1 Abrahams, A.M., Rezzolla, L., Rupright, M.E., Anderson, A., Anninos, P., Baumgarte, T.W., Bishop, N.T., Brandt, S.R., Browne, J.C., Camarda, K., Choptuik, M.W., Cook, G.B., Correll, R.R., Evans, C.R., Finn, L.S., Fox, G.C., Gómez, R., Haupt, T., Huq, M.F., Kidder, L.E., Klasky, S.A., Laguna, P., Landry, W., Lehner, L., Lenaghan, J., Marsa, R.L., Massó, J., Matzner, R.A., Mitra, S., Papadopoulos, P., Parashar, M., Saied, F., Saylor, P.E., Scheel, M.A., Seidel, E., Shapiro, S.L., Shoemaker, D.M., Smarr, L.L., Szilágyi, B., Teukolsky, S.A., van Putten, M.H.P.M., Walker, P., Winicour, J., and York Jr, J.W. (The Binary Black Hole Grand Challenge Alliance), “Gravitational wave extraction and outer boundary conditions by perturbative matching”, Phys. Rev. Lett., 80, 1812–1815, (1998). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9709082.
2 Alcubierre, M., Benger, W., Brügmann, B., Lanfermann, G., Nerger, L., Seidel, E., and Takahashi, R., “3D Grazing Collision of Two Black Holes”, Phys. Rev. Lett., 87, 271103, 1–4, (2001). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0012079.
3 Alcubierre, M., Brügmann, B., Pollney, D., Seidel, E., and Takahashi, R., “Black hole excision for dynamic black holes”, Phys. Rev. D, 64, 061501, 1–5, (2001). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0104020.
4 Andrade, Z., Beetle, C., Blinov, A., Bromley, B., Burko, L.M., Cranor, M., Owen, R., and Price, R.H., “Periodic standing-wave approximation: Overview and three-dimensional scalar models”, Phys. Rev. D, 70, 064001, 1–14, (2003). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0310001.
5 Anninos, P., Bernstein, D., Brandt, S.R., Hobill, D., Seidel, E., and Smarr, L.L., “Dynamics of Black Hole Apparent Horizons”, Phys. Rev. D, 50, 3801–3819, (1994).
6 Anninos, P., Camarda, K., Libson, J., Massó, J., Seidel, E., and Suen, W.-M., “Finding apparent horizons in dynamic 3D numerical spacetimes”, Phys. Rev. D, 58, 024003, 1–12, (1998). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9609059.
7 Arnowitt, R., Deser, S., and Misner, C.W., “The dynamics of general relativity”, in Witten, L., ed., Gravitation: An Introduction to Current Research, pp. 227–265, (Wiley, New York, U.S.A., 1962).
8 Ashtekar, A., “Black Hole Entropy: Inclusion of Distortion and Angular Momentum”, lecture notes, Penn State University, (2003). URL (cited on 22 November 2004):
External Linkhttp://www.phys.psu.edu/events/index.html?event_id=517.
9 Ashtekar, A., Baez, J.C., Corichi, A., and Krasnov, K.V., “Quantum Geometry and Black Hole Entropy”, Phys. Rev. Lett., 80, 904–907, (1998). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9710007.
10 Ashtekar, A., Baez, J.C., and Krasnov, K.V., “Quantum Geometry of Isolated Horizons and Black Hole Entropy”, Adv. Theor. Math. Phys., 4, 1–94, (2000). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0005126.
11 Ashtekar, A., Beetle, C., Dreyer, O., Fairhurst, S., Krishnan, B., Lewandowski, J., and Wisniewski, J., “Generic Isolated Horizons and Their Applications”, Phys. Rev. Lett., 85, 3564–3567, (2000). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0006006.
12 Ashtekar, A., Beetle, C., and Fairhurst, S., “Isolated horizons: a generalization of black hole mechanics”, Class. Quantum Grav., 16, L1–L7, (1999). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9812065.
13 Ashtekar, A., Beetle, C., and Fairhurst, S., “Mechanics of isolated horizons”, Class. Quantum Grav., 17, 253–298, (2000). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9907068.
14 Ashtekar, A., Beetle, C., and Lewandowski, J., “Mechanics of rotating isolated horizons”, Phys. Rev. D, 64, 044016, 1–17, (2001). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0103026.
15 Ashtekar, A., Beetle, C., and Lewandowski, J., “Geometry of generic isolated horizons”, Class. Quantum Grav., 19, 1195–1225, (2002). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0111067.
16 Ashtekar, A., and Bojowald, M., unknown format. in preparation.
17 Ashtekar, A., Bombelli, L., and Reula, O.A., “The covariant phase space of asymptotically flat gravitational fields”, in Francaviglia, M., ed., Mechanics, Analysis and Geometry: 200 Years After Lagrange, pp. 417–450, (North-Holland; Elsevier, Amsterdam, Netherlands; New York, U.S.A., 1991).
18 Ashtekar, A., and Corichi, A., “Laws governing isolated horizons: Inclusion of dilaton coupling”, Class. Quantum Grav., 17, 1317–1332, (2000). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9910068.
19 Ashtekar, A., and Corichi, A., “Non-minimal couplings, quantum geometry and black hole entropy”, Class. Quantum Grav., 20, 4473–4484, (2003).
20 Ashtekar, A., Corichi, A., and Sudarsky, D., “Hairy black holes, horizon mass and solitons”, Class. Quantum Grav., 18, 919–940, (2001). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0011081.
21 Ashtekar, A., Corichi, A., and Sudarsky, D., “Non-Minimally Coupled Scalar Fields and Isolated Horizons”, Class. Quantum Grav., 20, 3513–3425, (2003).
22 Ashtekar, A., Dreyer, O., and Wisniewski, J., “Isolated Horizons in 2+1 Gravity”, Adv. Theor. Math. Phys., 6, 507–555, (2002). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0206024.
23 Ashtekar, A., Engle, J., Pawlowski, T., and Van Den Broeck, C., “Multipole moments of isolated horizons”, Class. Quantum Grav., 21, 2549–2570, (2004). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0401114.
24 Ashtekar, A., Engle, J., and Van Den Broeck, C., “Quantum geometry of isolated horizons and black hole entropy: Inclusion of distortion and rotation”, (December 2004). URL (cited on 13 December 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0412003.
25 Ashtekar, A., Fairhurst, S., and Krishnan, B., “Isolated horizons: Hamiltonian evolution and the first law”, Phys. Rev. D, 62, 104025, 1–29, (2000). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0005083.
26 Ashtekar, A., and Galloway, G.J., unknown format, (2004). in preparation.
27 Ashtekar, A., Hayward, S.A., and Krishnan, B., unknown format. in preparation.
28 Ashtekar, A., and Krasnov, K., “Quantum Geometry and Black Holes”, in Iyer, B., and Bhawal, B., eds., Black Holes, Gravitational Radiation and the Universe: Essays in Honor of C.V. Vishveshwara, Fundamental Theories of Physics, vol. 100, pp. 149–170, (Kluwer, Dordrecht, Netherlands; Boston, U.S.A., 1999). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9804039.
29 Ashtekar, A., and Krishnan, B., “Dynamical Horizons: Energy, Angular Momentum, Fluxes, and Balance Laws”, Phys. Rev. Lett., 89, 261101, 1–4, (2002). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0207080.
30 Ashtekar, A., and Krishnan, B., “Dynamical horizons and their properties”, Phys. Rev. D, 68, 104030, 1–25, (2003). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0308033.
31 Ashtekar, A., and Lewandowski, J., “Background independent quantum gravity: A status report”, Class. Quantum Grav., 21, R53–R152, (2004). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0404018.
32 Ashtekar, A., and Streubel, M., “Symplective geometry of radiative fields at null infinity”, Proc. R. Soc. London, Ser. A, 376, 585–607, (1981).
33 Baiotti, L., Hawke, I., Montero, P.J., Löffler, F., Rezzolla, L., Stergioulas, N., Font, J.A., and Seidel, E., “Three-dimensional relativistic simulations of rotating neutron star collapse to a Kerr black hole”, Phys. Rev. D, 71, 024035, (2005). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0403029.
34 Bardeen, J.M., Carter, B., and Hawking, S.W., “The four laws of black hole mechanics”, Commun. Math. Phys., 31, 161–170, (1973).
35 Barreira, M., Carfora, M., and Rovelli, C., “Physics with non-perturbative quantum gravity: Radiation from a quantum black hole”, Gen. Relativ. Gravit., 28, 1293–1299, (1996).
36 Bartnik, R., and Isenberg, J.A., “Summary of spherically symmetric dynamical horizons”, personal communication.
37 Bartnik, R., and McKinnon, J., “Particlelike Solutions of the Einstein–Yang–Mills Equations”, Phys. Rev. Lett., 61, 141–143, (1988).
38 Baumgarte, T.W., “Innermost stable circular orbit of binary black holes”, Phys. Rev. D, 62, 024018, 1–8, (2000). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0004050.
39 Beig, R., “The multipole expansion in general relativity”, Acta Phys. Austriaca, 53, 249–270, (1981).
40 Beig, R., and Simon, W., “Proof of a multipole conjecture due to Geroch”, Commun. Math. Phys., 78, 75–82, (1980).
41 Beig, R., and Simon, W., “On the multipole expansion of stationary spacetimes”, Proc. R. Soc. London, Ser. A, 376, 333–341, (1981).
42 Bekenstein, J.D., “Black Holes and Entropy”, Phys. Rev. D, 7, 2333–2346, (1973).
43 Bekenstein, J.D., “Generalized second law of thermodynamics in black-hole physics”, Phys. Rev. D, 9, 3292–3300, (1974).
44 Bekenstein, J.D., and Meisels, A., “Einstein A and B coefficients for a black hole”, Phys. Rev. D, 15, 2775–2781, (1977).
45 Ben-Dov, I., “The Penrose inequality and apparent horizons”, (August 2004). URL (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0408066.
46 Beyer, F., Krishnan, B., and Schnetter, E., unknown format. in preparation.
47 Bizoń, P., “Colored black holes”, Phys. Rev. Lett., 64, 2844–2847, (1990).
48 Bizoń, P., and Chmaj, T., “Gravitating skyrmions”, Phys. Lett. B, 297, 55–62, (1992).
49 Bizoń, P., and Chmaj, T., “Remark on formation of colored black holes via fine-tuning”, Phys. Rev. D, 61, 067501, 1–2, (2000). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9906070.
50 Bizoń, P., and Wald, R.M., “The n=1 colored black hole is unstable”, Phys. Lett. B, 267, 173–174, (1991).
51 Blackburn, J.K., and Detweiler, S.L., “Close black-hole binary systems”, Phys. Rev. D, 46, 2318–2333, (1992).
52 Bondi, H., van der Burg, M.G.J., and Metzner, A.W.K., “Gravitational waves in general relativity VII. Waves from axi-symmetric isolated systems”, Proc. R. Soc. London, Ser. A, 269, 21–52, (1962).
53 Booth, I., and Fairhurst, S., “The first law for slowly evolving horizons”, Phys. Rev. Lett., 92, 011102, (2004). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0307087.
54 Booth, I.S., “Metric-based Hamiltonians, null boundaries and isolated horizons”, Class. Quantum Grav., 18, 4239–4264, (2001). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0105009.
55 Bowen, J.M., and York Jr, J.W., “Time-asymmetric initial data for black holes and black-hole collisions”, Phys. Rev. D, 21, 2047–2056, (1980).
56 Brandt, S.R., Correll, R.R., Gómez, R., Huq, M.F., Laguna, P., Lehner, L., Marronetti, P., Matzner, R.A., Neilsen, D., Pullin, J., Schnetter, E., Shoemaker, D.M., and Winicour, J., “Grazing collision of black holes via the excision of singularities”, Phys. Rev. Lett., 85, 5496–5499, (2000). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0009047.
57 Bray, H.L., “Proof of the Riemannian Penrose inequality using the positive energy theorem”, J. Differ. Geom., 59, 177–267, (2001).
58 Breitenlohner, P., Forgács, P., and Maison, D., “On Static Spherically Symmetric Solutions of the Einstein–Yang–Mills Equations”, Commun. Math. Phys., 163, 141–172, (1994).
59 Breitenlohner, P., Forgács, P., and Maison, D., “Gravitating monopole solutions II”, Nucl. Phys. B, 442, 126–156, (1995).
60 Bretón, N., “Born–Infeld black hole in the isolated horizon framework”, Phys. Rev. D, 67, 124004, 1–4, (2003). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/hep-th/0301254.
61 Brill, D.R., and Lindquist, R.W., “Interaction Energy in Geometrostatics”, Phys. Rev., 131, 471–476, (1963).
62 Brügmann, B., Tichy, W., and Jansen, N., “Numerical Simulation of Orbiting Black Holes”, Phys. Rev. Lett., 92, 211101, (2004). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0312112.
63 Carter, B., “Black Hole Equilibrium States”, in DeWitt, C., and DeWitt, B.S., eds., Black Holes, Based on lectures given at the 23rd session of the Summer School of Les Houches, 1972, pp. 57–214, (Gordon and Breach, New York, U.S.A., 1973).
64 Chandrasekhar, S., The Mathematical Theory of Black Holes, The International Series of Monographs on Physics, vol. 69, (Clarendon Press, Oxford, U.K., 1983).
65 Choptuik, M.W., “Universality and scaling in gravitational collapse of a massless scalar field”, Phys. Rev. Lett., 70(1), 9–12, (1993).
66 Chruściel, P.T., “On the global structure of Robinson–Trautman space-time”, Proc. R. Soc. London, Ser. A, 436, 299–316, (1992).
67 Chruściel, P.T., “ ’No-Hair’ Theorems: Folklore, Conjectures, Results”, in Beem, J.K., and Duggal, K.L., eds., Differential Geometry and Mathematical Physics, AMS-CMS Special Session on Geometric Methods in Mathematical Physics, August 15–19, 1993, Vancouver, British Columbia, Canada, Contemporary Mathematics, vol. 170, pp. 23–49, (American Mathematical Society, Providence, U.S.A., 1994).
68 Cook, G.B., “Three-dimensional initial data for the collision of two black holes. II. Quasicircular orbits for equal-mass black holes”, Phys. Rev. D, 50, 5025–5032, (October 1994). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9404043.
69 Cook, G.B., “Initial Data for Numerical Relativity”, Living Rev. Relativity, 2, lrr-2000-5, (2000). URL (cited on 22 November 2004):
http://www.livingreviews.org/lrr-2000-5.
70 Cook, G.B., “Corotating and irrotational binary black holes in quasicircular orbits”, Phys. Rev. D, 65, 084003, 1–13, (2002). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0108076.
71 Cook, G.B., Huq, M.F., Klasky, S.A., Scheel, M.A., Abrahams, A.M., Anderson, A., Anninos, P., Baumgarte, T.W., Bishop, N.T., Brandt, S.R., Browne, J.C., Camarda, K., Choptuik, M.W., Correll, R.R., Evans, C.R., Finn, L.S., Fox, G.C., Gómez, R., Haupt, T., Kidder, L.E., Laguna, P., Landry, W., Lehner, L., Lenaghan, J., Marsa, R.L., Massó, J., Matzner, R.A., Mitra, S., Papadopoulos, P., Parashar, M., Rezzolla, L., Rupright, M.E., Saied, F., Saylor, P.E., Seidel, E., Shapiro, S.L., Shoemaker, D.M., Smarr, L.L., Suen, W.-M., Szilágyi, B., Teukolsky, S.A., van Putten, M.H.P.M., Walker, P., Winicour, J., and York Jr, J.W. (Binary Black Hole Grand Challenge Alliance), “Boosted Three-Dimensional Black-Hole Evolutions with Singularity Excision”, Phys. Rev. Lett., 80, 2512–2516, (1998). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9711078. Binary Black Hole Grand Challenge Alliance.
72 Cook, G.B., and Pfeiffer, H.P., “Excision boundary conditions for black-hole initial data”, Phys. Rev. D, 70, 104016, 1–24, (2004). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0407078.
73 Corichi, A., Kleihaus, B., and Kunz, J., personal communication, (2002).
74 Corichi, A., Nucamendi, U., and Sudarsky, D., “Einstein–Yang–Mills isolated horizons: Phase space, mechanics, hair, and conjectures”, Phys. Rev. D, 62, 044046, 1–19, (2000). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0002078.
75 Corichi, A., Nucamendi, U., and Sudarsky, D., “Mass formula for Einstein–Yang–Mills solitons”, Phys. Rev. D, 64, 107501, 1–4, (2001). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0106084.
76 Corichi, A., and Sudarsky, D., “Mass of colored black holes”, Phys. Rev. D, 61, 101501, 1–4, (2000). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9912032.
77 Cutler, C., and Thorne, K.S., “An Overview of Gravitational-Wave Sources”, in Bishop, N.T., and Maharaj, S.D., eds., General Relativity and Gravitation, Proceedings of the 16th International Conference on General Relativity and Gravitation, Durban, South Africa, 15 – 21 July, 2001, pp. 72–111, (World Scientific, Singapore; River Edge, U.S.A., 2002). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0204090.
78 Dain, S., “Black hole interaction energy”, Phys. Rev. D, 66, 084019, 1–8, (2002). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0207090.
79 Dain, S., “Trapped surfaces as boundaries for the constraint equations”, Class. Quantum Grav., 21, 555–574, (2004). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0308009.
80 Dain, S., Jaramillo, J.L., and Krishnan, B., “On the existence of initial data containing isolated black holes”, (December 2004). URL (cited on 13 December 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0412061.
81 Diener, P., personal communication.
82 Diener, P., “A new general purpose event horizon finder for 3D numerical spacetimes”, Class. Quantum Grav., 20, 4901–4918, (2003). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0305039.
83 Domagala, M., and Lewandowski, J., “Black hole entropy from Quantum Geometry”, Class. Quantum Grav., 21, 5233–5243, (2004). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0407051.
84 Dreyer, O., Krishnan, B., Schnetter, E., and Shoemaker, D., “Introduction to isolated horizons in numerical relativity”, Phys. Rev. D, 67, 024018, 1–14, (2003). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0206008.
85 Eardley, D.M., “Black Hole Boundary Conditions and Coordinate Conditions”, Phys. Rev. D, 57, 2299–2304, (1998). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9703027.
86 Ernst, F.J., “Black holes in a magnetic universe”, J. Math. Phys., 17, 54–56, (1976).
87 Fairhurst, S., and Krishnan, B., “Distorted black holes with charge”, Int. J. Mod. Phys. D, 10, 691–710, (2001). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0010088.
88 Finn, L.S., personal communication.
89 Friedman, J.L., Schleich, K., and Witt, D.M., “Topological Censorship”, Phys. Rev. Lett., 71, 1486–1489, (1993). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9305017. Erratum: Phys. Rev. Lett. 75 (1995) 1872.
90 Friedman, J.L., Uryū, K., and Shibata, M., “Thermodynamics of binary black holes and neutron stars”, Phys. Rev. D, 65, 064035, 1–20, (2002). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0108070.
91 Friedrich, H., “On the regular and the asymptotic characteristic initial value problem for Einstein’s vacuum field equations”, Proc. R. Soc. London, Ser. A, 375, 169–184, (1981).
92 Galloway, G.J., personal communication, (2004).
93 Gambini, R., Obregón, O., and Pullin, J., “Yang–Mills analogs of the Immirzi ambiguity”, Phys. Rev. D, 59, 047505, 1–4, (1999). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9801055.
94 Garfinkle, D., Horowitz, G.T., and Strominger, A., “Charged black holes in string theory”, Phys. Rev. D, 43, 3140–3143, (1991).
95 Garfinkle, D., Horowitz, G.T., and Strominger, A., “Erratum: Charged black holes in string theory”, Phys. Rev. D, 45, 3888, (1992).
96 Garfinkle, D., and Mann, R., “Generalized entropy and Noether charge”, Class. Quantum Grav., 17, 3317–3324, (2000). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0004056.
97 Geroch, R., “Multipole Moments. II. Curved Space”, J. Math. Phys., 11, 2580–2588, (1970).
98 Geroch, R., and Hartle, J.B., “Distorted Black Holes”, J. Math. Phys., 23, 680, (1982).
99 Gibbons, G.W., and Hawking, S.W., “Cosmological event horizons, thermodynamics, and particle creation”, Phys. Rev. D, 15, 2738–2751, (1977).
100 Gibbons, G.W., Kallosh, R.E., and Kol, B., “Moduli, Scalar Charges, and the First Law of Black Hole Thermodynamics”, Phys. Rev. Lett., 77, 4992–4995, (1996).
101 Gibbons, G.W., and Maeda, K., “Black holes and membranes in higher-dimensional theories with dilaton fields”, Nucl. Phys. B, 298, 741–775, (1988).
102 Gonzalez, J., and Van Den Broeck, C., unknown format. in preparation.
103 Gourgoulhon, E., Grandclément, P., and Bonazzola, S., “Binary black holes in circular orbits. I. A global spacetime approach”, Phys. Rev. D, 65, 044020, 1–19, (2002). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0106015.
104 Grandclément, P., Gourgoulhon, E., and Bonazzola, S., “Binary black holes in circular orbits. II. Numerical methods and first results”, Phys. Rev. D, 65, 044021, 1–18, (2002). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0106016.
105 Gundlach, C., “Critical phenomena in gravitational collapse”, Adv. Theor. Math. Phys., 2, 1–49, (1998). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9712084.
106 Hájíček, P., “Stationary electrovacuum spacetimes with bifurcate horizons”, J. Math. Phys., 16, 518–522, (1975).
107 Hansen, R.O., “Multipole moments of stationary space-times”, J. Math. Phys., 15, 46–52, (1974).
108 Hartle, J.B., and Hawking, S.W., “Energy and Angular Momentum Flow in to a Black Hole”, Commun. Math. Phys., 27, 283–290, (1972).
109 Hartmann, B., Kleihaus, B., and Kunz, J., “Axially symmetric monopoles and black holes in Einstein–Yang–Mills–Higgs theory”, Phys. Rev. D, 65, 024027, 1–22, (2002). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/hep-th/0108129.
110 Hawking, S.W., “Black holes in general relativity”, Commun. Math. Phys., 25, 152–166, (1972).
111 Hawking, S.W., “The Event Horizon”, in DeWitt, C., and DeWitt, B.S., eds., Black Holes, Based on lectures given at the 23rd session of the Summer School of Les Houches, 1972, pp. 1–56, (Gordon and Breach, New York, U.S.A., 1973).
112 Hawking, S.W., “Particle creation by black holes”, Commun. Math. Phys., 43, 199–220, (1975).
113 Hawking, S.W., and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K., 1973).
114 Hawking, S.W., and Hunter, C.J., “Gravitational entropy and global structure”, Phys. Rev. D, 59, 044025, 1–10, (1999). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/hep-th/9808085.
115 Hayward, S., “Energy and entropy conservation for dynamical black holes”, Phys. Rev. D, 70, 104027, 1–13, (2004). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0408008.
116 Hayward, S.A., “General laws of black hole dynamics”, Phys. Rev. D, 49, 6467–6474, (1994). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9303006.
117 Hayward, S.A., “Spin coefficient form of the new laws of black hole dynamics”, Class. Quantum Grav., 11, 3025–3035, (1994). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9406033.
118 Hayward, S.A., “Energy conservation for dynamical black holes”, (April 2004). URL (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0404077.
119 Heusler, M., Black Hole Uniqueness Theorems, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1996).
120 Horowitz, G.T., “Quantum States of Black Holes”, in Wald, R.M., ed., Black Holes and Relativistic Stars, Proceedings of the Symposium dedicated to the memory of Subrahmanyan Chandrasekhar, held in Chicago, December 14–15, 1996, pp. 241–266, (University of Chicago Press, Chicago, U.S.A.; London, U.K., 1998).
121 Hughes, S.A., Keeton II, C.R., Walker, P., Walsh, K.T., Shapiro, S.L., and Teukolsky, S.A., “Finding Black Holes in Numerical Spacetimes”, Phys. Rev. D, 49, 4004–4015, (1994).
122 Huisken, G., and Ilmanen, T., “The inverse mean curvature flow and the Riemannian Penrose inequality”, J. Differ. Geom., 59, 353–437, (2001).
123 Iyer, V., and Wald, R.M., “Some properties of Noether charge and a proposal for dynamical black hole entropy”, Phys. Rev. D, 50, 846–864, (1994).
124 Jacobson, T., Kang, G., and Myers, R.C., “On black hole entropy”, Phys. Rev. D, 49, 6587–6598, (1994).
125 Jaramillo, J.L., Gourgoulhon, E., and Mena Marugán, G.A., “Inner boundary conditions for black hole Initial Data derived from Isolated Horizons”, (2004). URL (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0407063.
126 Kastor, D., and Traschen, J., “Cosmological multi-black-hole solutions”, Phys. Rev. D, 47, 5370–5375, (1993).
127 Khanna, G., Baker, J., Gleiser, R.J., Laguna, P., Nicasio, C.O., Nollert, H.-P., Price, R.H., and Pullin, J., “Inspiraling Black Holes: The Close Limit”, Phys. Rev. Lett., 83, 3581–3584, (1999). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9905081.
128 Kleihaus, B., and Kunz, J., “Static axially symmetric Einstein–Yang–Mills-dilaton solutions: Regular solutions”, Phys. Rev. D, 57, 834–856, (1997).
129 Kleihaus, B., and Kunz, J., “Static Black-Hole Solutions with Axial Symmetry”, Phys. Rev. Lett., 79, 1595–1598, (1997).
130 Kleihaus, B., and Kunz, J., “Static axially symmetric Einstein–Yang–Mills-Dilaton solutions: 2. Black hole solutions”, Phys. Rev. D, 57, 6138–6157, (1998).
131 Kleihaus, B., and Kunz, J., “Non-Abelian black holes with magnetic dipole hair”, Phys. Lett. B, 494, 130–134, (2000). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/hep-th/0008034.
132 Kleihaus, B., Kunz, J., and Navarro-Lérida, F., “Rotating dilaton black holes with hair”, Phys. Rev. D, 69, 064028, 1–30, (2004). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0306058.
133 Kleihaus, B., Kunz, J., Sood, A., and Wirschins, M., “Horizon properties of Einstein–Yang–Mills black hole”, Phys. Rev. D, 65, 061502, 1–4, (2002).
134 Korzynski, N., Lewandowski, J., and Pawlowski, T., “Mechanics of isolated horizons in higher dimensions”, unknown format. in preparation.
135 Krasnov, K.V., “Geometrical entropy from loop quantum gravity”, Phys. Rev. D, 55(6), 3505–3513, (1997).
136 Krasnov, K.V., “On statistical mechanics of Schwarzschild black hole”, Gen. Relativ. Gravit., 30, 53–68, (1998).
137 Krishnan, B., Isolated Horizons in Numerical Relativity, Ph.D. Thesis, (Pennsylvania State University, University Park, U.S.A., 2002). Related online version (cited on 22 November 2004):
External Linkhttp://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-177/.
138 Kuroda, Y., “Naked Singularities in the Vaidya Spacetimee”, Prog. Theor. Phys., 72, 63–72, (1984).
139 Lehner, L., “Numerical Relativity: A review”, Class. Quantum Grav., 18, R25–R86, (2001). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0106072.
140 Lehner, L., Bishop, N.T., Gómez, R., Szilágyi, B., and Winicour, J., “Exact solutions for the intrinsic geometry of black hole coalescence”, Phys. Rev. D, 60, 044005, 1–10, (1999). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9809034.
141 Lewandowski, J., “Spacetimes admitting isolated horizons”, Class. Quantum Grav., 17, L53–L59, (2000). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9907058.
142 Lewandowski, J., and Pawlowski, T., “Geometric characterizations of the Kerr isolated horizon”, Int. J. Mod. Phys. D, 11, 739–746, (2001). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0101008.
143 Lewandowski, J., and Pawlowski, T., “Extremal isolated horizons: a local uniqueness theorem”, Class. Quantum Grav., 20, 587–606, (2003). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0208032.
144 Lewandowski, J., and Pawlowski, T., “Quasi-local rotating black holes in higher dimension: geometry”, (October 2004). URL (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0410146.
145 Lichnerowicz, A., “L’integration des équations de la gravitation relativiste et le problème des n corps”, J. Math. Pures Appl., 23, 37–63, (1944).
146 Maldacena, J.M., and Strominger, A., “Statistical Entropy of Four-Dimensional Extremal Black Holes”, Phys. Rev. Lett., 77, 428–429, (1996). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/hep-th/9603060.
147 Mann, R.B., “Misner string entropy”, Phys. Rev. D, 60, 104047, 1–5, (1999). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/hep-th/9903229.
148 Masood-ul Alam, A.K.M., “Uniqueness of a static charged dilaton black hole”, Class. Quantum Grav., 10, 2649–2656, (1993).
149 Meissner, K.A., “Black hole entropy in Loop Quantum Gravity”, Class. Quantum Grav., 21, 5245–5251, (2004). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0407052.
150 Misner, C.W., “Wormhole Initial Conditions”, Phys. Rev., 118, 1110–1111, (1959).
151 Misner, C.W., “The Method of Images in Geometrostatics”, Ann. Phys. (N.Y.), 24, 102–117, (October 1963).
152 Nakao, K., Shiromizu, T., and Hayward, S.A., “Horizons of the Kastor–Traschen multi-black-hole cosmos”, Phys. Rev. D, 52, 796–808, (1995).
153 New, K.C.B., “Gravitational Waves from Gravitational Collapse”, Living Rev. Relativity, 6(2), lrr-2003-2, (2003). URL (cited on 22 November 2004):
http://www.livingreviews.org/lrr-2003-2.
154 Núñez, D., Quevedo, H., and Sudarsky, D., “Black Holes Have No Short Hair”, Phys. Rev. Lett., 76, 571–574, (1996). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9601020.
155 Pawlowski, T., Lewandowski, J., and Jezierski, J., “Spacetimes foliated by Killing horizons”, Class. Quantum Grav., 21, 1237–1252, (2004). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0306107.
156 Pejerski, D.W., and Newman, E.T., “Trapped surface and the development of singularities”, J. Math. Phys., 9, 1929–1937, (1971).
157 Penrose, R., “Naked singularities”, Ann. N.Y. Acad. Sci., 224, 125–134, (1973).
158 Pfeiffer, H.P., Cook, G.B., and Teukolsky, S.A., “Comparing initial-data sets for binary black holes”, Phys. Rev. D, 66, 024047, 1–17, (2002). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0203085.
159 Pfeiffer, H.P., Teukolsky, S.A., and Cook, G.B., “Quasicircular orbits for spinning binary black holes”, Phys. Rev. D, 62, 104018, 1–11, (2000). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0006084.
160 Pullin, J., “The close limit of colliding black holes: An update”, Prog. Theor. Phys. Suppl., 136, 107–120, (1999). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9909021.
161 Rendall, A.D., “Reduction of the characteristic initial value problem to the Cauchy problem and its applications to the Einstein equations”, Proc. R. Soc. London, Ser. A, 427, 221–239, (1990).
162 Rovelli, C., “Black Hole Entropy from Loop Quantum Gravity”, Phys. Rev. Lett., 77, 3288–3291, (1996).
163 Rovelli, C., “Loop quantum gravity and black hole physics”, Helv. Phys. Acta, 69, 582–611, (1996).
164 Rovelli, C., “Loop Quantum Gravity”, Living Rev. Relativity, 1, lrr-1998-1, (1998). URL (cited on 22 November 2004):
http://www.livingreviews.org/lrr-1998-1.
165 Sachs, R., and Bergmann, P.G., “Structure of Particles in Linearized Gravitational Theory”, Phys. Rev., 112, 674–680, (1958).
166 Senovilla, J.M.M., “On the existence of horizons in spacetimes with vanishing curvature invariants”, J. High Energy Phys., 11, 046, (2003). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/hep-th/0311172.
167 Shapiro, S.L., and Teukolsky, S.A., “Collision of relativistic clusters and the formation of black holes”, Phys. Rev. D, 45, 2739–2750, (1992).
168 Shoemaker, D.M., Huq, M.F., and Matzner, R.A., “Generic tracking of multiple apparent horizons with level flow”, Phys. Rev. D, 62, 124005, 1–12, (2000). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0004062.
169 Simon, W., and Beig, R., “The multipole structure of stationary space-times”, J. Math. Phys., 24, 1163–1171, (1983).
170 Smarr, L.L., “Surface Geometry of Charged Rotating Black Holes”, Phys. Rev. D, 7, 289–295, (1973).
171 Smolin, L., “Linking topological quantum field theory and nonperturbative quantum gravity”, J. Math. Phys., 36, 6417–6455, (1995).
172 Smoller, J.A., Wasserman, A.G., and Yau, S.-T., “Existence of Black Hole Solutions for the Einstein–Yang/Mills Equations”, Commun. Math. Phys., 154, 377–401, (1993).
173 Straumann, N., and Zhou, Z.-H., “Instability of a colored black hole solution”, Phys. Lett. B, 243, 33–35, (1990).
174 Straumann, N., and Zhou, Z.H., “Instability of the Bartnik–McKinnon solution to the Einstein–Yang–Mills equations”, Phys. Lett. B, 237, 353, (1990).
175 Strominger, A., and Vafa, C., “Microscopic origin of the Bekenstein–Hawking entropy”, Phys. Lett. B, 379, 99–104, (1996). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/hep-th/9601029.
176 Sudarsky, D., and Wald, R.M., “Extrema of mass, stationarity and staticity, and solutions to the Einstein–Yang–Mills equations”, Phys. Rev. D, 46, 1453–1474, (1992).
177 Thiemann, T., “Introduction to Modern Canonical Quantum General Relativity”, (2001). URL (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0110034.
178 Thornburg, J., “A fast apparent horizon finder for three-dimensional Cartesian grids in numerical relativity”, Class. Quantum Grav., 21, 743–766, (2004). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0306056.
179 Torii, T., and Maeda, K., “Black holes with non-Abelian hair and their thermodynamical properties”, Phys. Rev. D, 48, 1643–1651, (1993).
180 Vaidya, P.C., “The gravitational field of a radiating star”, Proc. Indian Acad. Sci., Sect. A, 33, 264, (1951).
181 Van Den Broeck, C., personal communication.
182 Volkov, M.S., and Gal’tsov, D.V., “Gravitating non-Abelian solitons and black holes with Yang–Mills fields”, Phys. Rep., 319, 1, (1999).
183 Wald, R.M., “Black hole entropy is Noether charge”, Phys. Rev. D, 48, R3427–R3431, (1993).
184 Wald, R.M., “The Thermodynamics of Black Holes”, Living Rev. Relativity, 4, lrr-2001-6, (2001). URL (cited on 22 November 2004):
http://www.livingreviews.org/lrr-2001-6.
185 Wald, R.M., and Zoupas, A., “General definition of “conserved quantities” in general relativity and other theories of gravity”, Phys. Rev. D, 61, 084027, 1–16, (2000). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9911095.
186 Waugh, B., and Lake, K., “Double-null coordibates for the Vaidya spacetime”, Phys. Rev. D, 34, 2978–2984, (1986).
187 Wheeler, J.A., “It from Bit”, in Keldysh, L.V., and Feinberg, V.Y., eds., Sakharov Memorial Lectures on Physics, Proceedings of the First International Sakharov Conferenference on Physics, Vol. 2, (Nova Science, New York, U.S.A., 1992).
188 Witten, E., “A new proof of the positive energy theorem”, Commun. Math. Phys., 80, 381–402, (1981).
189 Wolfram, S., “Mathematica: The Way the World Calculates”, institutional homepage, Wolfram Research, Inc. URL (cited on 22 November 2004):
External Linkhttp://www.wolfram.com/products/mathematica/.
190 Yo, H.-J., Cook, J.N., Shapiro, S.L., and Baumgarte, T.W., “Quasi-equilibrium binary black hole initial data for dynamical evolutions”, Phys. Rev. D, 70, 084033, 1–14, (2004). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0406020.
191 York Jr, J.W., “Kinematics and Dynamics of General Relativity”, in Smarr, L.L., ed., Sources of Gravitational Radiation, Proceedings of the Battelle Seattle Workshop, July 24 – August 4, 1978, pp. 83–126, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1979).
192 York Jr, J.W., “Conformal “Thin-Sandwich” Data for the Initial-Value Problem of General Relativity”, Phys. Rev. Lett., 82, 1350–1353, (1999). Related online version (cited on 22 November 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9810051.