1 Abel, T., Bryan, G.L., and Norman, M.L., “The Formation and Fragmentation of Primordial Molecular Clouds”, Astrophys. J., 540, 39-44, (2000). Related online version (cited on 7 February 2000):
External Linkhttp://arXiv.org/abs/astro-ph/0002135.
2 Abel, T., Bryan, G.L., and Norman, M.L., “The formation of the first star in the universe”, Science, 295, 93-98, (2002). Related online version (cited on 4 December 2001):
External Linkhttp://arXiv.org/abs/astro-ph/0112088.
3 Akiyama, S., and Wheeler, J.C., “Magnetic Fields in Supernovae”, in Fryer, C.L., ed., Stellar Collapse, Proceedings of “Core Collapse of Massive Stars”, 200th AAS meeting, Albuquerque, NM, June 2002, vol. 302 of Astrophysics and Space Science Library, (Kluwer Academic Publishers, Dordrecht, Netherlands; Boston, U.S.A., 2004). Related online version (cited on 21 December 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0211458.
4 Alcubierre, M., Brügmann, B., Holz, D.E., Takahashi, R., Brandt, S., Seidel, E., and Thornburg, J., “Symmetry without symmetry: Numerical simulation of axisymmetric systems using Cartesian grids”, Int. J. Mod. Phys. D, 10, 273-289, (2001). Related online version (cited on 4 August 1999):
External Linkhttp://arXiv.org/abs/gr-qc/9908012.
5 Andersson, N., “A new class of unstable modes of rotating relativistic stars”, Astrophys. J., 502, 708-713, (1998). Related online version (cited on 24 June 1997):
External Linkhttp://arXiv.org/abs/gr-qc/9706075.
6 Andersson, N., “Gravitational waves from instabilities in relativistic stars”, Class. Quantum Grav., 20, R105-R144, (2002). URL (cited on 4 November 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0211057.
7 Arnaud, N., Barsuglia, M., Bizouard, M.-A., Brisson, V., Cavalier, F., Davier, M., Hello, P., Kreckelbergh, S., and Porter, E., “Detection of a close supernova gravitational wave burst in a network of interferometers, neutrino and optical detectors”, Astropart. Phys., 21, 201-221, (2004).
8 Arnett, W.D., Bahcall, J. N., Kirshner, R.P., and Woosley, S.E., “Supernova 1987a”, Annu. Rev. Astron. Astrophys., 27, 629-700, (1989).
9 Arras, P., Flanagan, É.É., Morsink, S.M., Schenk, A.K., Teukolsky, S.A., and Wasserman, I., “Saturation of the r-mode instability”, Astrophys. J., 591, 1129-1151, (2002). Related online version (cited on 21 December 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0202345.
10 Baraffe, I., Heger, A., and Woosley, S.E., “On the stability of very massive supermassive stars”, Astrophys. J., 550, 890-896, (2001). Related online version (cited on 26 September 2000):
External Linkhttp://arXiv.org/abs/astro-ph/0009410.
11 Bardeen, M., and Piran, T., “General relativistic axisymmetric rotating systems: Coordinates and equations”, Phys. Rep., 96, 205-250, (1983).
12 Baron, E., Cooperstein, J., and Kahana, S., “Supernovae and the nuclear equation of state at high densities”, Nucl. Phys. A, 440, 744-754, (1985).
13 Baron, E., Cooperstein, J., and Kahana, S., “Type II supernovae in 12Mo. and 15Mo. stars: The equation of state and general relativity”, Phys. Rev. Lett., 55, 126-129, (1985).
14 Baron, E., Cooperstein, J., Kahana, S., and Nomoto, K., “Collapsing white dwarfs”, Astrophys. J., 320, 304-307, (1987).
15 Baumgarte, T.W., Janka, H.-T., Keil, W., Shapiro, S.L., and Teukolsky, S.A., “Delayed Collapse of Hot Neutron Stars to Black Holes via Hadronic Phase Transitions”, Astrophys. J., 468, 823-833, (1996).
16 Baumgarte, T.W., and Shapiro, S.L., “Evolution of rotating supermassive stars to the onset of collapse”, Astrophys. J., 526, 941-952, (1999). Related online version (cited on 14 September 1999):
External Linkhttp://arXiv.org/abs/astro-ph/9909237.
17 Baumgarte, T.W., and Shapiro, S.L., “Collapse of a Magnetized Star to a Black Hole”, Astrophys. J., 585, 930-947, (2003). URL (cited on 14 November 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0211339.
18 Baumgarte, T.W., Shapiro, S.L., and Teukolsky, S.A., “Computing supernova collapse to neutron stars and black holes”, Astrophys. J., 443, 717-734, (1995).
19 Baumgarte, T.W., Shapiro, S.L., and Teukolsky, S.A., “Computing the Delayed Collapse of Hot Neutron Stars to Black Holes”, Astrophys. J., 458, 680-691, (1996).
20 Bazan, G., and Arnett, D., “Convection, nucleosynthesis, and core collapse”, Astrophys. J. Lett., 433, L41-L43, (1994).
21 Begelman, M.C., and Rees, M.J., “The fate of dense stellar systems”, Mon. Not. R. Astron. Soc., 185, 847-860, (1978).
22 Berger, E., Kulkarni, S.R., Frail, D.A., and Soderberg, A.M., “A Radio Survey of Type Ib and Ic Supernovae: Searching for Engine-driven Supernovae”, Astrophys. J., 599, 408-418, (2003).
23 Bethe, H.A., “Supernova mechanisms”, Rev. Mod. Phys., 62, 801-866, (1990).
24 Bethe, H.A., and Wilson, J.R., “Revival of a stalled supernova shock by neutrino heating”, Astrophys. J., 295, 14-23, (1985).
25 Blanchet, L., Damour, T., and Schäfer, G., “Post-Newtonian hydrodynamics and post-Newtonian gravitational wave generation for numerical relativity”, Mon. Not. R. Astron. Soc., 242, 289-305, (1990).
26 Blondin, J.M., Mezzacappa, A., and DeMarino, C., “Stability of Standing Accretion Shocks, with an Eye toward Core-Collapse Supernovae”, Astrophys. J., 584, 971-980, (2003).
27 Bodenheimer, P., and Ostriker, J.P., “Rapidly rotating stars. VIII. Zero-viscosity polytropic sequences”, Astrophys. J., 180, 159-170, (1973).
28 Bonazzola, S., and Marck, J.-A., “Efficiency of gravitational radiation from axisymmetric and 3D stellar collapse. I - Polytropic case”, Astron. Astrophys., 267, 623-633, (1993).
29 Bowers, R.L., and Wilson, J.R., “Collapse of iron stellar cores”, Astrophys. J., 263, 366-376, (1982).
30 Bowers, R.L., and Wilson, J.R., “A numerical model for stellar core collapse”, Astrophys. J. Suppl. Ser., 50, 115-159, (1982).
31 Brachwitz, F., Dean, D.J., Hix, W.R., Iwamoto, K., Langanke, K., Martínez-Pinedo, G., Nomoto, K., Strayer, M.R., Thielemann, F.-K., and Umeda, H., “The role of electron captures in Chandrasekhar-mass models for Type Ia supernovae”, Astrophys. J., 536, 934-947, (2000). Related online version (cited on 26 January 2000):
External Linkhttp://arXiv.org/abs/astro-ph/0001464.
32 Bravo, E., and García-Senz, D., “Coulomb corrections to the equation of state of nuclear statistical equilibrium matter: Implications for SNIa nucleosynthesis and the accretion-induced collapse of white dwarfs”, Mon. Not. R. Astron. Soc., 307, 984-992, (1999).
33 Bromm, V., Coppi, P.S., and Larson, R.B., “Forming the first stars in the universe: The fragmentation of primordial gas”, Astrophys. J. Lett., 527, L5-L8, (1999). Related online version (cited on 13 October 1999):
External Linkhttp://arXiv.org/abs/astro-ph/9910224.
34 Brown, J.D., “Gravitational waves from the dynamical bar instability in a rapidly rotating star”, Phys. Rev. D, 62, 084024-1-11, (2000). Related online version (cited on 1 April 2000):
External Linkhttp://arXiv.org/abs/gr-qc/0004002.
35 Brown, J.D., “Rotational instabilities in post-collapse stellar cores”, in Centrella, J.M., ed., Astrophysical Sources for Ground-Based Gravitational Wave Detectors, Philadelphia, Pennsylvania, 30 October - 1 November 2000, AIP Conference Proceedings, 234-245, (American Institute of Physics, Melville, U.S.A., 2001).
36 Bruenn, S.W., “Numerical simulations of core collapse supernovae”, in Guidry, M.W., and Strayer, M.R., eds., Nuclear Physics in the Universe, Proceedings of the First Symposium on Nuclear Physics in the Universe held in Oak Ridge, Tennessee, USA, 24-26 September 1992, 31-50, (Institute of Physics, Bristol, U.K.; Philadelphia, U.S.A., 1993).
37 Bruenn, S.W., De Nisco, K.R., and Mezzacappa, A., “General relativistic effects in the core collapse supernova mechanism”, Astrophys. J., 560, 326-338, (2001). Related online version (cited on 23 January 2001):
External Linkhttp://arXiv.org/abs/astro-ph/0101400.
38 Buonanno, A., Sigl, G., Raffelt, G.G., Janka, H.-T., and Müller, E., “Stochastic gravitational-wave background from cosmological supernovae”, Phys. Rev. D, 72, 084001, (2005).
39 Buras, R., Rampp, M., Janka, H.-T., and Kifonidis, K., “Improved Models of Stellar Core Collapse and Still No Explosions: What Is Missing?”, Phys. Rev. Lett., 90, 241101-1-4, (2003).
40 Burrows, A., personal communication, (2005).
41 Burrows, A., and Hayes, J., “Pulsar recoil and gravitational radiation due to asymmetrical stellar collapse and explosion”, Phys. Rev. Lett., 76, 352-355, (1996).
42 Burrows, A., Hayes, J., and Fryxell, B.A., “On the Nature of Core-Collapse Supernova Explosions”, Astrophys. J., 450, 830-850, (1995).
43 Burrows, A., Livne, E., Dessart, L., Ott, C., and Murphy, J., “A New Mechanism for Core-Collapse Supernova Explosions”, Astrophys. J., accepted, (2005). Related online version (cited on 21 December 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0510687.
44 Burrows, A., and Thompson, T.A., “Neutrino-Matter Interaction Rates in Supernovae”, in Fryer, C.L., ed., Stellar Collapse, Proceedings of “Core Collapse of Massive Stars”, 200th AAS meeting, Albuquerque, NM, June 2002, vol. 302 of Astrophysics and Space Science Library, (Kluwer Academic Publishers, Dordrecht, Netherlands; Boston, U.S.A., 2004). Related online version (cited on 21 December 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0211404.
45 California Institute of Technology, “LIGO Laboratory Home Page”, project homepage. URL (cited on 4 October 2002):
External Linkhttp://www.ligo.caltech.edu.
46 Cappellaro, E., Evans, R., and Turatto, M., “A new determination of supernova rates and a comparison with indicators for galactic star formation”, Astron. Astrophys., 351, 459-466, (1999).
47 Carr, B.J., Bond, J.R., and Arnett, W.D., “Cosmological consequences of population III stars”, Astrophys. J., 277, 445-469, (1984).
48 Cassisi, S., Iben Jr, I., and Tornambé, A., “Hydrogen-accreting carbon-oxygen white dwarfs”, Astrophys. J., 496, 376-385, (1998).
49 Centrella, J.M., New, K.C.B., Lowe, L., and Brown, J.D., “Dynamical rotational instability at low T/W”, Astrophys. J. Lett., 550, L193-L196, (2001). Related online version (cited on 27 October 2000):
External Linkhttp://arXiv.org/abs/astro-ph/0010574.
50 Chandrasekhar, S., “Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity”, Phys. Rev. Lett., 12, 114-116, (1964). Erratum 437-438.
51 Chandrasekhar, S., “The dynamical instability of gaseous masses approaching the Schwarzschild limit in general relativity”, Astrophys. J., 140, 417-433, (1964).
52 Chandrasekhar, S., An Introduction to the Study of Stellar Structure, (Dover, New York, U.S.A., 1967).
53 Colgate, S.A., “Supernova: Hot bubbles drive explosions”, Nature, 341, 489-490, (1989).
54 Colgate, S.A., Herant, M., and Benz, W., “Neutron star accretion and the neutrino fireball”, Phys. Rep., 227, 157-174, (1993).
55 Colgate, S.A., and White, R.H., “The hydrodynamic behavior of supernovae explosions”, Astrophys. J., 143, 626-681, (1966).
56 Cook, G.B., Shapiro, S.L., and Teukolsky, S.A., “Testing a simplified version of Einstein’s equations for numerical relativity”, Phys. Rev. D, 53, 5533-5540, (1996). Related online version (cited on 5 December 1995):
External Linkhttp://arXiv.org/abs/astro-ph/9512009.
57 Detweiler, S., and Lindblom, L., “On the evolution of the homogeneous ellipsoidal figures. II. Gravitational collapse and gravitational radiation”, Astrophys. J., 250, 739-749, (1981).
58 Dimmelmeier, H., Font, J.A., and Müller, E., “Gravitational waves from relativistic rotational core collapse”, Astrophys. J. Lett., 560, L163-L166, (2001). Related online version (cited on 21 April 2001):
External Linkhttp://arXiv.org/abs/astro-ph/0103088.
59 Dimmelmeier, H., Font, J.A., and Müller, E., “Relativistic simulations of rotational core collapse. I. Methods, initial models, and code tests”, Astron. Astrophys., 388, 917-935, (2002). Related online version (cited on 17 April 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0204288.
60 Dimmelmeier, H., Font, J.A., and Müller, E., “Relativistic simulations of rotational core collapse. II. Collapse dynamics and gravitational radiation”, Astron. Astrophys., 393, 523-542, (2002). Related online version (cited on 17 April 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0204289.
61 Dimmelmeier, H., Novak, J., Font, J.A., Ibáñez, J.M., and Müller, E., “Combining spectral and shock-capturing methods: A new numerical approach for 3D relativistic core collapse simulations”, Astron. Astrophys., 560, 163-166, (2005).
62 Duez, M.D., Shapiro, S.L., and You, H.-J., “Relativistic hydrodynamic evolutions with black hole excision”, Phys. Rev. D, 69, 104016, (2004).
63 Durisen, R.H., and Tohline, J.E., “Fission of rapidly rotating fluid systems”, in Black, D., and Matthews, M., eds., Protostars and Planets II, 534-575, (University of Arizona Press, Tucson, U.S.A., 1985).
64 Eisenstein, D.J., and Loeb, A., “Origin of quasar progenitors from the collapse of low-spin cosmological perturbations”, Astrophys. J., 443, 11-17, (1995). Related online version (cited on 11 January 1994):
External Linkhttp://arXiv.org/abs/astro-ph/9401016.
65 Epstein, R., The post-Newtonian theory of the generation of gravitational radiation and its application to stellar collapse, Ph.D. Thesis, (Stanford University, Stanford, U.S.A., 1976).
66 Epstein, R., and Wagoner, R.V., “Post-Newtonian generation of gravitational waves”, Astrophys. J., 197, 717-723, (1975).
67 Eriguchi, Y., and Müller, E., “Equilibrium models of differentially rotating polytropes and the collapse of rotating stellar cores”, Astron. Astrophys., 147, 161-168, (1985).
68 Ferrarese, L., and Merritt, D., “A fundamental relation between supermassive black holes and their host galaxies”, Astrophys. J. Lett., 539, L9-L12, (2000). Related online version (cited on 4 June 2000):
External Linkhttp://arXiv.org/abs/astro-ph/0006053.
69 Ferrari, V., Matarrese, S., and Schneider, R., “Gravitational wave background from a cosmological population of core-collapse supernovae”, Mon. Not. R. Astron. Soc., 303, 247-257, (1999). Related online version (cited on 15 October 1998):
External Linkhttp://arXiv.org/abs/astro-ph/9804259.
70 Ferrari, V., Miniutti, G., and Pons, J.A., “Gravitational waves from newly born, hot neutron stars”, Mon. Not. R. Astron. Soc., 342, 629-638, (2003). Related online version (cited on 26 October 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0210581.
71 Finn, L.S., “Supernovae, gravitational radiation, and the quadrupole formula”, in Evans, C.R., Finn, L.S., and Hobill, D.W., eds., Frontiers in Numerical Relativity, International workshop devoted to research in numerical relativity, held in Urbana-Champaign in May 1988, 126-145, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1989).
72 Finn, L.S., “Detectability of gravitational radiation from stellar-core collapse”, in Buchler, J.R., Detweiler, S., and Ipser, J.R., eds., Nonlinear problems in relativity and cosmology, 6th Florida Workshop in Nonlinear Astronomy, held on October 2-4, 1990 in Gainesville, Florida, 156-172, (New York Academy of Sciences, New York, U.S.A., 1991).
73 Finn, L.S., “Gravitional Radiation Sources and Signatures”, in Dixon, L.J., ed., Gravity: From the Hubble Length to the Planck Length, Proceedings of the 26th SLAC Summer Institute on Particle Physics (SSI 98), Stanford, USA, 3-14 August 1998, vol. 538 of SLAC-R, (SLAC, Springfield, U.S.A., 2001). URL (cited on 30 March 1999):
External Linkhttp://www.slac.stanford.edu/pubs/confproc/ssi98/ssi98-007.html. also at: http://arXiv.org/abs/gr-qc/9903107.
74 Finn, L.S., and Evans, C.R., “Determining gravitational radiation from Newtonian self-gravitating systems”, Astrophys. J., 351, 588-600, (1990).
75 Foglizzo, T., Scheck, L., and Janka, H.-T., “Neutrino-driven convection versus advection in core collapse supernovae”, Astron. Astrophys., submitted, (2005). Related online version (cited on 21 December 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0507636.
76 Folkner, W.M., ed., Laser Interferometer Space Antenna: Second International LISA Symposium on the Detection and Observation of Gravitational Waves in Space, Pasadena 1998, vol. 456 of AIP Conference Proceedings, (Springer, New York, U.S.A., 1993).
77 Friedman, J.L., and Morsink, S.M., “Axial instability of rotating relativistic stars”, Astrophys. J., 502, 714-720, (1998). Related online version (cited on 23 June 1997):
External Linkhttp://arXiv.org/abs/gr-qc/9706073.
78 Fryer, C.L., “Mass Limits For Black Hole Formation”, Astrophys. J., 522, 413-418, (1999).
79 Fryer, C.L., “Stellar Collapse”, Int. J. Mod. Phys. D, 12, 1795-1835, (2003).
80 Fryer, C.L., “Neutron Star Kicks from Asymmetric Collapse”, Astrophys. J., 601, L175-L178, (2004).
81 Fryer, C.L., ed., Stellar Collapse, Proceedings of “Core Collapse of Massive Stars”, 200th AAS meeting, Albuquerque, NM, June 2002, vol. 302 of Astrophysics and Space Science Library, (Kluwer Academic Publishers, Dordrecht, Netherlands; Boston, U.S.A., 2004).
82 Fryer, C.L., Benz, W., Herant, M., and Colgate, S.A., “What can the accretion-induced collapse of white dwarfs really explain?”, Astrophys. J., 516, 892-899, (1999). Related online version (cited on 2 December 1998):
External Linkhttp://arXiv.org/abs/astro-ph/9812058.
83 Fryer, C.L., and Heger, A., “Core-Collapse Simulations of Rotating Stars”, Astrophys. J., 541, 1033-1050, (2000). Related online version (cited on 30 July 1999):
External Linkhttp://arXiv.org/abs/astro-ph/9907433.
84 Fryer, C.L., and Heger, A., “Binary Merger Progenitors for Gamma-Ray Bursts and Hypernovae”, Astrophys. J., 623, 302-313, (2005).
85 Fryer, C.L., Heger, A., Langer, N., and Wellstein, S., “Stellar Collapse”, Int. J. Mod. Phys. D, 12, 1795-1835, (2003).
86 Fryer, C.L., Holz, D.E., and Hughes, S.A., “Gravitational wave emission from core-collapse of massive stars”, Astrophys. J., 565, 430-446, (2002). Related online version (cited on 25 September 2001):
External Linkhttp://arXiv.org/abs/astro-ph/0106113.
87 Fryer, C.L., Holz, D.E., and Hughes, S.A., “Gravitational Waves from Stellar Collapse: Correlations to Explosion Asymmetries”, Astrophys. J., 609, 288-300, (2004).
88 Fryer, C.L., Holz, D.E., Hughes, S.A., and Warren, M.S., “Stellar Collapse and Gravitational Waves”, in Fryer, C.L., ed., Stellar Collapse, Proceedings of “Core Collapse of Massive Stars”, 200th AAS meeting, Albuquerque, NM, June 2002, vol. 302 of Astrophysics and Space Science Library, (Kluwer Academic Publishers, Dordrecht, Netherlands; Boston, U.S.A., 2004). Related online version (cited on 21 December 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0211609.
89 Fryer, C.L., and Kalogera, V., “Theoretical black hole mass distributions”, Astrophys. J., 554, 548-560, (2001).
90 Fryer, C.L., and Kusenko, A., “Effects of neutrino-driven kicks on the supernova explosion mechanism”, Astrophys. J., submitted, (2005). Related online version (cited on 21 December 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0512033.
91 Fryer, C.L., and Warren, M.S., “Modeling Core-Collapse Supernovae in Three Dimensions”, Astrophys. J. Lett., 574, L65-L68, (2002). URL (cited on 3 June 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0206017.
92 Fryer, C.L., and Warren, M.S., “The Collapse of Rotating Massive Stars in Three Dimensions”, Astrophys. J., 601, 391-404, (2004).
93 Fryer, C.L., and Woosley, S.E., “Helium Star/Black Hole Mergers: A New Gamma-Ray Burst Model”, Astrophys. J., 502, L9-L12, (1998).
94 Fryer, C.L., Woosley, S.E., and Hartmann, D., “Formation Rates of Black Hole Accretion Disk Gamma-Ray Bursts”, Astrophys. J., 526, 152-177, (1999).
95 Fryer, C.L., Woosley, S.E., and Hartmann, D.H., “Formation Rates of Black Hole Accretion Disk Gamma-Ray Bursts”, Astrophys. J., 526, 152-177, (1999).
96 Fryer, C.L., Woosley, S.E., and Heger, A., “Pair-instability supernovae, gravity waves, and gamma-ray transients”, Astrophys. J., 550, 372-382, (2001). Related online version (cited on 13 July 2000):
External Linkhttp://arXiv.org/abs/astro-ph/0007176.
97 Gressman, P., Lin, L.-M., Suen, W.-M., Stergioulas, N., and Friedman, J.L., “Nonlinear r-modes in neutron stars: Instability of an unstable mode”, Phys. Rev. D, 66, 041303-1-5, (2002).
98 Hachisu, I., “A versatile method for obtaining structures of rapidly rotating stars”, Astrophys. J. Suppl. Ser., 61, 479-507, (1986).
99 Haehnelt, M.G., “Low-frequency gravitational waves from supermassive black holes”, Mon. Not. R. Astron. Soc., 269, 199-208, (1994).
100 Haehnelt, M.G., Natarajan, P., and Rees, M.J., “High-redshift galaxies, their active nuclei and central black holes”, Mon. Not. R. Astron. Soc., 300, 817-827, (1998). Related online version (cited on 18 December 1997):
External Linkhttp://arXiv.org/abs/astro-ph/9712259.
101 Haehnelt, M.G., and Rees, M.J., “The formation of nuclei in newly formed galaxies and the evolution of the quasar population”, Mon. Not. R. Astron. Soc., 263, 168-178, (1993).
102 Haensel, P., Levenfish, K.P., and Yakovlev, D.G., “Bulk viscosity in superfluid neutron star cores. III. Effects of S- hyperons”, Astron. Astrophys., 381, 1080-1089, (2002). Related online version (cited on 26 October 2001):
External Linkhttp://arXiv.org/abs/astro-ph/0110575.
103 Hamuy, M., “Observed and physical properties of core-collapse supernovae”, Astrophys. J., 582, 905-914, (2003). URL (cited on 10 September 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0209174.
104 Hannover University, “GEO 600 home page”, project homepage. URL (cited on 4 October 2002):
External Linkhttp://www.geo600.uni-hannover.de/.
105 Hayashi, A., Eriguchi, Y., and Hashimoto, M., “On the possibility of the nonexplosive core contraction of massive stars: New evolutionary paths from rotating white dwarfs to rotating neutron stars”, Astrophys. J., 492, 286-297, (1998).
106 Hayashi, A., Eriguchi, Y., and Hashimoto, M., “On the possibility of the nonexplosive core contraction of massive stars. II. General relativistic analysis”, Astrophys. J., 521, 376-381, (1999).
107 Heger, A., The presupernova evolution of rotating massive stars, Ph.D. Thesis, (Technische Universität München, Munich, Germany, 1998).
108 Heger, A., Fryer, C.L., Woosley, S.E., Langer, N., and Hartmann, D.H., “How Massive Single Stars End Their Life”, Astrophys. J., 591, 288-300, (2001).
109 Heger, A., Langer, N., and Woosley, S.E., “Presupernova evolution of rotating massive stars. I. Numerical method and evolution of the internal stellar structure”, Astrophys. J., 528, 368-396, (2000). Related online version (cited on 12 April 1999):
External Linkhttp://arXiv.org/abs/astro-ph/9904132.
110 Heger, A., Woosley, S.E., and Spruit, H.C., “Presupernova Evolution of Differentially Rotating Massive Stars Including Magnetic Fields”, Astrophys. J., 626, 350-363, (2005).
111 Herant, M., “Inside the Supernova: A Powerful Convective Engine”, Phys. Rep., 256, 117-133, (1995).
112 Herant, M., Benz, W., Hiz, W.R., Fryer, C.L., and Colgate, S.A., “Inside the Supernova: A Powerful Convective Engine”, Astrophys. J., 435, 339-361, (1994).
113 Hillebrandt, W., “Stellar Collapse and Supernova Explosions”, in Pacini, F., ed., High Energy Phenomena around Collapsed Stars, Proceedings of the NATO Advanced Study Institute, Cargèse, Corsica, France, September 2-13, 1985, vol. 195 of NATO Science Series, 73-104, (Reidel, Dordrecht, Netherlands; Boston, U.S.A., 1987).
114 Hillebrandt, W., Nomoto, K., and Wolff, R.G., “Supernova explosions of massive stars - The mass range 8 to 10 solar masses”, Astron. Astrophys., 133, 175-184, (1984).
115 Ho, W.C.G., and Lai, D., “r-Mode oscillations and spin-down of young rotating magnetic neutron stars”, Astrophys. J., 543, 386-394, (2000). Related online version (cited on 15 December 1999):
External Linkhttp://arXiv.org/abs/astro-ph/9912296.
116 Höflich, P., Khokhlov, A., Wang, L., Wheeler, J.C., and Baade, D., “Aspherical Supernovae Explosions”, in van der Hucht, K.A., Herrero, A., and Esteban, C., eds., A Massive Star Odyssey, from Main Sequence to Supernova, Lanzarote, Canary Islands, Spain, June 24-28, 2002, vol. 212 of IAU Symposia, (Astronomical Society of the Pacific, San Francisco, U.S.A., 2003). Related online version (cited on 12 July 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0207272.
117 Hogan, C.J., “A model of pregalactic evolution”, Mon. Not. R. Astron. Soc., 188, 781-790, (1979).
118 Houser, J.L., “The effect of rotation on the gravitational radiation and dynamical instability of stiff stellar cores”, Mon. Not. R. Astron. Soc., 299, 1069-1086, (1998).
119 Hughes, S.A., “Untangling the merger history of massive black holes with LISA”, Mon. Not. R. Astron. Soc., 331, 805-816, (2002). Related online version (cited on 30 August 2001):
External Linkhttp://arXiv.org/abs/astro-ph/0108483.
120 Hughes, S.A., Márka, S., Bender, P.L., and Hogan, C.J., “New physics and astronomy with the new gravitational-wave observatories”, in Graf, N., ed., Proceedings of Snowmass 2001, The Future of Particle Physics, 30 June - 21 July 2001, Snowmass Village, Colorado, vol. C010630, P402, (SLAC eConf, Stanford, U.S.A., 2001). URL (cited on 15 October 2001):
External Linkhttp://www.slac.stanford.edu/econf/C010630/proceedings.shtml.
121 Hungerford, A., Fryer, C.L., and Rockefeller, G., “Gamma Rays from Single-Lobe Supernova Explosions”, Astrophys. J., 635, 487-501, (2005).
122 Hungerford, A., Fryer, C.L., and Warren, M.S., “Gamma Rays from Asymmetric Supernovae”, Astrophys. J., 594, 390-403, (2005).
123 Iben, I., “Massive stars in quasi-static equilibrium”, Astrophys. J., 138, 1090-1096, (1963).
124 Imamura, J.N., and Durisen, R.H., “The Dominance of Dynamic Barlike Instabilities in the Evolution of a Massive Stellar Core Collapse That “Fizzles””, Astrophys. J., 549, 1062-1075, (2001).
125 Imamura, J.N., Friedman, J.L., and Durisen, R.H., “Secular stability limits for rotating polytropic stars”, Astrophys. J., 294, 474-478, (1985).
126 INFN, “The Virgo Project”, project homepage. URL (cited on 4 October 2002):
External Linkhttp://www.virgo.infn.it/.
127 Isern, J., Canal, R., and Labay, J., “The outcome of explosive ignition of ONeMg cores: supernovae, neutron stars, or “iron” white dwarfs?”, Astrophys. J. Lett., 372, L83-L86, (1991).
128 Janka, H.-T., “Conditions for shock revival by neutrino heating in core-collapse supernovae”, Astron. Astrophys., 368, 527-560, (2001). Related online version (cited on 28 August 2000):
External Linkhttp://arXiv.org/abs/astro-ph/0008432.
129 Janka, H.-T., “Supermassive Stars: Fact or Fiction?”, in Chui, C.K., Siuniaev, R.A., and Churazov, E., eds., Lighthouses of the Universe: The Most Luminous Celestial Objects and Their Use for Cosmology, Proceedings of the MPA/ESO/MPE/USM Joint Astronomy Conference, held in Garching, Germany, 6-10 August 2001, ESO Astrophysics Symposia, 357-368, (Springer, Berlin, Germany; New York, U.S.A., 2002). Related online version (cited on 1 February 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0202028.
130 Janka, H.-T., Buras, R., Kifonidis, K., Rampp, M., and Plewa, T., “Explosion Mechanisms of Massive Stars”, in Fryer, C.L., ed., Stellar Collapse, Proceedings of “Core Collapse of Massive Stars”, 200th AAS meeting, Albuquerque, NM, June 2002, vol. 302 of Astrophysics and Space Science Library, (Kluwer Academic Publishers, Dordrecht, Netherlands; Boston, U.S.A., 2004). Related online version (cited on 21 December 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0212314.
131 Janka, H.-T., and Müller, E., “Neutrino-driven type-II supernovae: Neutrino heating and post bounce dynamics”, in Suzuki, Y., and Nakamura, K., eds., Frontiers of Neutrino Astrophysics, Proceedings of the International Symposium on Neutrino Astrophysics held on October 19-22, 1992, Takayama / Kamioka, Japan, vol. 5 of Frontiers Science Series, 203-217, (Universal Academy Press, Tokyo, Japan, 1993).
132 Janka, H.-T., and Müller, E., “Dynamics of Type-II supernovae”, in McCray, R., and Wang, Z., eds., Supernovae and Supernovae Remnants, Proceedings of the IAU Colloquium 145, held in Xian, China, May 24-29, 1993, 109-118, (Cambridge University Press, Cambridge, U.K., 1996).
133 Janka, H.-T., and Müller, E., “Neutrino heating, convection, and the mechanism of Type-II supernova explosions”, Astron. Astrophys., 306, 167-198, (1996).
134 Jenet, F.A., and Prince, T.A., “Detection of variable frequency signals using a fast chirp transform”, Phys. Rev. D, 62, 122001-1-10, (2000). Related online version (cited on 7 December 2000):
External Linkhttp://arXiv.org/abs/gr-qc/0012029.
135 Jones, P.B., “Bulk viscosity of neutron-star matter”, Phys. Rev. D, 64, 084003-1-7, (2001).
136 Jones, P.B., “Comment on “Gravitational radiation instability in hot young neutron stars””, Phys. Rev. Lett., 86, 1384, (2001).
137 Kato, M., and Hachisu, I., “A new estimation of mass accumulation efficiency in helium shell flashes toward Type Ia supernova explosions”, Astrophys. J. Lett., 513, L41-L44, (1999). Related online version (cited on 8 January 1999):
External Linkhttp://arXiv.org/abs/astro-ph/9901080.
138 Kifonidis, K., Plewa, T., Scheck, L., Janka, H.-T., and Müller, E., “Non-Spherical Core-Collapse Supernovae II. Late-Time Evolution of Globally Anisotropic Neutrino-Driven Explosions and Implications for SN 1987A”, Astron. Astrophys., submitted, (2005). Related online version (cited on 21 December 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0511369.
139 King, A.R., and Lasota, J.-P., “Spin evolution and magnetic fields in cataclysmic variables”, Astrophys. J., 378, 674-681, (1991).
140 Kobayashi, S., and Mészáros, P., “Gravitational radiation from gamma-ray burst progenitors”, Astrophys. J., 589, 861-870, (2003). Related online version (cited on 9 October 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0210211.
141 Kobayashi, S., and Mészáros, P., “Polarized Gravitational Waves from Gamma-Ray Bursts”, Astrophys. J., 585, L89-L92, (2003).
142 Kormendy, J., “Supermassive Black Holes in Disk Galaxies”, in Funes, J.G., and Corsini, E.M., eds., Galaxy Disks and Disk Galaxies, Proceedings of a conference sponsored by the Vatican Observatory, held at the Pontifical Gregorian University in Rome, Italy, 12-16 June 2000, vol. 230 of ASP Conference Series, 247-256, (Astronomical Society of the Pacific, San Francisco, U.S.A., 2001).
143 Kotake, K., Katsuhiko, S., and Keitaro, T., “Explosion Mechanism, Neutrino Burst, and Gravitational Wave in Core-Collapse Supernovae”, Rep. Prog. Phys., submitted, (2005). Related online version (cited on 21 December 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0509456.
144 Kotake, K., Yamada, S., and Sato, K., “Gravitational radiation from axisymmetric rotational core collapse”, Phys. Rev. D, 68, 044023, (2003).
145 Kotake, K., Yamada, S., Sato, K., Sumiyoshi, K., Ono, H., and Suzuki, H., “Gravitational radiation from rotational core collapse: Effects of magnetic fields and realistic equations of state”, Phys. Rev. D, 69, 124004-1-11, (2004).
146 Lai, D., “Secular bar-mode evolution and gravitational waves from neutron stars”, in Centrella, J.M., ed., Astrophysical Sources for Ground-based Gravitational Wave Detectors, Philadelphia, Pennsylvania, USA, 30 October - 1 November 2000, vol. 575 of AIP Conference Proceedings, 246-257, (American Institute of Physics, Melville, U.S.A., 2001).
147 Lai, D., and Goldreich, P., “Growth of perturbations in gravitational collapse and accretion”, Astrophys. J., 535, 402-411, (2000). Related online version (cited on 25 June 1999):
External Linkhttp://arXiv.org/abs/astro-ph/9906400.
148 Lai, D., and Shapiro, S.L., “Gravitational radiation from rapidly rotating nascent neutron stars”, Astrophys. J., 442, 259-272, (1995). Related online version (cited on 17 August 1994):
External Linkhttp://arXiv.org/abs/astro-ph/9408053.
149 Leaver, E.W., “An analytic representation for the quasi-normal modes of Kerr black holes”, Proc. R. Soc. London, Ser. A, 402, 285-298, (1985).
150 Liebendörfer, M., Messer, O.E.B., Mezzacappa, A., Bruenn, S.W., Cardall, C.Y., and Thielemann, F.-K., “A finite difference representation of neutrino radiation hydrodynamics for spherically symmetric general relativistic supernova simulations”, Astrophys. J. Suppl. Ser., 150, 263-316, (2004).
151 Lindblom, L., and Owen, B.J., “Effect of hyperon bulk viscosity on neutron-star r-modes”, Phys. Rev. D, 65, 063006-1-15, (2002). Related online version (cited on 25 October 2001):
External Linkhttp://arXiv.org/abs/astro-ph/0110558.
152 Lindblom, L., Owen, B.J., and Morinsk, S.M., “Gravitational radiation instability in hot young stars”, Phys. Rev. Lett., 80, 4843-4846, (1998). Related online version (cited on 13 March 1998):
External Linkhttp://arXiv.org/abs/gr-qc/9803053.
153 Lindblom, L., Tohline, J.E., and Vallisneri, M., “Nonlinear evolution of the r-modes in neutron stars”, Phys. Rev. Lett., 86, 1152-1155, (2001). Related online version (cited on 31 October 2000):
External Linkhttp://arXiv.org/abs/astro-ph/0010653.
154 Lindblom, L., Tohline, J.E., and Vallisneri, M., “Numerical evolutions of nonlinear r-modes in neutron stars”, Phys. Rev. D, 65, 084039-1-15, (2002). Related online version (cited on 20 September 2001):
External Linkhttp://arXiv.org/abs/astro-ph/0109352.
155 Liu, Y.T., “Dynamical instability of new-born neutron stars as sources of gravitational radiation”, Phys. Rev. D, 65, 124003-1-14, (2002). Related online version (cited on 21 September 2001):
External Linkhttp://arXiv.org/abs/gr-qc/0109078.
156 Liu, Y.T., and Lindblom, L., “Models of rapidly rotating neutron stars: remnants of accretion-induced collapse”, Mon. Not. R. Astron. Soc., 324, 1063-1073, (2001). Related online version (cited on 9 December 2000):
External Linkhttp://arXiv.org/abs/astro-ph/0012198.
157 Loeb, A., and Rasio, F.A., “Collapse of primordial gas clouds and the formation of quasar black holes”, Astrophys. J., 432, 52-61, (1994). Related online version (cited on 16 January 1994):
External Linkhttp://arXiv.org/abs/astro-ph/9401026.
158 Loveridge, L.C., “Gravitational waves from a pulsar kick caused by neutrino conversions”, Phys. Rev. D, 69, 024008, (2004).
159 Macchetto, F.D., “Supermassive black holes and galaxy morphology”, Astrophys. Space Sci., 269, 269-291, (1999). Related online version (cited on 5 October 1999):
External Linkhttp://arXiv.org/abs/astro-ph/9910089.
160 MacFadyen, A.I., and Woosley, S.E., “Collapsars: Gamma-Ray Bursts and Explosions in “Failed Supernovae””, Astrophys. J., 524, 262-289, (1999).
161 Maiolino, R., Vanzi, L., Mannucci, F., Cresci, G., Ghinassi, F., and Della Valle, M., “Discovery of two infrared supernovae: a new window on the SN search”, Astron. Astrophys., 389, 84-92, (2002).
162 Managan, R.A., “On the secular instability of axisymmetric rotating stars to gravitational radiation reaction”, Astrophys. J., 294, 463-473, (1985).
163 Marck, J.-A., and Bonazzola, S., “Gravitational radiation from three-dimensional gravitational stellar core collapse”, in D’Inverno, R., ed., Approaches to Numerical Relativity, Proceedings of the International Workshop on Numerical Relativity, Southampton, England, 16-20 December 1991, 247, (Cambridge University Press, Cambridge, U.K., 1992).
164 Max Planck Institute for Astrophysics, “MPA Hydro Gang Homepage”, project homepage. URL (cited on 17 April 2002):
External Linkhttp://www.mpa-garching.mpg.de/Hydro/index.shtml. url updated in 2006 revision.
165 Max Planck Institute for Astrophysics, “General relativistic simulations of rotational supernova collapse”, project homepage, (2002). URL (cited on 3 July 2002):
External Linkhttp://www.mpa-garching.mpg.de/rel_hydro/axi_core_collapse/index.shtml. url updated in 2006 revision.
166 Mayle, R., and Wilson, J.R., “Supernovae from collapse of oxygen-magnesium-neon cores”, Astrophys. J., 334, 909-926, (1988).
167 Mezzacappa, A., Calder, A.C., Bruenn, S.W., Blondin, J.M., Guidry, M.W., Strayer, M.R., and Umar, A.S., “The interplay between proto-neutron star convection and neutrino transport in core collapse supernovae”, Astrophys. J., 493, 848-862, (1998). Related online version (cited on 18 September 1997):
External Linkhttp://arXiv.org/abs/astro-ph/9709184.
168 Mezzacappa, A., Calder, A.C., Bruenn, S.W., Blondin, J.M., Guidry, M.W., Strayer, M.R., and Umar, A.S., “An investigation of neutrino-driven convection and the core collapse supernova mechanism using multigroup neutrino transport”, Astrophys. J., 495, 911-926, (1998). Related online version (cited on 18 September 1997):
External Linkhttp://arXiv.org/abs/astro-ph/9709188.
169 Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (Freeman, New York, U.S.A., 1973).
170 Mönchmeyer, R., Schäfer, G., Müller, E., and Kates, R.E., “Gravitational waves from the collapse of rotating stellar cores”, Astron. Astrophys., 246, 417-440, (1991).
171 Müller, E., “Gravitational radiation from collapsing rotating stellar cores”, Astron. Astrophys., 114, 53-59, (1982).
172 Müller, E., “Gravitational waves from core collapse supernovae”, in Marck, J.-A., and Lasota, J.-P., eds., Relativistic Gravitation and Gravitational Radiation, Proceedings of the Les Houches School of Physics, held in Les Houches, Haute Savoie, 26 September - 6 October, 1995, Cambridge Contemporary Astrophysics, 273-308, (Cambridge University Press, Cambridge, U.K., 1997).
173 Müller, E., “Simulation of astrophysical fluid flow”, in LeVeque, R.J., Mihalas, D., Dorfi, E.A., and Müller, E., eds., Computational Methods for Astrophysical Fluid Flow, Lecture Notes 1997 of the Swiss Society for Astronomy and Astrophysics (SSAA), held March 3-8, 1997 in Les Diablerets, Switzerland, vol. 27 of Saas-Fee Advanced Courses, 343-494, (Springer, Berlin, Germany; New York, U.S.A., 1998).
174 Müller, E., and Hillebrandt, W., “The collapse of rotating stellar cores”, Astron. Astrophys., 103, 358-366, (1981).
175 Müller, E., Hillebrandt, W., and Rozyczka, M., “Stellar Collapse - Adiabatic hydrodynamics and shock wave propagation”, Astron. Astrophys., 81, 288-292, (1980).
176 Müller, E., and Janka, H.-T., “Gravitational radiation from convective instabilities in Type II supernova explosions”, Astron. Astrophys., 317, 140-163, (1997).
177 Müller, E., Rampp, M., Buras, R., Janka, H.-T., and Shoemaker, D.H., “Toward Gravitational Wave Signals from Realistic Core-Collapse Supernova Models”, Astrophys. J., 603, 221-230, (2004).
178 Nadyozhin, D.K., “Physical Properties of SNe IIP Derived from a Comparison of Theoretical Models with Observations”, Astron. Astrophys., submitted, (2002). Related online version (cited on 09 January 2006):
External Linkhttp://www.mpa-garching.mpg.de/mpa/publications/preprints/pp2002/pp2002-en.html.
179 Nakamura, T., “General relativistic collapse of axially symmetric stars leading to the formation of rotating black holes”, Prog. Theor. Phys., 65, 1876-1890, (1981).
180 Nakamura, T., “General Relativistic Collapse of Accreting Neutron Stars with Rotation”, Prog. Theor. Phys., 70, 1144-1147, (1983).
181 NASA/ESA, “Laser Interferometer Space Antenna”, project homepage. URL (cited on 4 October 2002):
External Linkhttp://lisa.jpl.nasa.gov.
182 National Astronomical Observatory, “TAMA Project”, project homepage. URL (cited on 4 October 2002):
External Linkhttp://tamago.mtk.nao.ac.jp/.
183 Nazin, S.N., and Postnov, K.A., “High neutron star birth velocities and gravitational radiation during supernova explosions”, Astron. Astrophys., 317, L79-L81, (1997). Related online version (cited on 15 January 1997):
External Linkhttp://arXiv.org/abs/astro-ph/9701073.
184 New, K.C.B., Centrella, J.M., and Tohline, J.E., “Gravitational waves from long-duration simulations of the dynamical bar instability”, Phys. Rev. D, 62, 064019-1-16, (2000). Related online version (cited on 30 November 1999):
External Linkhttp://arXiv.org/abs/astro-ph/9911525.
185 New, K.C.B., and Shapiro, S.L., “Evolution of differentially rotating supermassive stars to the onset of bar instability”, Astrophys. J., 548, 439-446, (2001). Related online version (cited on 9 October 2000):
External Linkhttp://arXiv.org/abs/astro-ph/0010172.
186 New, K.C.B., and Shapiro, S.L., “The formation of supermassive black holes and the evolution of supermassive stars”, Class. Quantum Grav., 18, 3965-3976, (2001). Related online version (cited on 6 September 2000):
External Linkhttp://arXiv.org/abs/astro-ph/0009095.
187 Nomoto, K., and Kondo, Y., “Conditions for accretion-induced collapse of white dwarfs”, Astrophys. J. Lett., 367, L19-L22, (1991).
188 Novikov, I.D., “Gravitational radiation from a star collapsing into a disk”, Sov. Astron., 19, 398, (1975).
189 Oshea, B.W., Norman M., personal communication, (2005).
190 Ott, C.D., Burrows, A., Livne, E., and Walder, R., “Gravitational Waves from Axisymmetric, Rotating Stellar Core Collapse”, Astrophys. J., 600, 834-864, (2004).
191 Ou, S., Tohline, J.E., and Lindblom, L., “Supernovae and the nuclear equation of state at high densities”, Astrophys. J., 617, 490-499, (2004).
192 Pickett, B.K., Durisen, R.H., and Davis, G., “The dynamic stability of rotating protostars and protostellar disks. I. The effects of the angular momentum distribution”, Astrophys. J., 458, 714-738, (1996).
193 Piran, T., and Stark, R.F., “Numerical relativity, rotating gravitational collapse, and gravitational radiation”, in Centrella, J.M., ed., Dynamical Spacetimes and Numerical Relativity, Proceedings of a workshop held at Drexel University, October 7-11, 1985, 40-73, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1986).
194 Podsiadlowski, P., Joss, P.C., and Hsu, J.J.L., “Presupernova evolution in massive interacting binaries”, Astrophys. J., 391, 246-264, (1992).
195 Popham, R., Woosley, S.E., and Fryer, C.L., “Hyperaccreting Black Holes and Gamma-Ray Bursts”, Astrophys. J., 518, 356-374, (1999).
196 Proga, D., MacFadyen, A.I., Armitage, P.J., and Begelman, M.C., “Axisymmetric Magnetohydrodynamic Simulations of the Collapsar Model for Gamma-Ray Bursts”, Astrophys. J. Lett., 599, L5-L8, (2003).
197 Rampp, M., and Janka, H.-T., “Radiation hydrodynamics with neutrinos: Variable Eddington factor method for core-collapse supernova simulations”, Astron. Astrophys., 396, 361-392, (2002). Related online version (cited on 7 March 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0203101.
198 Rampp, M., Müller, E., and Ruffert, M., “Simulations of non-axisymmetric rotational core collapse”, Astron. Astrophys., 332, 969-983, (1998). Related online version (cited on 11 November 1997):
External Linkhttp://arXiv.org/abs/astro-ph/9781112.
199 Rees, M.J., “Astrophysical Evidence for Black Holes”, in Wald, R.M., ed., Black Holes and Relativistic Stars, Proceedings of the Symposium dedicated to the memory of Subrahmanyan Chandrasekhar, held in Chicago, December 14-15, 1996, 79-101, (University of Chicago Press, Chicago, U.S.A.; London, U.K., 1998).
200 Rezzolla, L., “Relativistic Astrophysics movies at SISSA”, personal homepage, SISSA / ISAS. URL (cited on 4 October 2002):
External Linkhttp://www.sissa.it/~rezzolla/movies.html.
201 Rezzolla, L., Lamb, F.K., Marković, D., and Shapiro, S.L., “Properties of r modes in rotating magnetic neutron stars. I. Kinematic secular effects and magnetic evolution”, Phys. Rev. D, 64, 104013-1-12, (2001). Related online version (cited on 17 July 2001):
External Linkhttp://arXiv.org/abs/gr-qc/0107061.
202 Rezzolla, L., Lamb, F.L., Markovic, D., and Shapiro, S.L., “Properties of r modes in rotating magnetic neutron stars. II. Evolution of the r modes and stellar magnetic field”, Phys. Rev. D, 64, 104014-1-13, (2001). Related online version (cited on 17 July 2001):
External Linkhttp://arXiv.org/abs/gr-qc/0107062.
203 Ruffini, R., and Wheeler, J.A., “Relativistic Cosmology from Space Platforms”, in Hardy, V., and H. Moore, H., eds., Proceedings of the Conference on Space Physics, 45-174, (ESRO, Paris, France, 1971).
204 Saenz, R.A., and Shapiro, S.L., “Gravitational radiation from stellar collapse - Ellipsoidal models”, Astrophys. J., 221, 286-303, (1978).
205 Saenz, R.A., and Shapiro, S.L., “Gravitational and neutrion radiation from stellar core collapse - Improved ellipsoidal model calculations”, Astrophys. J., 229, 1107-1125, (1979).
206 Saenz, R.A., and Shapiro, S.L., “Gravitational radiation from stellar core collapse. III - Damped ellipsoidal oscillations”, Astrophys. J., 244, 1033-1038, (1981).
207 Saijo, M., “The Collapse of Differentially Rotating Supermassive Stars: Conformally Flat Simulations”, Astrophys. J., 615, 866-879, (2004).
208 Saijo, M., Baumgarte, T.W., Shapiro, S.L., and Shibata, M., “Collapse of a rotating supermassive star to a supermassive black hole: Post-Newtonian simulations”, Astrophys. J., 569, 349-361, (2002). Related online version (cited on 6 February 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0202112.
209 Saijo, M., Shibata, M., Baumgarte, T.W., and Shapiro, S.L., “Dynamical bar instability in rotating stars: effect of general relativity”, Astrophys. J., 548, 919-931, (2001). Related online version (cited on 10 October 2000):
External Linkhttp://arXiv.org/abs/astro-ph/0010201.
210 Salpeter, E.E., “Energy and pressure of a zero-temperature plasma”, Astrophys. J., 134, 669-682, (1961).
211 Sanders, R.H., “The effects of stellar collisions in dense stellar systems”, Astrophys. J., 162, 791-809, (1970).
212 Scheck, L., Plewa, T., Janka, H.-T., Kifonidis, K., and Müller, E., “Pulsar Recoil by Large-Scale Anisotropies in Supernova Explosions”, Phys. Rev. Lett., 92, 011103, (2004).
213 Schenk, A.K., Arras, P., Flanagan, É.É., Teukolsky, S.A., and Wasserman, I., “Nonlinear mode coupling in rotating stars and the r-mode instability in neutron stars”, Phys. Rev. D, 65, 024001-1-43, (2002). Related online version (cited on 23 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/0101092.
214 Schutz, B.F., “Gravitational Wave Astronomy”, Class. Quantum Grav., 16, A131-A156, (1999). Related online version (cited on 9 November 1999):
External Linkhttp://arXiv.org/abs/gr-qc/9911034.
215 Seidel, E., and Moore, T., “Gravitational radiation from realistic relativistic stars: Odd-parity fluid perturbations”, Phys. Rev. D, 35, 2287-2296, (1987).
216 Seidel, E., and Moore, T., “Gravitational radiation from perturbations of stellar core collapse models”, in Evans, C.R., Finn, L.S., and Hobill, D.W., eds., Frontiers in Numerical Relativity, 146-162, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1988).
217 Sekiguchi, Y., and Shibata, M., “New criterion for direct black hole formation in rapidly rotating stellar collapse”, Phys. Rev. D, 70, 084005, (2004).
218 Shapiro, S.L., “Gravitational radiation from stellar collapse - The initial burst”, Astrophys. J., 214, 566-575, (1977).
219 Shapiro, S.L., and Lightman, A.P., “Rapidly rotating, post-Newtonian neutron stars”, Astrophys. J., 207, 263-278, (1976).
220 Shapiro, S.L., and Teukolsky, S.A., “Gravitational collapse of supermassive stars to black holes - Numerical solution of the Einstein equations”, Astrophys. J., 234, L177-L181, (1979).
221 Shapiro, S.L., and Teukolsky, S.A., Black Holes, White Dwarfs, and Neutron Stars, (Wiley, New York, U.S.A., 1983).
222 Shibata, M., “Axisymmetric Simulations of Rotating Stellar Collapse in Full General Relativity - Criteria for Prompt Collapse to Black Holes -”, Prog. Theor. Phys., 104, 325-358, (2000). Related online version (cited on 19 July 2000):
External Linkhttp://arXiv.org/abs/gr-qc/0007049.
223 Shibata, M., Baumgarte, T.W., and Shapiro, S.L., “The bar-mode instability in differentially rotating neutron stars: Simulations in full general relativity”, Astrophys. J., 542, 453-463, (2000). Related online version (cited on 18 May 2000):
External Linkhttp://arXiv.org/abs/astro-ph/0005378.
224 Shibata, M., Baumgarte, T.W., and Shapiro, S.L., “Stability and collapse of rapidly rotating, supramassive neutron stars: 3D simulations in general relativity”, Phys. Rev. D, 61, 044012-1-11, (2000). Related online version (cited on 16 November 1999):
External Linkhttp://arXiv.org/abs/astro-ph/9911308.
225 Shibata, M., and Karino, S., “Numerical evolution of secular bar-mode instability induced by gravitational radiation reaction in rapidly rotating neutron stars”, Phys. Rev. D, 70, 084022-1-15, (2004).
226 Shibata, M., Karino, S., and Eriguchi, Y., “Dynamical instability of differentially rotating stars”, Mon. Not. R. Astron. Soc., 334, L27-L32, (2002). Related online version (cited on 6 June 2002):
External Linkhttp://arXiv.org/abs/gr-qc/0206002.
227 Shibata, M., Karino, S., and Eriguchi, Y., “Dynamical bar-mode instability of differentially rotating stars: effects of equations of state and velocity profiles”, Mon. Not. R. Astron. Soc., 343, 619-626, (2003).
228 Shibata, M., and Shapiro, S.L., “Collapse of a rotating supermassive star to a supermassive black hole: Fully relativistic simulations”, Astrophys. J. Lett., 572, L39-L43, (2002). URL (cited on 07 May 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0205091.
229 Shibata, M., Shapiro, S.L., and Uryu, K., “Equilibrium and stability of supermassive stars in binary systems”, Phys. Rev. D, 64, 24004-1-14, (2001). Related online version (cited on 25 April 2001):
External Linkhttp://arXiv.org/abs/astro-ph/0104408.
230 Shibata, M., and Yu-ichirou, S., “Gravitational waves from axisymmetric rotating stellar core collapse to a neutron star in full general relativity”, Phys. Rev. D, 69, 084024-1-16, (2004).
231 Smith, S., Houser, J.L., and Centrella, J.M., “Simulations of nonaxisymmetric instability in a rotating star: A comparison between Eulerian and Smooth Particle Hydrodynamics”, Astrophys. J., 458, 236-256, (1996). Related online version (cited on 9 October 1995):
External Linkhttp://arXiv.org/abs/gr-qc/9510014.
232 Spruit, H.C., “Dynamo action by differential rotation in a stably stratified stellar interior”, Astron. Astrophys., 381, 923-932, (2002).
233 Stark, R.F., and Piran, T., “Gravitational wave emission from rotating gravitational collapse”, Phys. Rev. Lett., 55, 891-894, (1985).
234 Starrfield, S., Timmes, F.X., Hix, W.R., Sion, E.M., Sparks, W.M., and Dwyer, S.J., “Surface Hydrogen-burning Modeling of Supersoft X-ray Binaries: Are they Type Ia Supernovae Progenitors?”, Astrophys. J., 612, L53-L56, (2004).
235 Stergioulas, N., Apostolatos, T.A., and Font, J.A., “Non-linear pulsations in differentially rotating neutron stars: mass-shedding-induced damping and splitting of the fundamental mode”, Mon. Not. R. Astron. Soc., 352, 1089-1101, (2004).
236 Stergioulas, N., and Font, J.A., “Nonlinear r-modes in rapidly rotating relativistic stars”, Phys. Rev. Lett., 86, 1148-1151, (2001). Related online version (cited on 31 July 2000):
External Linkhttp://arXiv.org/abs/gr-qc/0007086.
237 Swesty, F.D., Lattimer, J.M., and Myra, E.S., “The role of the equation of state in the ‘prompt’ phase of type II supernovae”, Astrophys. J., 425, 195-204, (1994).
238 Symbalisty, E.M.D., “Magnetorotational iron core collapse”, Astrophys. J., 285, 729-746, (1984).
239 Tassoul, J.-L., Theory of Rotating Stars, (Princeton University Press, Princeton, U.S.A., 1978).
240 Thompson, T.A., Burrows, A., and Pinto, P.A., “Shock breakout in core-collapse supernovae and its neutrino signature”, Astrophys. J., 592, 434-456, (2003). URL (cited on 10 November 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0211194.
241 Thorne, K.S., “Multipole expansion of gravitational radiation”, Rev. Mod. Phys., 52, 299-340, (1980).
242 Thorne, K.S., “Gravitational Radiation”, in Hawking, S.W., and Israel, W., eds., Three Hundred Years of Gravitation, 330-458, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1987).
243 Thorne, K.S., “Gravitational radiation”, in Böhringer, H., Morfill, G.E., and Trümper, J.E., eds., 17th Texas Symposium on Relativistic Astrophysics and Cosmology, vol. 759 of Annals of the New York Academy of Sciences, 127-152, (New York Academy of Sciences, New York, U.S.A., 1995).
244 Thorne, K.S., “Gravitational Waves from Compact Bodies”, in van Paradijs, J., van den Heuvel, E.P.J., and Kuulkers, E., eds., Compact Stars in Binaries, Proceedings of the 165th Symposium of the International Astronomical Union, held in The Hague, the Netherlands, August 15-19, 1994, vol. 165 of IAU Symposia, 153-184, (Kluwer Academic Publishers, Dordrecht, Netherlands; Boston, U.S.A., 1996). Related online version (cited on 30 June 1995):
External Linkhttp://arXiv.org/abs/gr-qc/9506084.
245 Thuan, T.X., and Ostriker, J.P., “Gravitational radiation from stellar collapse”, Astrophys. J. Lett., 191, L105-L107, (1974).
246 Tohline, J.E., “The collapse of rotating stellar cores - Equilbria between white dwarf and neutron star densities”, Astrophys. J., 285, 721-728, (1984).
247 Tohline, J.E., and Hachisu, I., “The breakup of self-gravitating rings, tori, and thick accretion disks”, Astrophys. J., 361, 394-407, (1990).
248 Toman, J., Imamura, J.N., Pickett, B.K., and Durisen, R.H., “Nonaxisymmetric dynamic instabilities of rotating polytropes. I. The Kelvin modes”, Astrophys. J., 497, 370-387, (1998).
249 Turner, M.S., and Wagoner, R.V., “Gravitational radiation from slowly-rotating supernovae - Preliminary results”, in Smarr, L.L., ed., Sources of Gravitational Radiation, Proceedings of the Battelle Seattle Workshop, July 24 - August 4, 1978, 383-407, (Cambridge University Press, Cambridge, U.K., 1979).
250 van Putten, M.H.P.M., “Gravitational Wave Frequencies and Energies in Hypernovae”, Astrophys. J., 583, 374-378, (2003).
251 van Putten, M.H.P.M., and Levinson, A., “Theory and astrophysical consequences of a magnetized torus around a rapidly rotating black hole”, Astrophys. J., 584, 937-953, (2003). URL (cited on 12 December 2002):
External Linkhttp://arXiv.org/abs/astro-ph/0212297.
252 Villain, L., Pons, J.A., Cerdá-Durán, P., and Gourgoulhon, E., “Evolutionary sequences of rotating protoneutron stars”, Astron. Astrophys., 418, 283-294, (2004).
253 Walder, R., Burrows, A., Ott, C.D., Livne, E., Lichtenstadt, I., and Jarrah, M., “Anisotropies in the Neutrino Fluxes and Heating Profiles in Two-dimensional, Time-dependent, Multigroup Radiation Hydrodynamics Simulations of Rotating Core-Collapse Supernovae”, Astrophys. J., 626, 317-332, (2005).
254 Watts, A.L., Andersson, N., and Jones, D.I., “The Nature of Low T/|W| Dynamical Instabilities in Differentially Rotating Stars”, Astrophys. J. Lett., 618, L37-L40, (2005).
255 Wheeler, J.C., Yi, I., Höflich, P., and Wang, L., “Asymmetric Supernovae, Pulsars, Magnetars, and Gamma-Ray Bursts”, Astrophys. J., 537, 810-823, (2000).
256 Wickramasinghe, D.T., and Ferrario, L., “Magnetism in Isolated and Binary White Dwarfs”, Publ. Astron. Soc. Pac., 112, 873-924, (2000).
257 Wilson, J.R., “title missing”, in Centrella, J.M., LeBlanc, J.M., and Bowers, J.L., eds., Numerical Astrophysics, Proceedings of a symposium in honor of James R. Wilson, held at the University of Illinois in October, 1982, 422-434, (Jones and Barlett, Boston, U.S.A., 1985).
258 Wilson, J.R., and Mayle, R., “Convection in core collapse supernovae”, Phys. Rep., 163, 63-78, (1988).
259 Wilson, J.R., Mayle, R., Woosley, S.E., and Weaver, T.A., “Stellar Core Collapse and Supernovae”, Ann. N.Y. Acad. Sci., 470, 267-293, (1986).
260 Woodward, J., Tohline, J.E., and Hachisu, I., “The stability of thick, self-gravitating disks in protostellar systems”, Astrophys. J., 420, 247-267, (1994).
261 Woosley, S.E., “Gamma-Ray Bursts From Stellar Mass Accretion Disks Around Black Holes”, Astrophys. J., 405, 273-277, (1993).
262 Woosley, S.E., “Gamma-ray bursts from stellar mass accretion disks around black holes”, Astrophys. J., 405, 273-277, (1993).
263 Woosley, S.E., and Baron, E., “The collapse of white dwarfs to neutron stars”, Astrophys. J., 391, 228-235, (1992).
264 Yamada, S., and Sato, K., “Gravitational radiation from rotational collapse of a supernova core”, Astrophys. J., 450, 245-252, (1995).
265 Yooun, S.C., and Langer, N., “Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts”, Astron. Astrophys., 443, 643-648, (2005).
266 Young, P.A., Fryer, C.L., Hungerford, A., Arnett, D., Rockefeller, G., Timmes, F.X., Voit, B., Meakin, C., and Eriksen, K.A., “Constraints on the Progenitor of Cassiopeia A”, Astrophys. J., accepted, (2005). Related online version (cited on 21 December 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0511806.
267 Yu-ichirou, S., and Shibata, M., “Axisymmetric collapse simulations of rotating massive stellar cores in full general relativity: Numerical study for prompt black hole formation”, Phys. Rev. D, 71, 084013-1-30, (2005).
268 Yungelson, L.R., and Livio, M., “Type Ia Supernovae: An Examination of Potential Progenitors and the Redshift Distribution”, Astrophys. J., 497, 168-177, (1998). Related online version (cited on 18 November 1997):
External Linkhttp://arXiv.org/abs/astro-ph/9711201.
269 Zanotti, O., Rezzolla, L., and Font, J.A., “Quasi-periodic accretion and gravitational waves from oscillating “toroidal neutron stars” around a Schwarzschild black hole”, Mon. Not. R. Astron. Soc., 341, 832-848, (2003).
270 Zel’dovich, Y.B., and Novikov, I.D., Relativistic Astrophysics, vol. 1, (University of Chicago Press, Chicago, U.S.A., 1971).
271 Zwerger, T., and Müller, E., “Dynamics and gravitational wave signature of axisymmetric rotational core collapse”, Astron. Astrophys., 320, 209-227, (1997).