1 Adler, S.L., Lieberman, J., and Ng, Y.J., “Regularization of the stress energy tensor for vector and scalar particles propagating in a general background metric”, Ann. Phys. (N.Y.), 106, 279–321, (1977).
2 Albrecht, A., and Steinhardt, P.J., “Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking”, Phys. Rev. Lett., 48, 1220–1223, (1982).
3 Anderson, P.R., “Effects of quantum fields on singularities and particle horizons in the early universe”, Phys. Rev. D, 28, 271–285, (1983).
4 Anderson, P.R., “Effects of quantum fields on singularities and particle horizons in the early universe. II”, Phys. Rev. D, 29, 615–627, (1984).
5 Anderson, P.R., Hiscock, W.A., and Loranz, D.J., “Semiclassical stability of the extreme Reissner–Nordström black hole”, Phys. Rev. Lett., 74, 4365–4368, (1995). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9504019.
6 Anderson, P.R., Hiscock, W.A., and Samuel, D.A., “Stress energy tensor of quantized scalar fields in static black hole space-times”, Phys. Rev. Lett., 70, 1739–1742, (1993).
7 Anderson, P.R., Hiscock, W.A., and Samuel, D.A., “Stress-energy tensor of quantized scalar fields in static spherically symmetric space-times”, Phys. Rev. D, 51, 4337–4358, (1995).
8 Anderson, P.R., Hiscock, W.A., Whitesell, J., and York Jr, J.W., “Semiclassical black hole in thermal equilibrium with a nonconformal scalar field”, Phys. Rev. D, 50, 6427–6434, (1994).
9 Anderson, P.R., Molina-Paris, C., and Mottola, E., “Linear response, validity of semiclassical gravity, and the stability of flat space”, Phys. Rev. D, 67, 024026, 1–19, (2003). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/0209075.
10 Anderson, P.R., Molina-Paris, C., and Mottola, E., “Linear response and the validity of the semi-classical approximation in gravity”, (April 2004). URL (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/0204083.
11 Bakshi, P.M., and Mahanthappa, K.T., “Expectation value formalism in quantum field theory. 1”, J. Math. Phys., 4, 1–11, (1963).
12 Bardeen, J.M., “Gauge invariant cosmological perturbations”, Phys. Rev. D, 22, 1882–1905, (1980).
13 Bardeen, J.M., “Black holes do evaporate thermally”, Phys. Rev. Lett., 46, 382–385, (1981).
14 Barrabès, C., Frolov, V.P., and Parentani, R., “Metric fluctuation corrections to Hawking radiation”, Phys. Rev. D, 59, 124010, 1–14, (1999). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9812076.
15 Barrabès, C., Frolov, V.P., and Parentani, R., “Stochastically fluctuating black-hole geometry, Hawking radiation and the trans-Planckian problem”, Phys. Rev. D, 62, 044020, 1–19, (2000). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/0001102.
16 Bekenstein, J.D., “Black Holes and Entropy”, Phys. Rev. D, 7, 2333–2346, (1973).
17 Bekenstein, J.D., “Do We Understand Black Hole Entropy?”, in Jantzen, R.T., and Mac Keiser, G., eds., The Seventh Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, Proceedings of the meeting held at Stanford University, 24–30 July 1994, pp. 39–58, (World Scientific, Singapore; River Edge, U.S.A., 1994). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9409015.
18 Bekenstein, J.D., and Mukhanov, V.F., “Spectroscopy of the quantum black hole”, Phys. Lett. B, 360, 7–12, (1995). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9505012.
19 Belinskii, V.A., Khalatnikov, I.M., and Lifshitz, E.M., “Oscillatory approach to a singular point in the relativistic cosmology”, Adv. Phys., 19, 525–573, (1970).
20 Belinskii, V.A., Khalatnikov, I.M., and Lifshitz, E.M., “A general solution of the Einstein equations with a time singularity”, Adv. Phys., 13, 639–667, (1982).
21 Berger, B.K., “Quantum graviton creation in a model universe”, Ann. Phys. (N.Y.), 83, 458–490, (1974).
22 Berger, B.K., “Quantum cosmology: Exact solution for the Gowdy T3 model”, Phys. Rev. D, 11, 2770–2780, (1975).
23 Berger, B.K., “Scalar particle creation in an anisotropic universe”, Phys. Rev. D, 12, 368–375, (1975).
24 Bernard, W., and Callen, H.B., “Irreversible thermodynamics of nonlinear processes and noise in driven systems”, Rev. Mod. Phys., 31, 1017–1044, (1959).
25 Birrell, N.D., and Davies, P.C.W., Quantum fields in curved space, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1982).
26 Boyanovsky, D., de Vega, H.J., Holman, R., Lee, D.S., and Singh, A., “Dissipation via particle production in scalar field theories”, Phys. Rev. D, 51, 4419–4444, (1995). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-ph/9408214.
27 Brandt, F.T., and Frenkel, J., “The structure of the graviton self-energy at finite temperature”, Phys. Rev. D, 58, 085012, 1–11, (1998). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-th/9803155.
28 Brown, M.R., and Ottewill, A.C., “Effective actions and conformal transformations”, Phys. Rev. D, 31, 2514–2520, (1985).
29 Brown, M.R., Ottewill, A.C., and Page, D.N., “Conformally invariant quantum field theory in static Einstein space-times”, Phys. Rev. D, 33, 2840–2850, (1986).
30 Brun, T.A., “Quasiclassical equations of motion for nonlinear Brownian systems”, Phys. Rev. D, 47, 3383–3393, (1993). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9306013.
31 Bunch, T.S., “On the renormalization of the quantum stress tensor in curved space-time by dimensional regularization”, J. Phys. A, 12, 517–531, (1979).
32 Caldeira, A.O., and Leggett, A.J., “Path integral approach to quantum Brownian motion”, Physica A, 121, 587–616, (1983).
33 Caldeira, A.O., and Leggett, A.J., “Influence of damping on quantum interference: An exactly soluble model”, Phys. Rev. A, 31, 1059–1066, (1985).
34 Callen, H.B., and Greene, R.F., “On a theorem of irreversible thermodynamics”, Phys. Rev., 86, 702–710, (1952).
35 Callen, H.B., and Welton, T.A., “Irreversibility and generalized noise”, Phys. Rev., 83, 34–40, (1951).
36 Calzetta, E., “Memory loss and asymptotic behavior in minisuperspace cosmological models”, Class. Quantum Grav., 6, L227–L231, (1989).
37 Calzetta, E., “Anisotropy dissipation in quantum cosmology”, Phys. Rev. D, 43, 2498–2509, (1991).
38 Calzetta, E.A., Campos, A., and Verdaguer, E., “Stochastic semiclassical cosmological models”, Phys. Rev. D, 56, 2163–2172, (1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9704010.
39 Calzetta, E.A., and Gonorazky, S., “Primordial fluctuations from nonlinear couplings”, Phys. Rev. D, 55, 1812–1821, (1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9608057.
40 Calzetta, E.A., and Hu, B.L., “Closed time path functional formalism in curved space-time: application to cosmological backreaction problems”, Phys. Rev. D, 35, 495–509, (1987).
41 Calzetta, E.A., and Hu, B.L., “Nonequilibrium quantum fields: closed time path effective action Wigner function and Boltzmann equation”, Phys. Rev. D, 37, 2878–2900, (1988).
42 Calzetta, E.A., and Hu, B.L., “Dissipation of quantum fields from particle creation”, Phys. Rev. D, 40, 656–659, (1989).
43 Calzetta, E.A., and Hu, B.L., “Decoherence of Correlation Histories”, in Hu, B.L., and Jacobson, T.A., eds., Directions in General Relativity, Vol. 2, Proceedings of the 1993 International Symposium, Maryland: Papers in honor of Dieter Brill, pp. 38–65, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1993). Related online version (cited on 3 May 2005):
External Linkhttp://arxiv.org/abs/gr-qc/9302013.
44 Calzetta, E.A., and Hu, B.L., “Noise and fluctuations in semiclassical gravity”, Phys. Rev. D, 49, 6636–6655, (1994). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9312036.
45 Calzetta, E.A., and Hu, B.L., “Correlations, Decoherence, Dissipation, and Noise in Quantum Field Theory”, in Fulling, S.A., ed., Heat Kernel Techniques and Quantum Gravity, Discourses in Mathematics and Its Applications, vol. 4, pp. 261–302, (Texas A&M University, College Station, U.S.A., 1995).
46 Calzetta, E.A., and Hu, B.L., “Quantum fluctuations, decoherence of the mean field, and structure formation in the early universe”, Phys. Rev. D, 52, 6770–6788, (1995). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9505046.
47 Calzetta, E.A., and Hu, B.L., “Stochastic dynamics of correlations in quantum field theory: From Schwinger–Dyson to Boltzmann–Langevin equation”, Phys. Rev. D, 61, 025012, 1–22, (2000). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-ph/9903291.
48 Calzetta, E.A., and Kandus, A., “Spherically symmetric nonlinear structures”, Phys. Rev. D, 55, 1795–1811, (1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/astro-ph/9603125.
49 Calzetta, E.A., Roura, A., and Verdaguer, E., “Vacuum decay in quantum field theory”, Phys. Rev. D, 64, 105008, 1–21, (2001). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-ph/0106091.
50 Calzetta, E.A., Roura, A., and Verdaguer, E., “Dissipation, Noise, and Vacuum Decay in Quantum Field Theory”, Phys. Rev. Lett., 88, 010403, 1–4, (2002). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-ph/0101052.
51 Calzetta, E.A., Roura, A., and Verdaguer, E., “Stochastic description for open quantum systems”, Physica A, 319, 188–212, (2003). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/quant-ph/0011097.
52 Calzetta, E.A., and Verdaguer, E., “Noise induced transitions in semiclassical cosmology”, Phys. Rev. D, 59, 083513, 1–24, (1999). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9807024.
53 Camporesi, R., “Harmonic analysis and propagators on homogeneous spaces”, Phys. Rep., 196, 1–134, (1990).
54 Campos, A., and Hu, B.L., “Nonequilibrium dynamics of a thermal plasma in a gravitational field”, Phys. Rev. D, 58, 125021, 1–15, (1998). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-ph/9805485.
55 Campos, A., and Hu, B.L., “Fluctuations in a thermal field and dissipation of a black hole spacetime: Far-field limit”, Int. J. Theor. Phys., 38, 1253–1271, (1999). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9812034.
56 Campos, A., Martín, R., and Verdaguer, E., “Back reaction in the formation of a straight cosmic string”, Phys. Rev. D, 52, 4319–4336, (1995). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9505003.
57 Campos, A., and Verdaguer, E., “Semiclassical equations for weakly inhomogeneous cosmologies”, Phys. Rev. D, 49, 1861–1880, (1994). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9307027.
58 Campos, A., and Verdaguer, E., “Stochastic semiclassical equations for weakly inhomogeneous cosmologies”, Phys. Rev. D, 53, 1927–1937, (1996). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9511078.
59 Campos, A., and Verdaguer, E., “Back-reaction equations for isotropic cosmologies when nonconformal particles are created”, Int. J. Theor. Phys., 36, 2525–2543, (1997).
60 Candelas, P., and Sciama, D.W., “Irreversible thermodynamics of black holes”, Phys. Rev. Lett., 38, 1372–1375, (1977).
61 Capper, D.M., and Duff, M.J., “Trace anomalies in dimensional regularization”, Nuovo Cimento A, 23, 173–183, (1974).
62 Carlip, S., “Spacetime Foam and the Cosmological Constant”, Phys. Rev. Lett., 79, 4071–4074, (1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9708026.
63 Carlip, S., “Dominant topologies in Euclidean quantum gravity”, Class. Quantum Grav., 15, 2629–2638, (1998). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9710114.
64 Casher, A., Englert, F., Itzhaki, N., Massar, S., and Parentani, R., “Black hole horizon fluctuations”, Nucl. Phys. B, 484, 419–434, (1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-th/9606106.
65 Cespedes, J., and Verdaguer, E., “Particle production in inhomogeneous cosmologies”, Phys. Rev. D, 41, 1022–1033, (1990).
66 Chou, K., Su, Z., Hao, B., and Yu, L., “Equilibrium and non equilibrium formalisms made unified”, Phys. Rep., 118, 1–131, (1985).
67 Christensen, S.M., “Vacuum expectation value of the stress tensor in an arbitrary curved background: The covariant point separation method”, Phys. Rev. D, 14, 2490–2501, (1976).
68 Christensen, S.M., “Regularization, renormalization, and covariant geodesic point separation”, Phys. Rev. D, 17, 946–963, (1978).
69 Cognola, G., Elizalde, E., and Zerbini, S., “Fluctuations of quantum fields via zeta function regularization”, Phys. Rev. D, 65, 085031, 1–8, (2002). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-th/0201152.
70 Cooper, F., Habib, S., Kluger, Y., Mottola, E., Paz, J.P., and Anderson, P.R., “Nonequilibrium quantum fields in the large-N expansion”, Phys. Rev. D, 50, 2848–2869, (1994). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-ph/9405352.
71 Davies, E.B., Quantum Theory of Open Systems, (Academic Press, London, U.K.; New York, U.S.A., 1976).
72 de Almeida, A.P., Brandt, F.T., and Frenkel, J., “Thermal matter and radiation in a gravitational field”, Phys. Rev. D, 49, 4196–4208, (1994). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-th/9309098.
73 Deser, S., “Plane waves do not polarize the vacuum”, J. Phys. A, 8, 1972–1974, (1975).
74 DeWitt, B.S., Dynamical Theory of Groups and Fields, (Gordon and Breach, New York, U.S.A., 1965).
75 DeWitt, B.S., “Quantum field theory in curved space-time”, Phys. Rep., 19, 295–357, (1975).
76 DeWitt, B.S., “Effective action for expectation values”, in Penrose, R., and Isham, C.J., eds., Quantum concepts in space and time, (Clarendon Press; Oxford University Press, Oxford, U.K.; New York, U.S.A., 1986).
77 Donoghue, J.F., “General relativity as an effective field theory: The leading quantum corrections”, Phys. Rev. D, 50, 3874–3888, (1994). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9405057.
78 Donoghue, J.F., “Leading quantum correction to the Newtonian potential”, Phys. Rev. Lett., 72, 2996–2999, (1994). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9310024.
79 Donoghue, J.F., “The quantum theory of general relativity at low energies”, Helv. Phys. Acta, 69, 269–275, (1996). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9607039.
80 Donoghue, J.F., “Introduction to the Effective Field Theory Description of Gravity”, in Cornet, F., and Herrero, M.J., eds., Advanced School on Effective Theories, Proceedings of the conference held in Almuñecar, Granada, Spain, 26 June - 1 July 1995, pp. 217–240, (World Scientific, Singapore, 1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9512024.
81 Dowker, F., and Kent, A., “Properties of consistent histories”, Phys. Rev. Lett., 75, 3038–3041, (1995). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9409037.
82 Dowker, F., and Kent, A., “On the consistent histories approach to quantum mechanics”, J. Stat. Phys., 82, 1575–1646, (1996). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9412067.
83 Dowker, H.F., and Halliwell, J.J., “The Quantum mechanics of history: The Decoherence functional in quantum mechanics”, Phys. Rev. D, 46, 1580–1609, (1992).
84 Duff, M.J., “Covariant Quantization of Gravity”, in Isham, C.J., Penrose, R., and Sciama, D.W., eds., Quantum Gravity: An Oxford Symposium, Symposium held at the Rutherford Laboratory on February 15–16, 1974, (Clarendon Press, Oxford, U.K., 1975).
85 Einstein, A., “Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen”, Ann. Phys. (Leipzig), 17, 549–560, (1905).
86 Einstein, A., “Zur Theorie der Brownschen Bewegung”, Ann. Phys. (Leipzig), 19, 371–381, (1906).
87 Elizalde, E., Odintsov, S.D., Romeo, A., Bytsenko, A.A., and Zerbini, S., Zeta Regularization Techniques with Applications, (World Scientific, Singapore; River Edge, U.S.A., 1994).
88 Feynman, R.P., and Hibbs, A.R., Quantum Mechanics and Path Integrals, International Series in Pure and Applied Physics, (McGraw-Hill, New York, U.S.A., 1965).
89 Feynman, R.P., and Vernon Jr, F.L., “The theory of a general quantum system interacting with a linear dissipative system”, Ann. Phys. (N.Y.), 24, 118–173, (1963).
90 Fischetti, M.V., Hartle, J.B., and Hu, B.L., “Quantum fields in the early universe. I. Influence of trace anomalies on homogeneous, isotropic, classical geometries”, Phys. Rev. D, 20, 1757–1771, (1979).
91 Flanagan, É.É., and Wald, R.M., “Does back reaction enforce the averaged null energy condition in semiclassical gravity?”, Phys. Rev. D, 54, 6233–6283, (1996). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9602052.
92 Ford, L.H., “Gravitational radiation by quantum systems”, Ann. Phys. (N.Y.), 144, 238–248, (1982).
93 Ford, L.H., “Stress tensor fluctuations and stochastic space-times”, Int. J. Theor. Phys., 39, 1803–1815, (2000).
94 Ford, L.H., and Svaiter, N.F., “Cosmological and black hole horizon fluctuations”, Phys. Rev. D, 56, 2226–2235, (1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9704050.
95 Ford, L.H., and Wu, C.-H., “Stress Tensor Fluctuations and Passive Quantum Gravity”, Int. J. Theor. Phys., 42, 15–26, (2003). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/0102063.
96 Frieman, J.A., “Particle creation in inhomogeneous spacetimes”, Phys. Rev. D, 39, 389–398, (1989).
97 Frolov, V.P., and Zel’nikov, A.I., “Vacuum polarization by a massive scalar field in Schwarzschild space-time”, Phys. Lett. B, 115, 372–374, (1982).
98 Frolov, V.P., and Zel’nikov, A.I., “Vacuum polarization of massive fields near rotating black holes”, Phys. Rev. D, 29, 1057–1066, (1984).
99 Frolov, V.P., and Zel’nikov, A.I., “Killing approximation for vacuum and thermal stress-energy tensor in static space-times”, Phys. Rev., D35, 3031–3044, (1987).
100 Fulling, S.A., Aspects of Quantum Field Theory in Curved Space-Time, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1989).
101 Garay, L.J., “Spacetime foam as a quantum thermal bath”, Phys. Rev. Lett., 80, 2508–2511, (1998). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9801024.
102 Garay, L.J., “Thermal properties of spacetime foam”, Phys. Rev. D, 58, 124015, 1–11, (1998). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9806047.
103 Garay, L.J., “Quantum evolution in spacetime foam”, Int. J. Mod. Phys. A, 14, 4079–4120, (1999). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9911002.
104 Garriga, J., and Verdaguer, E., “Scattering of quantum particles by gravitational plane waves”, Phys. Rev. D, 43, 391–401, (1991).
105 Gell-Mann, M., and Hartle, J.B., “Quantum mechanics in the light of quantum cosmology”, in Zurek, W.H., ed., Complexity, Entropy and the Physics of Information, Proceedings of the workshop, held May–June, 1989, in Santa Fe, New Mexico, Santa Fe Institute Studies in the Sciences of Complexity, vol. 8, pp. 425–458, (Addison-Wesley, Redwood City, U.S.A., 1990).
106 Gell-Mann, M., and Hartle, J.B., “Classical equations for quantum systems”, Phys. Rev. D, 47, 3345–3382, (1993). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9210010.
107 Gibbons, G.W., “Quantized fields propagating in plane wave spacetimes”, Commun. Math. Phys., 45, 191–202, (1975).
108 Gibbons, G.W., and Perry, M.J., “Black holes and thermal Green functions”, Proc. R. Soc. London, Ser. A, 358, 467–494, (1978).
109 Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, I.O., Zeh, H.D., Stamatescu, I.-O., and Zeh, H.-D., Decoherence and the Appearance of a Classical World in Quantum Theory, (Springer, Berlin, Germany; New York, U.S.A., 1996).
110 Gleiser, M., and Ramos, R.O., “Microphysical approach to nonequilibrium dynamics of quantum fields”, Phys. Rev. D, 50, 2441–2455, (1994). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-ph/9311278.
111 Grabert, H., Schramm, P., and Ingold, G.L., “Quantum Brownian motion: the functional integral approach”, Phys. Rep., 168, 115–207, (1988).
112 Greiner, C., and Müller, B., “Classical Fields Near Thermal Equilibrium”, Phys. Rev. D, 55, 1026–1046, (1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-th/9605048.
113 Grib, A.A., Mamayev, S.G., and Mostepanenko, V.M., Vacuum quantum effects in strong fields, (Friedmann Laboratory Publishing, St. Petersburg, Russia, 1994).
114 Griffiths, R.B., “Consistent histories and the interpretation of quantum mechanics”, J. Stat. Phys., 36, 219–272, (1984).
115 Grishchuk, L.P., “Graviton creation in the early universe”, Ann. N.Y. Acad. Sci., 302, 439–444, (1976).
116 Gross, D.J., Perry, M.J., and Yaffe, L.G., “Instability of flat space at finite temperature”, Phys. Rev. D, 25, 330–355, (1982).
117 Guth, A.H., “The inflationary universe: A possible solution to the horizon and flatness problems”, Phys. Rev. D, 23, 347–356, (1981).
118 Hájíček, P., and Israel, W., “What, no black hole evaporation?”, Phys. Lett. A, 80, 9–10, (1980).
119 Halliwell, J.J., “Decoherence in quantum cosmology”, Phys. Rev. D, 39, 2912–2923, (1989).
120 Halliwell, J.J., “Quantum mechanical histories and the uncertainty principle. 2. Fluctuations about classical predictability”, Phys. Rev. D, 48, 4785–4799, (1993). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9307013.
121 Halliwell, J.J., “A Review of the decoherent histories approach to quantum mechanics”, Ann. N.Y. Acad. Sci., 755, 726–740, (1995). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9407040.
122 Halliwell, J.J., “Effective theories of coupled classical and quantum variables from decoherent histories: A new approach to the backreaction problem”, Phys. Rev. D, 57, 2337–2348, (1998). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/quant-ph/9705005.
123 Hartle, J.B., “Effective potential approach to graviton production in the early universe”, Phys. Rev. Lett., 39, 1373–1376, (1977).
124 Hartle, J.B., “Quantum effects in the early universe. 5. Finite particle production without trace anomalies”, Phys. Rev. D, 23, 2121–2128, (1981).
125 Hartle, J.B., “The Quantum Mechanics of Closed Systems”, in Hu, B.L., Ryan Jr, M.P., and Vishveswara, C.V., eds., Directions in General Relativity, Vol. 1, Proceedings of the 1993 International Symposium, Maryland: Papers in honor of Charles Misner, pp. 104–124, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1993).
126 Hartle, J.B., “Spacetime quantum mechanics and the quantum mechanics of spacetime”, in Julia, B., and Zinn-Justin, J., eds., Gravitation and Quantizations, Proceedings of the Les Houches Summer School, Session LVII, 5 July - 1 August 1992, (Elsevier, Amsterdam, Netherlands, New York, U.S.A., 1995).
127 Hartle, J.B., and Hawking, S.W., “Path-integral derivation of black-hole radiance”, Phys. Rev. D, 13, 2188–2203, (1976).
128 Hartle, J.B., and Horowitz, G.T., “Ground state expectation value of the metric in the 1∕N or semiclassical approximation to quantum gravity”, Phys. Rev. D, 24, 257–274, (1981).
129 Hartle, J.B., and Hu, B.L., “Quantum effects in the early universe. II. Effective action for scalar fields in homogeneous cosmologies with small anisotropy”, Phys. Rev. D, 20, 1772–1782, (1979).
130 Hawking, S.W., “Black hole explosions?”, Nature, 248, 30–31, (1974).
131 Hawking, S.W., “Particle creation by black holes”, Commun. Math. Phys., 43, 199–220, (1975).
132 Hawking, S.W., Hertog, T., and Reall, H.S., “Trace anomaly driven inflation”, Phys. Rev. D, 63, 083504, 1–23, (2001). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-th/0010232.
133 Hawking, S.W., and Page, D.N., “Thermodynamics of Black Holes in Anti-de Sitter Space”, Commun. Math. Phys., 87, 577–588, (1983).
134 Hiscock, W.A., Larson, S.L., and Anderson, P.R., “Semiclassical effects in black hole interiors”, Phys. Rev. D, 56, 3571–3581, (1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9701004.
135 Hochberg, D., and Kephart, T.W., “Gauge field back reaction on a black hole”, Phys. Rev. D, 47, 1465–1470, (1993). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9211008.
136 Hochberg, D., Kephart, T.W., and York Jr, J.W., “Positivity of entropy in the semiclassical theory of black holes and radiation”, Phys. Rev. D, 48, 479–484, (1993). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9211009.
137 Horowitz, G.T., “Semiclassical relativity: The weak field limit”, Phys. Rev. D, 21, 1445–1461, (1980).
138 Horowitz, G.T., “Is flat space-time unstable?”, in Isham, C.J., Penrose, R., and Sciama, D.W., eds., Quantum Gravity 2: A Second Oxford Symposium, Proceedings of the Second Oxford Symposium on Quantum Gravity, held in April 1980 in Oxford, pp. 106–130, (Clarendon Press; Oxford University Press, Oxford, U.K.; New York, U.S.A., 1981).
139 Horowitz, G.T., “The Origin of Black Hole Entropy in String Theory”, in Cho, Y.M., Lee, C.H., and Kim, S.-W., eds., Gravitation and Cosmology, Proceedings of the Pacific Conference, February 1–6, 1996, Sheraton Walker-Hill, Seoul, Korea, pp. 46–63, (World Scientific, Singapore; River Edge, U.S.A., 1999). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9604051.
140 Horowitz, G.T., and Polchinski, J., “A correspondence principle for black holes and strings”, Phys. Rev. D, 55, 6189–6197, (1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-th/9612146.
141 Horowitz, G.T., and Wald, R.M., “Dynamics of Einstein’s equations modified by a higher order derivative term”, Phys. Rev. D, 17, 414–416, (1978).
142 Horowitz, G.T., and Wald, R.M., “Quantum stress energy in nearly conformally flat space-times”, Phys. Rev. D, 21, 1462–1465, (1980).
143 Horowitz, G.T., and Wald, R.M., “Quantum stress energy in nearly conformally flat space-times. II. Correction of formula”, Phys. Rev. D, 25, 3408–3409, (1982).
144 Howard, K.W., “Vacuum in Schwarzschild space-time”, Phys. Rev. D, 30, 2532–2547, (1984).
145 Howard, K.W., and Candelas, P., “Quantum stress tensor in Schwarzschild space-time”, Phys. Rev. Lett., 53, 403–406, (1984).
146 Hu, B.L., “Scalar waves in the mixmaster universe. II. Particle creation”, Phys. Rev. D, 9, 3263–3281, (1974).
147 Hu, B.L., “Effect of finite temperature quantum fields on the early universe”, Phys. Lett. B, 103, 331–337, (1981).
148 Hu, B.L., “Disspation in quantum fields and semiclassical gravity”, Physica A, 158, 399–424, (1989).
149 Hu, B.L., “Quantum and statistical effects in superspace cosmology”, in Audretsch, J., and De Sabbata, V., eds., Quantum Mechanics in Curved Space-Time, Proceedings of a NATO Advanced Research Workshop, held May 2–12, 1989, in Erice, Sicily, Italy, NATO ASI Series B, vol. 230, (Plenum Press, New York, U.S.A., 1990).
150 Hu, B.L., “Quantum statistical fields in gravitation and cosmology”, in Kobes, R., and Kunstatter, G., eds., Third International Workshop on Thermal Field Theory and Applications, CNRS Summer Institute, Banff, 1993, (World Scientific, Singapore, 1994).
151 Hu, B.L., “Correlation dynamics of quantum fields and black hole information paradox”, in Sánchez, N., and Zichichi, A., eds., String Gravity and Physics at the Planck Energy Scale, Proceedings of the NATO Advanced Study Institute, Erice, Italy, 8–19,September, 1995, NATO ASI Series C, vol. 476, (Kluwer, Dordrecht, Netherlands; Boston, U.S.A., 1996).
152 Hu, B.L., “General Relativity as Geometro-Hydrodynamics”, (July 1996). URL (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9607070.
153 Hu, B.L., “Semiclassical gravity and mesoscopic physics”, in Feng, D.S., and Hu, B.L., eds., Quantum Classical Correspondence, Proceedings of the 4th Drexel Symposium on Quantum Nonintegrability, Drexel University, Philadelphia, USA, September 8–11, 1994, (International Press, Cambridge, U.S.A., 1997).
154 Hu, B.L., “Stochastic gravity”, Int. J. Theor. Phys., 38, 2987–3037, (1999). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9902064.
155 Hu, B.L., “A kinetic theory approach to quantum gravity”, Int. J. Theor. Phys., 41, 2091–2119, (2002). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/0204069.
156 Hu, B.L., and Matacz, A., “Quantum Brownian motion in a bath of parametric oscillators: A Model for system–field interactions”, Phys. Rev. D, 49, 6612–6635, (1994). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9312035.
157 Hu, B.L., and Matacz, A., “Back reaction in semiclassical cosmology: The Einstein–Langevin equation”, Phys. Rev. D, 51, 1577–1586, (1995). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9403043.
158 Hu, B.L., and Parker, L., “Effect of graviton creation in isotropically expanding universes”, Phys. Lett. A, 63, 217–220, (1977).
159 Hu, B.L., and Parker, L., “Anisotropy damping through quantum effects in the early universe”, Phys. Rev. D, 17, 933–945, (1978).
160 Hu, B.L., Paz, J.P., and Sinha, S., “Minisuperspace as a Quantum Open System”, in Hu, B.L., Ryan, M.P., and Vishveswara, C.V., eds., Directions in General Relativity, Vol. 1, Proceedings of the 1993 International Symposium, Maryland: Papers in honor of Charles Misner, pp. 145–165, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1993).
161 Hu, B.L., Paz, J.P., and Zhang, Y., “Quantum Brownian motion in a general environment: 1. Exact master equation with nonlocal dissipation and colored noise”, Phys. Rev. D, 45, 2843–2861, (1992).
162 Hu, B.L., Paz, J.P., and Zhang, Y., “Quantum Brownian motion in a general environment. 2: Nonlinear coupling and perturbative approach”, Phys. Rev. D, 47, 1576–1594, (1993).
163 Hu, B.L., and Phillips, N.G., “Fluctuations of energy density and validity of semiclassical gravity”, Int. J. Theor. Phys., 39, 1817–1830, (2000). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/0004006.
164 Hu, B.L., Raval, A., and Sinha, S., “Notes on black hole fluctuations and backreaction”, in Bhawal, B., and Iyer, B.R., eds., Black Holes, Gravitational Radiation and the Universe: Essays in Honour of C.V. Vishveshwara, Fundamental Theories of Physics, (Kluwer, Dordrecht, Netherlands; Boston, U.S.A., 1999).
165 Hu, B.L., Roura, A., and Verdaguer, E., “Induced quantum metric fluctuations and the validity of semiclassical gravity”, Phys. Rev. D, 70, 044002, 1–24, (2004). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/0402029.
166 Hu, B.L., and Shiokawa, K., “Wave propagation in stochastic spacetimes: Localization, amplification and particle creation”, Phys. Rev. D, 57, 3474–3483, (1998). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9708023.
167 Hu, B.L., and Sinha, S., “A fluctuation–dissipation relation for semiclassical cosmology”, Phys. Rev. D, 51, 1587–1606, (1995). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9403054.
168 Hu, B.L., and Verdaguer, E., “Recent Advances in Stochastic Gravity: Theory and Issues”, in Bergmann, P.G., and De Sabbata, V., eds., Advances in the interplay between quantum and gravity physics, Proceedings of the NATO Advanced Study Institute, held in Erice, Italy, April 30 - May 10, 2001, NATO Science Series II, vol. 60, pp. 133–218, (Kluwer, Dordrecht, Netherlands; Boston, U.S.A., 2002). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/0110092.
169 Hu, B.L., and Verdaguer, E., “Stochastic gravity: A primer with applications”, Class. Quantum Grav., 20, R1–R42, (2003). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/0211090.
170 Isham, C.J., “Quantum logic and the histories approach to quantum theory”, J. Math. Phys., 35, 2157–2185, (1994). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9308006.
171 Isham, C.J., and Linden, N., “Quantum temporal logic and decoherence functionals in the histories approach to generalized quantum theory”, J. Math. Phys., 35, 5452–5476, (1994). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9405029.
172 Isham, C.J., and Linden, N., “Continuous histories and the history group in generalized quantum theory”, J. Math. Phys., 36, 5392–5408, (1995). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9503063.
173 Isham, C.J., Linden, N., Savvidou, K., and Schreckenberg, S., “Continuous time and consistent histories”, J. Math. Phys., 39, 1818–1834, (1998). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/quant-ph/9711031.
174 Israel, W., “Thermo field dynamics of black holes”, Phys. Lett. A, 57, 107–110, (1976).
175 Jacobson, T., “On the nature of black hole entropy”, in Burgess, C.P., and Myers, R.C., eds., General Relativity and Relativistic Astrophysics, Eight Canadian Conference, Montréal, Québec June 1999, AIP Conference Proceedings, vol. 493, (American Institute of Physics, Melville, U.S.A., 1999).
176 Jensen, B.P., McLaughlin, J.G., and Ottewill, A.C., “One loop quantum gravity in Schwarzschild space-time”, Phys. Rev. D, 51, 5676–5697, (1995). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9412075.
177 Jensen, B.P., and Ottewill, A.C., “Renormalized electromagnetic stress tensor in Schwarzschild space-time”, Phys. Rev. D, 39, 1130–1138, (1989).
178 Johnson, P.R., and Hu, B.L., “Stochastic theory of relativistic particles moving in a quantum field: Scalar Abraham–Lorentz–Dirac–Langevin equation, radiation reaction, and vacuum fluctuations”, Phys. Rev. D, 65, 065015, 1–24, (2002). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/quant-ph/0101001.
179 Jones, D.S., Generalised Functions, European Mathematics Series, (McGraw-Hill, London, U.K.; New York, U.S.A., 1966).
180 Joos, E., and Zeh, H.D., “The Emergence of classical properties through interaction with the environment”, Z. Phys. B, 59, 223–243, (1985).
181 Jordan, R.D., “Effective field equations for expectation values”, Phys. Rev. D, 33, 444–454, (1986).
182 Jordan, R.D., “Stability of flat space-time in quantum gravity”, Phys. Rev. D, 36, 3593–3603, (1987).
183 Kabat, D., Shenker, S.H., and Strassler, M.J., “Black hole entropy in the O(N) model”, Phys. Rev. D, 52, 7027–7036, (1995). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-th/9506182.
184 Keldysh, L.V., “Diagram technique for nonequilibrium processes”, Zh. Eksp. Teor. Fiz., 47, 1515–1527, (1964).
185 Kent, A., “Quasiclassical Dynamics in a Closed Quantum System”, Phys. Rev. A, 54, 4670–4675, (1996). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9512023.
186 Kent, A., “Consistent sets contradict”, Phys. Rev. Lett., 78, 2874–2877, (1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9604012.
187 Kent, A., “Consistent Sets and Contrary Inferences in Quantum Theory: Reply to Griffiths and Hartle”, Phys. Rev. Lett., 81, 1982, (1998). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9808016.
188 Kiefer, C., “Continuous measurement of mini-superspace variables by higher multipoles”, Class. Quantum Grav., 4, 1369–1382, (1987).
189 Kirsten, K., Spectral Functions in Mathematics and Physics, (Chapman and Hall/CRC, Boca Raton, U.S.A., 2001).
190 Kolb, E.W., and Turner, M.S., The Early Universe, Frontiers in Physics, vol. 69, (Addison-Wesley, Reading, U.S.A., 1990).
191 Kubo, R., “Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems”, J. Phys. Soc. Jpn., 12, 570–586, (1957).
192 Kubo, R., “The fluctuation-dissipation theorem”, Rep. Prog. Phys., 29, 255–284, (1966).
193 Kubo, R., Toda, M., and Hashitsume, N., Statistical Physics, (Springer, Berlin, Germany, 1985).
194 Kuo, C., and Ford, L.H., “Semiclassical gravity theory and quantum fluctuations”, Phys. Rev. D, 47, 4510–4519, (1993). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9304008.
195 Landau, L.D., Lifshitz, E.M., and Pitaevskii, L.P., Statistical Physics, Part 2, Course of Theoretical Physics, vol. 9, (Pergamon Press, Oxford, U.K.; New York, U.S.A., 1980).
196 Lee, D.-S., and Boyanovsky, D., “Dynamics of phase transitions induced by a heat bath”, Nucl. Phys. B, 406, 631–654, (1993). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-ph/9304272.
197 Linde, A.D., “Coleman–Weinberg theory and a new inflationary universe scenario”, Phys. Lett. B, 114, 431–435, (1982).
198 Linde, A.D., “Initial conditions for inflation”, Phys. Lett. B, 162, 281–286, (1985).
199 Linde, A.D., Particle Physics and Inflationary Cosmology, Contemporary Concepts in Physics, vol. 5, (Harwood, Chur, Switzerland; New York, U.S.A., 1990).
200 Lindenberg, K., and West, B.J., The Nonequilibrium Statistical Mechanics of Open and Closed Systems, (VCH Publishers, New York, U.S.A., 1990).
201 Lombardo, F.C., and Mazzitelli, F.D., “Coarse graining and decoherence in quantum field theory”, Phys. Rev. D, 53, 2001–2011, (1996). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-th/9508052.
202 Lombardo, F.C., and Mazzitelli, F.D., “Einstein–Langevin equations from running coupling constants”, Phys. Rev. D, 55, 3889–3892, (1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9609073.
203 Lukash, V.N., and Starobinsky, A.A., “Isotropization of cosmological expansion due to particle creation effect”, Sov. Phys. JETP, 39, 742, (1974).
204 Maldacena, J.M., “Black holes and D-branes”, Nucl. Phys. A (Proc. Suppl.), 61, 111–123, (1998). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-th/9705078.
205 Maldacena, J.M., Strominger, A., and Witten, E., “Black hole entropy in M-Theory”, J. High Energy Phys., 1997(12), 002, (1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-th/9711053.
206 Martín, R., and Verdaguer, E., “An effective stochastic semiclassical theory for the gravitational field”, Int. J. Theor. Phys., 38, 3049–3089, (1999). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9812063.
207 Martín, R., and Verdaguer, E., “On the semiclassical Einstein–Langevin equation”, Phys. Lett. B, 465, 113–118, (1999). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9811070.
208 Martín, R., and Verdaguer, E., “Stochastic semiclassical gravity”, Phys. Rev. D, 60, 084008, 1–24, (1999). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9904021.
209 Martín, R., and Verdaguer, E., “Stochastic semiclassical fluctuations in Minkowski spacetime”, Phys. Rev. D, 61, 124024, 1–26, (2000). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/0001098.
210 Massar, S., “The semiclassical back reaction to black hole evaporation”, Phys. Rev. D, 52, 5857–5864, (1995). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9411039.
211 Massar, S., and Parentani, R., “How the change in horizon area drives black hole evaporation”, Nucl. Phys. B, 575, 333–356, (2000). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9903027.
212 Matacz, A., “Inflation and the fine-tuning problem”, Phys. Rev. D, 56, 1836–1840, (1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9611063.
213 Matacz, A., “A New Theory of Stochastic Inflation”, Phys. Rev. D, 55, 1860–1874, (1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9604022.
214 Misner, C.W., “Mixmaster Universe”, Phys. Rev. Lett., 22, 1071–1074, (1969).
215 Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, U.S.A., 1973).
216 Morikawa, M., “Classical fluctuations in dissipative quantum systems”, Phys. Rev. D, 33, 3607–3612, (1986).
217 Mottola, E., “Quantum fluctuation-dissipation theorem for general relativity”, Phys. Rev. D, 33, 2136–2146, (1986).
218 Mukhanov, V.F., Feldman, H.A., and Brandenberger, R.H., “Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions”, Phys. Rep., 215, 203–333, (1992).
219 Niemeyer, J.C., and Parentani, R., “Trans-Planckian dispersion and scale invariance of inflationary perturbations”, Phys. Rev. D, 64, 101301, 1–4, (2001). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/astro-ph/0101451.
220 Nyquist, H., “Thermal agitation of electric charge in conductors”, Phys. Rev., 32, 110–113, (1928).
221 Omnès, R., “Logical reformulation of quantum mechanics. 1. Foundations”, J. Stat. Phys., 53, 893–932, (1988).
222 Omnès, R., “Logical reformulation of quantum mechanics. 2. Interferences and the Einstein–Podolsky–Rosen experiment”, J. Stat. Phys., 53, 933–955, (1988).
223 Omnès, R., “Logical reformulation of quantum mechanics. 3. Classical limit and irreversibility”, J. Stat. Phys., 53, 957–975, (1988).
224 Omnès, R., “From Hilbert space to common sense: A synthesis of recent progress in the interpretation of quantum mechanics”, Ann. Phys. (N.Y.), 201, 354–447, (1990).
225 Omnès, R., “Consistent interpretations of quantum mechanics”, Rev. Mod. Phys., 64, 339–382, (1992).
226 Omnès, R., The Interpretation of Quantum Mechanics, (Princeton University Press, Princeton, U.S.A., 1994).
227 Osborn, H., and Shore, G.M., “Correlation functions of the energy momentum tensor on spaces of constant curvature”, Nucl. Phys. B, 571, 287–357, (2000). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-th/9909043.
228 Padmanabhan, T., “Decoherence in the density matrix describing quantum three geometries and the emergence of classical space-time”, Phys. Rev. D, 39, 2924–2932, (1989).
229 Padmanabhan, T., Structure Formation in the Universe, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1993).
230 Page, D.N., “Thermal stress tensors in static Einstein spaces”, Phys. Rev. D, 25, 1499–1509, (1982).
231 Page, D.N., “Black hole information”, in Mann, R.B., and McLenhagan, R.G., eds., General Relativity and Relativistic Astrophysics, Proceedings of the 5th Canadian Conference on General Relativity and Relativistic Astrophysics, University of Waterloo, 13–15 May, 1993, (World Scientific, Singapore; River Edge, U.S.A., 1994). Related online version (cited on 9 May 2005):
External Linkhttp://arxiv.org/abs/hep-th/9305040.
232 Parentani, R., “Quantum metric fluctuations and Hawking radiation”, Phys. Rev. D, 63, 041503, 1–4, (2001). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/0009011.
233 Parentani, R., and Piran, T., “The internal geometry of an evaporating black hole”, Phys. Rev. Lett., 73, 2805–2808, (1994). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-th/9405007.
234 Parker, L., “Quantized Fields and Particle Creation in Expanding Universes. I”, Phys. Rev., 183, 1057–1068, (1969).
235 Parker, L., “Probability distribution of particles created by a black hole”, Phys. Rev. D, 12, 1519–1525, (1975).
236 Paz, J.P., “Anisotropy dissipation in the early universe: Finite temperature effects reexamined”, Phys. Rev. D, 41, 1054–1066, (1990).
237 Paz, J.P., “Decoherence and back reaction: The origin of the semiclassical Einstein equations”, Phys. Rev. D, 44, 1038–1049, (1991).
238 Paz, J.P., and Sinha, S., “Decoherence and back reaction in quantum cosmology: Multidimensional minisuperspace examples”, Phys. Rev. D, 45, 2823–2842, (1992).
239 Paz, J.P., and Zurek, W.H., “Environment induced decoherence, classicality and consistency of quantum histories”, Phys. Rev. D, 48, 2728–2738, (1993). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9304031.
240 Phillips, N.G., “Symbolic computation of higher order correlation functions of quantum fields in curved spacetimes”, unknown status. in preparation.
241 Phillips, N.G., and Hu, B.L., “Fluctuations of the vacuum energy density of quantum fields in curved spacetime via generalized zeta functions”, Phys. Rev. D, 55, 6123–6134, (1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9611012.
242 Phillips, N.G., and Hu, B.L., “Vacuum energy density fluctuations in Minkowski and Casimir states via smeared quantum fields and point separation”, Phys. Rev. D, 62, 084017, 1–18, (2000). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/0005133.
243 Phillips, N.G., and Hu, B.L., “Noise kernel in stochastic gravity and stress energy bitensor of quantum fields in curved spacetimes”, Phys. Rev. D, 63, 104001, 1–16, (2001). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/0010019.
244 Phillips, N.G., and Hu, B.L., “Noise Kernel and Stress Energy Bi-Tensor of Quantum Fields in Conformally-Optical Metrics: Schwarzschild Black Holes”, (September 2002). URL (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/0209055.
245 Phillips, N.G., and Hu, B.L., “Noise kernel and the stress energy bitensor of quantum fields in hot flat space and the Schwarzschild black hole under the Gaussian approximation”, Phys. Rev. D, 67, 104002, 1–26, (2003). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/0209056.
246 Ramsey, S.A., Hu, B.L., and Stylianopoulos, A.M., “Nonequilibrium inflaton dynamics and reheating. II: Fermion production, noise, and stochasticity”, Phys. Rev. D, 57, 6003–6021, (1998). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-ph/9709267.
247 Randjbar-Daemi, S., “Stability of the Minskowski vacuum in the renormalized semiclassical theory of gravity”, J. Phys. A, 14, L229–L233, (1981).
248 Randjbar-Daemi, S., “A recursive formula for the evaluation of the diagonal matrix elements of the stress energy tensor operator and its application in the semiclassical theory of gravity”, J. Phys. A, 15, 2209–2219, (1982).
249 Rebhan, A., “Collective phenomena and instabilities of perturbative quantum gravity at nonzero temperature”, Nucl. Phys. B, 351, 706–734, (1991).
250 Rebhan, A., “Analytical solutions for cosmological perturbations with relativistic collisionless matter”, Nucl. Phys. B, 368, 479–508, (1992).
251 Roura, A., and Verdaguer, E., “Mode decomposition and renormalization in semiclassical gravity”, Phys. Rev. D, 60, 107503, 1–4, (1999). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9906036.
252 Roura, A., and Verdaguer, E., “Spacelike fluctuations of the stress tensor for de Sitter vacuum”, Int. J. Theor. Phys., 38, 3123–3133, (1999). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9904039.
253 Roura, A., and Verdaguer, E., “Semiclassical cosmological perturbations generated during inflation”, Int. J. Theor. Phys., 39, 1831–1839, (2000).
254 Roura, A., and Verdaguer, E., “Cosmological perturbations from stochastic gravity”, unknown status, (2003). in preparation.
255 Roura, A., and Verdaguer, E., “Stochastic gravity as the large N limit for quantum metric fluctuations”, unknown status, (2003). in preparation.
256 Schwartz, L., Théorie des distributions, (Hermann, Paris, France, 1978).
257 Schwinger, J.S., “Brownian motion of a quantum oscillator”, J. Math. Phys., 2, 407–432, (1961).
258 Sciama, D.W., “Thermal and quantum fluctuations in special and general relativity: an Einstein Synthesis”, in de Finis, F., ed., Centenario di Einstein: Relativity, quanta, and cosmology in the development of the scientific thought of Albert Einstein, (Editrici Giunti Barbera Universitaria, Florence, Italy, 1979).
259 Sciama, D.W., Candelas, P., and Deutsch, D., “Quantum field theory, horizons and thermodynamics”, Adv. Phys., 30, 327–366, (1981).
260 Sexl, R.U., and Urbantke, H.K., “Production of particles by gravitational fields”, Phys. Rev., 179, 1247–1250, (1969).
261 Shiokawa, K., “Mesoscopic fluctuations in stochastic spacetime”, Phys. Rev. D, 62, 024002, 1–14, (2000). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-th/0001088.
262 Simon, J.Z., “Stability of flat space, semiclassical gravity, and higher derivatives”, Phys. Rev. D, 43, 3308–3316, (1991).
263 Sinha, S., and Hu, B.L., “Validity of the minisuperspace approximation: An Example from interacting quantum field theory”, Phys. Rev. D, 44, 1028–1037, (1991).
264 Sinha, S., Raval, A., and Hu, B.L., “Black Hole Fluctuations and Backreaction in Stochastic Gravity”, Found. Phys., 33, 37–64, (2003).
265 Smoot, G.F., Bennett, C.L., Kogut, A., Wright, E.L., Aymon, J., Boggess, N.W., Cheng, E.S., de Amici, G., Gulkis, S., Hauser, M.G., Hinshaw, G., Jackson, P.D., Janssen, M., Kaita, E., Kelsall, T., Keegstra, P., Lineweaver, C.H., Loewenstein, K., Lubin, P., Mather, J., Meyer, S.S., Moseley, S.H., Murdock, T., Rokke, L., Silverberg, R.F., Tenorio, L., Weiss, R., and Wilkinson, D.T., “Structure in the COBE differential microwave radiometer first-year maps”, Astrophys. J. Lett., 396, L1–L5, (1992).
266 Sorkin, R.D., “How Wrinkled is the Surface of a Black Hole?”, in Wiltshire, D., ed., First Australasian Conference on General Relativity and Gravitation, Proceedings of the conference held at the Institute for Theoretical Physics, University of Adelaide, 12–17 February 1996, pp. 163–174, (University of Adelaide, Adelaide, Australia, 1996). Related online version (cited on 3 May 2005):
External Linkhttp://arxiv.org/abs/gr-qc/9701056.
267 Sorkin, R.D., “The Statistical Mechanics of Black Hole Thermodynamics”, in Wald, R.M., ed., Black Holes and Relativistic Stars, pp. 177–194, (University of Chicago Press, Chicago, U.S.A., 1998). Related online version (cited on 4 May 2005):
External Linkhttp://arxiv.org/abs/gr-qc/9705006.
268 Sorkin, R.D., and Sudarsky, D., “Large fluctuations in the horizon area and what they can tell us about entropy and quantum gravity”, Class. Quantum Grav., 16, 3835–3857, (1999). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9902051.
269 Starobinsky, A.A., “A new type of isotropic cosmological models without singularity”, Phys. Lett. B, 91, 99–102, (1980).
270 Starobinsky, A.A., “Evolution of small excitation of isotropic cosmological models with one loop quantum gravitational corrections”, Zh. Eksp. Teor. Fiz., 34, 460–463, (1981). English translation: JETP Lett. 34 (1981) 438.
271 Strominger, A., and Vafa, G., “Microscopic origin of the Bekenstein–Hawking entropy”, Phys. Lett. B, 379, 99–104, (1996). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-th/9601029.
272 Su, Z., Chen, L., Yu, X., and Chou, K., “Influence functional, closed time path Green’s function and quasidistribution function”, Phys. Rev. B, 37, 9810–9812, (1988).
273 Suen, W.-M., “Minkowski space-time is unstable in semiclassical gravity”, Phys. Rev. Lett., 62, 2217–2220, (1989).
274 Suen, W.-M., “Stability of the semiclassical Einstein equation”, Phys. Rev. D, 40, 315–326, (1989).
275 Susskind, L., and Uglum, J., “Black hole entropy in canonical quantum gravity and superstring theory”, Phys. Rev. D, 50, 2700–2711, (1994). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-th/9401070.
276 Tichy, W., and Flanagan, É.É., “How unique is the expected stress-energy tensor of a massive scalar field?”, Phys. Rev. D, 58, 124007, 1–18, (1998). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9807015.
277 Tomboulis, E., “1∕N expansion and renormalization in quantum gravity”, Phys. Lett. B, 70, 361–364, (1977).
278 Twamley, J., “Phase space decoherence: A comparison between consistent histories and environment induced superselection”, Phys. Rev. D, 48, 5730–5745, (1993). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9306004.
279 Unruh, W.G., and Zurek, W.H., “Reduction of the wave packet in quantum Brownian motion”, Phys. Rev. D, 40, 1071–1094, (1989).
280 Vilenkin, A., “Classical and quantum cosmology of the Starobinsky inflationary model”, Phys. Rev. D, 32, 2511–2512, (1985).
281 Wald, R.M., “On particle creation by black holes”, Commun. Math. Phys., 45, 9–34, (1975).
282 Wald, R.M., “The backreaction effect in particle creation in curved spacetime”, Commun. Math. Phys., 54, 1–19, (1977).
283 Wald, R.M., “Trace anomaly of a conformally invariant quantum field in curved space-time”, Phys. Rev. D, 17, 1477–1484, (1978).
284 Wald, R.M., General Relativity, (University of Chicago Press, Chicago, U.S.A., 1984).
285 Wald, R.M., Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics, Chicago Lectures in Physics, (University of Chicago Press, Chicago, U.S.A., 1994).
286 Wald, R.M., “The Thermodynamics of Black Holes”, Living Rev. Relativity, 4, lrr-2001-6, (2001). URL (cited on 31 March 2003):
http://www.livingreviews.org/lrr-2001-6.
287 Wald, R.M., “The Thermodynamics of Black Holes”, in Bergman, P., and De Sabbata, V., eds., Advances in the Interplay Between Quantum and Gravity Physics, NATO Science Series II, vol. 60, pp. 523–544, (Kluwer, Dordrecht, Netherlands; Boston, U.S.A., 2002).
288 Weber, J., “Fluctuation dissipation theorem”, Phys. Rev., 101, 1620–1626, (1956).
289 Weinberg, S., The Quantum Theory of Fields, Vol. 1: Foundations, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1995).
290 Weinberg, S., The Quantum Theory of Fields, Vol. 2: Modern Applications, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1996).
291 Weiss, U., Quantum Dissipative Systems, Series in Modern Condensed Matter Physics, vol. 2, (World Scientific, Singapore; River Edge, U.S.A., 1993).
292 Weldon, H.A., “Covariant calculations at finite temperature: The relativistic plasma”, Phys. Rev. D, 26, 1394–1407, (1982).
293 Whelan, J.T., “Modelling the decoherence of spacetime”, Phys. Rev. D, 57, 768–797, (1998). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9612028.
294 Wu, C.-H., and Ford, L.H., “Fluctuations of the Hawking flux”, Phys. Rev. D, 60, 104013, 1–14, (1999). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9905012.
295 Wu, C.-H., and Ford, L.H., “Quantum fluctuations of radiation pressure”, Phys. Rev. D, 64, 045010, 1–12, (2001). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/quant-ph/0012144.
296 Yamaguchi, M., and Yokoyama, J., “Numerical approach to the onset of the electroweak phase transition”, Phys. Rev. D, 56, 4544–4561, (1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-ph/9707502.
297 York Jr, J.W., “Dynamical origin of black-hole radiance”, Phys. Rev. D, 28(12), 2929–2945, (1983).
298 York Jr, J.W., “Black hole in thermal equilibrium with a scalar field: The back-reaction”, Phys. Rev. D, 31, 775–784, (1985).
299 York Jr, J.W., “Black hole thermodynamics and the Euclidean Einstein action”, Phys. Rev. D, 33, 2092–2099, (1986).
300 Zel’dovich, Y.B., “Particle production in cosmology”, Pis. Zh. Eksp. Teor. Fiz., 12, 443–447, (1970). English translation: JETP Lett. 12 (1970) 307–311.
301 Zel’dovich, Y.B., and Starobinsky, A.A., “Particle Production and Vacuum Polarization in an Anisotropic Gravitational Field”, Zh. Eksp. Teor. Fiz., 61, 2161–2175, (1971). English translation: Sov. Phys. JETP 34 (1971) 1159–1166.
302 Zemanian, A.H., Distribution Theory and Transform Analysis: An Introduction to Generalized Functions, with Applications, (Dover, New York, U.S.A., 1987). Reprint, slightly corrected, Originally published: New York, McGraw-Hill, 1965.
303 Zurek, W.H., “Pointer basis of quantum apparatus: into what mixture does the wave packet collapse?”, Phys. Rev. D, 24, 1516–1525, (1981).
304 Zurek, W.H., “Environment induced superselection rules”, Phys. Rev. D, 26, 1862–1880, (1982).
305 Zurek, W.H., “Reduction of the wave packet: How long does it take?”, in Moore, G.T., and Scully, M.O., eds., Frontiers of Nonequilibrium Statistical Physics, Proceedings of a NATO Advanced Study Institute, held June 3–16, 1984, in Santa Fe, New Mexico, NATO Science Series B, vol. 135, pp. 145–149, (Plenum Press, New York, U.S.A., 1986).
306 Zurek, W.H., “Decoherence and the transition from quantum to classical”, Phys. Today, 44, 36–44, (1991).
307 Zurek, W.H., “Preferred states, predictability, classicality and the environment-induced decoherence”, Prog. Theor. Phys., 89, 281–312, (1993).