External LinkDOI], [External Linkastro-ph/9709072].
200 Norton, A.H., “Finite Difference Operators for PDE’s Based on Sampling Kernels for Spline Quasi-Interpolation”, unknown status, (1992). University of New South Wales Preprint.
201 Olabarrieta, I., Critical Collapse of Collisionless Matter in Spherical Symmetry, Masters Thesis, (Uinversity of British Columbia, Vancouver, 2000). [External Linkgr-qc/0012059].
202 Ori, A., “Inner Structure of a Charged Black Hole: An Exact Mass-Inflation Solution”, Phys. Rev. Lett., 67, 789–792, (1991). [External LinkDOI].
203 Ori, A., “Structure of the Singularity inside a Realistic Black Hole”, Phys. Rev. Lett., 68, 2117–2120, (1992). [External LinkDOI].
204 Ori, A., “Null Weak Singularities in Plane-Symmetric Spacetimes”, Phys. Rev. D, 57, 4745–4753, (1998). [External Linkgr-qc/9801086].
205 Ori, A., “Evolution of Linear Gravitational and Electromagnetic Perturbations inside a Kerr Black Hole”, Phys. Rev. D, 61, 024001, (1999).
206 Ori, A., “Oscillatory Null Singularity inside Realistic Spinning Black Holes”, Phys. Rev. Lett., 83, 5423–5426, (1999). [External LinkDOI], [External Linkgr-qc/0103012].
207 Ove, R., “Nonlinear Gravitational Effect”, Phys. Rev. Lett., 64, 1200–1203, (1990). [External LinkDOI].
208 Pelath, M.A., Tod, K.P., and Wald, R.M., “Trapped surfaces in prolate collapse in the Gibbons–Penrose construction”, Class. Quantum Grav., 15, 3917–3934, (1998). [External LinkDOI], [External Linkgr-qc/9805051].
209 Penrose, R., “Gravitational Collapse: The Role of General Relativity”, Riv. Nuovo Cimento, 1, 252–276, (1969). [External LinkADS].
210 Penrose, R., “Singularities and Time-Asymmetry”, in Hawking, S.W., and Israel, W., eds., General Relativity: An Einstein Centenary Survey, pp. 581–638, (Cambridge University Press, Cambridge; New York, 1979).
211 Poisson, E., “Black-Hole Interiors and Strong Cosmic Censorship”, in Burko, L.M., and Ori, A., eds., Internal Structure of Black Holes and Spacetime Singularities, An international research workshop, Haifa, June 29 – July 3, 1997, Annals of the Israel Physical Society, vol. 13, (Institute of Physics; Israel Physical Society, Bristol; Philadelphia; Jerusalem, 1998). [External Linkgr-qc/9709022].
212 Poisson, E., and Israel, W., “Inner-Horizon Instability and Mass Inflation in Black Holes”, Phys. Rev. Lett., 63, 1663–1666, (1989). [External LinkDOI].
213 Poisson, E., and Israel, W., “Internal structure of black holes”, Phys. Rev. D, 41, 1796–1809, (1990). [External LinkDOI], [External LinkADS].
214 Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numerical Recipes: The Art of Scientific Computing, (Cambridge University, Cambridge; New York, 1992), 2nd edition. [External LinkGoogle Books].
215 Pretorius, F., and Choptuik, M.W., “Gravitational collapse in 2+1 dimensional AdS spacetime”, Phys. Rev. D, 62, 124012, 1–15, (2000). [External LinkDOI], [External Linkgr-qc/0007008].
216 Pullin, J., “Time and Chaos in General Relativity”, in D’Olivo, J.C., Nahmad, E., and Ryan, M., eds., Relativity and Gravitation: Classical and Quantum, Proceedings of SILARG VII, the 7th Latin-American Symposium on Relativity and Gravitation, Cocoyoc, Mexico, December 1990, (World Scientific, Singapore, 1991).
217 Rein, G., Rendall, A.D., and Schaeffer, J., “Critical collapse of collisionless matter: A numerical investigation”, Phys. Rev. D, 58, 044007, 1–8, (1998). [External Linkgr-qc/9804040].
218 Rendall, A.D., “Global dynamics of the mixmaster model”, Class. Quantum Grav., 14, 2341–2356, (1997). [External LinkDOI], [External Linkgr-qc/9703036].
219 Rendall, A.D., “Solutions of the Einstein equations with matter”, in Francaviglia, M., Longhi, G., Lusanna, L., and Sorace, E., eds., General Relativity and Gravitation, Proceedings of the 14th International Conference on General Relativity and Gravitation, Florence, Italy, 6 – 12 August 1995, pp. 313–335, (World Scientific, Singapore; River Edge, NJ, 1997). [External Linkgr-qc/9510009].
220 Rendall, A.D., and Weaver, M., “Manufacture of Gowdy spacetimes with spikes”, Class. Quantum Grav., 18, 2959–2975, (2001). [External LinkDOI], [External Linkgr-qc/0103102].
221 Ringström, H., “Curvature blow up in Bianchi VIII and IX vacuum spacetimes”, Class. Quantum Grav., 17, 713–731, (2000). [External LinkDOI], [External Linkgr-qc/9911115].
222 Ringström, H., “The Bianchi IX attractor”, Ann. Henri Poincare, 2, 405–500, (2001). [External Linkgr-qc/0006035].
223 Rugh, S.E., Chaotic Behavior and Oscillating Three-Volumes in a Space-Time Metric in General Relativity, Masters Thesis, (Niels Bohr Institute, Copenhagen, 1990). Available on request to the author.
224 Rugh, S.E., “Chaos in the Einstein Equations – Characterization and Importance?”, in Hobill, D.W., Burd, A., and Coley, A.A., eds., Deterministic Chaos in General Relativity, Proceedings of the NATO Advanced Research Workshop, held July 25 – 30, 1993, in Kananaskis, Alberta, Canada, NATO ASI Series B, vol. 332, (Plenum, New York, 1994).
225 Rugh, S.E., and Jones, B.J.T., “Chaotic Behaviour and Oscillating Three-Volumes in Bianchi IX Universes”, Phys. Lett. A, 147, 353, (1990). [External LinkDOI].
226 Ryan Jr, M.P., “Qualitative Cosmology: Diagrammatic Solutions for Bianchi IX Universes with Expansion, Rotation, and Shear II: The General Case”, Ann. Phys. (N.Y.), 68, 541–555, (1971).
227 Ryan Jr, M.P., and Shepley, L.C., Homogeneous Relativistic Cosmologies, Princeton Series in Physics, (Princeton University Press, Princeton, NJ, 1975).
228 Schoen, R., and Yau, S.-T., “The Existence of a Black Hole Due to Condensation of Matter”, Commun. Math. Phys., 90, 575–579, (1983). [External LinkDOI].
229 Seidel, E., and Suen, W.-M., “Formation of Solitonic Stars Through Gravitational Cooling”, Phys. Rev. Lett., 72, 2516–2519, (1994). [External LinkDOI], [External Linkgr-qc/9309015].
230 Shapiro, S.L., and Teukolsky, S.A., “Formation of Naked Singularities: The Violation of Cosmic Censorship”, Phys. Rev. Lett., 66, 994–997, (1991). [External LinkDOI].
231 Shapiro, S.L., and Teukolsky, S.A., “Gravitational collapse of rotating spheroids and the formation of naked singularities”, Phys. Rev. D, 45, 2006–2012, (1992).
232 Shapiro, S.L., and Teukolsky, S.A., “Relativistic Stellar Systems with Spindle Singularities”, Astrophys. J., 419, 622–635, (1993).
233 Ståhl, F., “Fuchsian Analysis of S2 ×S1 and S3 Gowdy Spacetimes”, Class. Quantum Grav., 19, 4483–4504, (2002). [External LinkDOI], [External Linkgr-qc/0109011].
234 Suzuki, M., “Fractal Decomposition of Exponential Operators with Applications to Many-body Theories and Monte Carlo Simulations”, Phys. Lett. A, 146, 319–323, (1990). [External LinkDOI].
235 Suzuki, M., “General Theory of Fractal Path Integrals with Applications to Many-body Theories and Statistical Physics”, J. Math. Phys., 32, 400–407, (1991). [External LinkDOI].
236 Taub, A., “Empty Space-Times Admitting a Three-Parameter Group of Motions”, Ann. Math., 53, 472, (1951). [External LinkDOI].
237 Teukolsky, S.A., “On the Stability of the Iterated Crank–Nicholson Method in Numerical Relativity”, Phys. Rev. D, 61, 087501, (2000). [External Linkgr-qc/9909026].
238 Thornburg, J., Lechner, C., Pürrer, M., Aichelburg, P.C., and Husa, S., “Episodic Self-Similarity in Critical Gravitational Collapse”, in Gurzadyan, V.G., Jantzen, R.T., and Ruffini, R., eds., The Ninth Marcel Grossmann Meeting on recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories, Part B, Proceedings of the MGIX MM meeting held at the University of Rome ‘La Sapienza’, July 2 – 8, 2000, pp. 1670–1671, (World Scientific, Singapore; River Edge, NJ, 2002). [External Linkgr-qc/0012043].
239 Thorne, K.S., “Nonspherical gravitational collapse – A short review”, in Klauder, J., ed., Magic Without Magic: John Archibald Wheeler. A Collection of Essays in Honor of his Sixtieth Birthday, pp. 231–258, (W.H. Freeman, San Francisco, 1972).
240 Tipler, F.J., Clarke, C.J.S., and Ellis, G.F.R., “Singularities and Horizons – A Review Article”, in Held, A., ed., General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, pp. 97–206, (Plenum, New York, 1980).
241 Tod, K.P., “The hoop conjecture and the Gibbons–Penrose construction of trapped surfaces”, Class. Quantum Grav., 9, 1581–1591, (1992).
242 van Elst, H., Uggla, C., and Wainwright, J., “Dynamical systems approach to G2 cosmology”, Class. Quantum Grav., 19, 51–82, (2002). [External Linkgr-qc/0107041].
243 van Putten, M.H.P.M., “Numerical Integration of Nonlinear Wave Equations for General Relativity”, Phys. Rev. D, 55, 4705–4711, (1997). [External Linkgr-qc/9701019].
244 Wald, R.M., General Relativity, (University of Chicago Press, Chicago, 1984).
245 Wald, R.M., “Gravitational Collapse and Cosmic Censorship”, arXiv e-print, (1997). [External Linkgr-qc/9710068].
246 Wald, R.M., and Iyer, V., “Trapped surfaces in the Schwarzschild geometry and cosmic censorship”, Phys. Rev. D, 44, R3719–R3722, (1991).
247 Weaver, M., Asymptotic Behavior to Solutions to Einstein’s Equation, Ph.D. Thesis, (University of Oregon, Eugene, 1999).
248 Weaver, M., “Dynamics of magnetic Bianchi VI0 cosmologies”, Class. Quantum Grav., 17, 421–434, (2000). [External LinkDOI], [External Linkgr-qc/9909043].
249 Weaver, M., Berger, B.K., and Isenberg, J.A., “Oscillatory Approach to the Singularity in Vacuum T2 Symmetric Spacetimes”, in Gurzadyan, V.G., Jantzen, R.T., and Ruffini, R., eds., The Ninth Marcel Grossmann Meeting on recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories, Part B, Proceedings of the MGIX MM meeting held at the University of Rome ‘La Sapienza’, July 2 – 8, 2000, pp. 1011–1012, (World Scientific, Singapore; River Edge, NJ, 2002). [External Linkgr-qc/0101054].
250 Weaver, M., Isenberg, J.A., and Berger, B.K., “Mixmaster Behavior in Inhomogeneous Cosmological Spacetimes”, Phys. Rev. Lett., 80, 2984–2987, (1998). [External LinkDOI], [External Linkgr-qc/9712055].
251 Wojtkiewicz, J., “Naked Singularities in Initial Surfaces”, Phys. Rev. D, 41, 1867–1874, (1990).
252 Yokoyama, J., “Cosmological constraints on primordial black holes produced in the near-critical gravitational collapse”, Phys. Rev. D, 58, 107502, (1998). [External Linkgr-qc/9804041].
253 Zardecki, A., “Modeling in Chaotic Relativity”, Phys. Rev. D, 28, 1235–1242, (1983).
254 Zotov, M.Y., “Einstein–Yang–Mills Black Hole Interiors: Serious Problems But Simple Solution”, arXiv e-print, (1997). [External Linkgr-qc/9704080].