Go to previous page Go up Go to next page

3.5 Going further

The background of GW emission from a population of core collapse SNe at cosmological distances may be detectable by LIGO-II, according to Ferrari, Matarrese, and Schneider [69]. They determined the SN rate as a function of redshift using observations to determine the evolution of the star formation rate. Only collapses that lead to black hole formation were considered. This simplified the study because the GW emission from such collapses is generally a function of just the black hole mass and angular momentum. They found that the stochastic background from these sources is not continuous and suggest that this could be used to optimize detection strategies. The maximum GW spectral strain amplitude they computed was in the range 10- 28-10 -27 Hz, at frequencies of a few times 102 Hz. Such a signal may be detected by a pair of LIGO-II detectors. Buonanno et al. [38] have recently redone such a study with all the current results on supernovae, arguing that the GW background would be detectable by second-generation (e.g., Big Bang Observatory) space-based detectors, noting that Pop III (black-hole forming stars) could well dominate the total background.UpdateJump To The Next Update Information


  Go to previous page Go up Go to next page