1 Abbott, L.F., and Deser, S., “Stability of gravity with a cosmological constant”, Nucl. Phys. B, 195, 76-96, (1982).
2 Aguirregabiria, J.M., Chamorro, A., and Virbhadra, K.S., “Energy and angular momentum of charged rotating black holes”, Gen. Relativ. Gravit., 28, 1393-1400, (1996). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9501002v3.
3 Aichelburg, P.C., “Remark on the superposition principle for gravitational waves”, Acta Phys. Austriaca, 34, 279-284, (1971).
4 Allemandi, G., Francaviglia, M., and Raiteri, M., “Energy in Einstein-Maxwell theory and the first law of isolated horizons via the Noether theorem”, Class. Quantum Grav., 19, 2633-2655, (2002). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0110104v1.
5 Alvarez-Gaumé, L., and Nelson, P., “Riemann surfaces and string theories”, in de Wit, B., Fayet, P., and Grisaru, M., eds., Supersymmetry, Supergravity, Superstrings ’86, Proceedings of the 4th Trieste Spring School, held at the ICTP, Trieste, Italy 7-15 April 1986, 419-510, (World Scientific, Singapore, 1986).
6 Anco, S.C., “Mean curvature flow in Hamiltonian general relativity, geometrical definitions of quasilocal mass-energy for spacelike two-surfaces, and their positivity”, (2004). URL (cited on 21 February 2005):
External Linkhttp://arXiv.org/abs/math.DG/0402057v1.
7 Anco, S.C., and Tung, R.-S., “Covariant Hamiltonian boundary conditions in general relativity for spatially bounded spacetime regions”, J. Math. Phys., 43, 5531-5566, (2002). Related online version (cited on 21 February 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0109013v4.
8 Anco, S.C., and Tung, R.-S., “Properties of the symplectic structure of general relativity for spatially bounded spacetime regions”, J. Math. Phys., 43, 3984-4019, (2002). Related online version (cited on 21 February 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0109014v6.
9 Anderson, J.L., Principles of Relativity Physics, (Academic Press, New York, U.S.A., 1967).
10 Andersson, F., and Edgar, S.B., “Curvature-free asymmetric metric connections in Kerr-Schild spacetimes”, J. Math. Phys., 39, 2859-2861, (1998).
11 Arnowitt, R., Deser, S., and Misner, C.W., “Energy and the criteria for radiation in general relativity”, Phys. Rev., 118, 1100-1104, (1960).
12 Arnowitt, R., Deser, S., and Misner, C.W., “Coordinate invariance and energy expressions in general relativity”, Phys. Rev., 122, 997-1006, (1961).
13 Arnowitt, R., Deser, S., and Misner, C.W., “Wave zone in general relativity”, Phys. Rev., 121, 1556-1566, (1961).
14 Arnowitt, R., Deser, S., and Misner, C.W., “The dynamics of general relativity”, in Witten, L., ed., Gravitation, an Introduction to Current Research, 227-265, (Wiley, New York, U.S.A., 1962). Related online version (cited on 21 February 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0405109v1.
15 Ashtekar, A., “Asymptotic structure of the gravitational field at spatial infinity”, in Held, A., ed., General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, vol. 2, 37-69, (Plenum Press, New York, U.S.A., 1980).
16 Ashtekar, A., “On the boundary conditions for gravitational and gauge fields at spatial infinity”, in Flaherty, F.J., ed., Asymptotic Behavior of Mass and Spacetime Geometry, Proceedings of the conference, held at Oregon State University, Corvallis, Oregon, USA, October 17-21, 1983, vol. 202 of Lecture Notes in Physics, 95-109, (Springer, Berlin, Germany; New York, U.S.A., 1984).
17 Ashtekar, A., Lectures on Non-Perturbative Canonical Gravity, vol. 6 of Advanced Series in Astrophysics and Cosmology, (World Scientific, Singapore, 1991).
18 Ashtekar, A., Beetle, C., and Lewandowski, J., “Mechanics of rotating isolated horizons”, Phys. Rev. D, 64, 044016-1-17, (2001). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0103026v2.
19 Ashtekar, A., Beetle, C., and Lewandowski, J., “Geometry of generic isolated horizons”, Class. Quantum Grav., 19, 1195-1225, (2002). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0111067v1.
20 Ashtekar, A., Bombelli, L., and Reula, O., “The covariant phase space of asymptotically flat gravitational fields”, in Francaviglia, M., and Holm, D., eds., Mechanics, Analysis and Geometry: 200 Years after Lagrange, (North-Holland, Amsterdam, Netherlands; New York, U.S.A., 1990).
21 Ashtekar, A., Fairhurst, S., and Krishnan, B., “Isolated horizons: Hamiltonian evolution and the first law”, Phys. Rev. D, 62, 104025-1-29, (2000). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0005083v3.
22 Ashtekar, A., and Geroch, R., “Quantum theory of gravitation”, Rep. Prog. Phys., 37, 1211-1256, (1974).
23 Ashtekar, A., and Hansen, R.O., “A unified treatment of null and spatial infinity in general relativity. I. Universal structure, asymptotic symmetries, and conserved quantities at spatial infinity”, J. Math. Phys., 19, 1542-1566, (1978).
24 Ashtekar, A., and Horowitz, G.T., “Energy-momentum of isolated systems cannot be null”, Phys. Lett., 89A, 181-184, (1982).
25 Ashtekar, A., and Krishnan, B., “Dynamical horizons: Energy, angular momentum, fluxes and balance laws”, Phys. Rev. Lett., 89, 261101-1-261101-4, (2002). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0207080v3.
26 Ashtekar, A., and Krishnan, B., “Dynamical horizons and their properties”, Phys. Rev. D, 68, 104030-1-25, (2003). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0308033v4.
27 Ashtekar, A., and Magnon, A., “Asymptotically anti-de Sitter spacetimes”, Class. Quantum Grav., 1, L39-L44, (1984).
28 Ashtekar, A., and Romano, J.D., “Spatial infinity as a boundary of spacetime”, Class. Quantum Grav., 9, 1069-1100, (1992).
29 Ashtekar, A., and Streubel, M., “Symplectic geometry of radiative modes and conserved quantities at null infinity”, Proc. R. Soc. London, Ser. A, 376, 585-607, (1981).
30 Ashtekar, A., and Winicour, J., “Linkages and Hamiltonians at null infinity”, J. Math. Phys., 23, 2410-2417, (1982).
31 Balachandran, A.P., Chandar, L., and Momen, A., “Edge States in Canonical Gravity”, (1995). URL (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9506006v2.
32 Balachandran, A.P., Momen, A., and Chandar, L., “Edge states in gravity and black hole physics”, Nucl. Phys. B, 461, 581-596, (1996). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9412019v2.
33 Balasubramanian, V., and Kraus, P., “A stress tensor for anti-de-Sitter gravity”, Commun. Math. Phys., 208, 413-428, (1999). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/hep-th/9902121v5.
34 Bardeen, J.M., Carter, B., and Hawking, S.W., “The four laws of black hole mechanics”, Commun. Math. Phys., 31, 161-170, (1973).
35 Barrabès, C., Gramain, A., Lesigne, E., and Letelier, P.S., “Geometric inequalities and the hoop conjecture”, Class. Quantum Grav., 9, L105-L110, (1992).
36 Barrabès, C., Israel, W., and Letelier, P.S., “Analytic models of nonspherical collapse, cosmic censorship and the hoop conjecture”, Phys. Lett. A, 160, 41-44, (1991).
37 Bartnik, R., “The mass of an asymptotically flat manifold”, Commun. Pure Appl. Math., 39, 661-693, (1986).
38 Bartnik, R., “A new definition of quasi-local mass”, in Blair, D.G., and Buckingham, M.J., eds., The Fifth Marcel Grossmann Meeting on recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories, Proceedings of the meeting held at The University of Western Australia, 8-13 August 1988, 399-401, (World Scientific, Singapore; River Edge, U.S.A., 1989).
39 Bartnik, R., “New definition of quasilocal mass”, Phys. Rev. Lett., 62, 2346-2348, (1989).
40 Bartnik, R., “Quasi-spherical metrics and prescribed scalar curvature”, J. Differ. Geom., 37, 31-71, (1993).
41 Bartnik, R., “Mass and 3-metrics of non-negative scalar curvature”, in Tatsien, L., ed., Proceedings of the International Congress of Mathematicians, Beijing, China 20-28 August 2002, vol. II, 231-240, (World Scientific, Singapore, 2002). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/math.DG/0304259v1.
42 Baskaran, D., Lau, S.R., and Petrov, A.N., “Center of mass integral in canonical general relativity”, Ann. Phys. (N.Y.), 307, 90-131, (2003). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0301069v2.
43 Baston, R.J., “The index of the 2-twistor equations”, Twistor Newsletter, 1984(17), 31-32, (1984).
44 Beig, R., “Integration of Einstein’s equations near spatial infinity”, Proc. R. Soc. London, Ser. A, 391, 295-304, (1984).
45 Beig, R., “Time symmetric initial data and Penrose’s quasi-local mass”, Class. Quantum Grav., 8, L205-L209, (1991).
46 Beig, R., “The classical theory of canonical general relativity”, in Ehlers, J., and Friedrich, H., eds., Canonical Gravity: From Classical to Quantum, Proceedings of the 117th WE Heraeus Seminar, Bad Honnef, Germany, 13-17 September 1993, vol. 434 of Lecture Notes in Physics, 59-80, (Springer, Berlin, Germany; New York, U.S.A., 1994).
47 Beig, R., and Ó Murchadha, N., “The Poincaré group as the symmetry group of canonical general relativity”, Ann. Phys. (N.Y.), 174, 463-498, (1987).
48 Beig, R., and Schmidt, B.G., “Einstein’s equations near spatial infinity”, Commun. Math. Phys., 87, 65-80, (1982).
49 Beig, R., and Szabados, L.B., “On a global conformal invariant of initial data sets”, Class. Quantum Grav., 14, 3091-3107, (1997). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9706078v1.
50 Bekenstein, J.D., “Black holes and entropy”, Phys. Rev. D, 7, 2333-2346, (1973).
51 Bekenstein, J.D., “Generalized second law of thermodynamics in black-hole physics”, Phys. Rev. D, 9, 3292-3300, (1974).
52 Bekenstein, J.D., “Universal upper bound on the entropy-to energy ratio for bounded systems”, Phys. Rev. D, 23, 287-298, (1981).
53 Bekenstein, J.D., “Black holes and everyday physics”, Gen. Relativ. Gravit., 14, 355-359, (1982).
54 Bekenstein, J.D., “On Page’s examples challenging the entropy bound”, (2000). URL (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0006003v3.
55 Bekenstein, J.D., and Mayo, A.E., “Black hole polarization and new entropy bounds”, Phys. Rev. D, 61, 024022-1-8, (1999). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9903002v2.
56 Belinfante, F.J., “On the spin angular momentum of mesons”, Physica, VI(9), 887-898, (1939).
57 Belinfante, F.J., “On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields”, Physica, VII, 449-474, (1940).
58 Ben-Dov, I., “Penrose nequality and apparent horizons”, Phys. Rev. D, 70, 124031-1-11, (2004). Related online version (cited on 21 February 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0408066v1.
59 Bergmann, P.G., “The general theory of relativity”, in Flügge, S., ed., Handbuch der Physik. Vol. IV: Prinzipien der Elektrodynamik und Relativitätstheorie, 203-242, (Springer, Berlin, Germany; New York, U.S.A., 1962).
60 Bergmann, P.G., and Thomson, R., “Spin and angular momentum in general relativity”, Phys. Rev., 89, 400-407, (1953).
61 Bergqvist, G., “Positivity and definitions of mass”, Class. Quantum Grav., 9, 1917-1922, (1992).
62 Bergqvist, G., “Quasilocal mass for event horizons”, Class. Quantum Grav., 9, 1753-1766, (1992).
63 Bergqvist, G., “Energy of small surfaces”, Class. Quantum Grav., 11, 3013-3023, (1994).
64 Bergqvist, G., “On the Penrose inequality and the role of auxiliary spinor fields”, Class. Quantum Grav., 14, 2577-2583, (1997).
65 Bergqvist, G., “Vacuum momenta of small spheres”, Class. Quantum Grav., 15, 1535-1538, (1998).
66 Bergqvist, G., and Ludvigsen, M., “Quasi-local mass near a point”, Class. Quantum Grav., 4, L29-L32, (1987).
67 Bergqvist, G., and Ludvigsen, M., “Spinor propagation and quasilocal momentum for the Kerr solution”, Class. Quantum Grav., 6, L133-L136, (1989).
68 Bergqvist, G., and Ludvigsen, M., “Quasilocal momentum and angular momentum in Kerr spacetime”, Class. Quantum Grav., 8, 697-701, (1991).
69 Bernstein, D.H., and Tod, K.P., “Penrose’s quasi-local mass in a numerically computed space-time”, Phys. Rev. D, 49, 2808-2820, (1994).
70 Bizoń, P., and Malec, E., “On Witten’s positive-energy proof for weakly asymptotically flat spacetimes”, Class. Quantum Grav., 3, L123-L128, (1986).
71 Bondi, H., “Gravitational waves in general relativity”, Nature, 186, 535, (1960).
72 Bondi, H., van den Burg, M.G.J., and Metzner, A.W.K., “Gravitational waves in general relativity VII. Waves from axi-symmetric isolated systems”, Proc. R. Soc. London, Ser. A, 269, 21-52, (1962).
73 Booth, I., and Fairhurst, S., “Canonical phase space formulation of quasilocal general relativity”, Class. Quantum Grav., 20, 4507-4531, (2003). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0301123v2.
74 Booth, I., and Fairhurst, S., “The first law for slowly evolving horizons”, Phys. Rev. Lett., 92, 011102-1-4, (2004). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0307087v2.
75 Booth, I.S., “Metric-based Hamiltonians, null boundaries and isolated horizons”, Class. Quantum Grav., 18, 4239-4264, (2001). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0105009v2.
76 Booth, I.S., and Creighton, J.D.E., “A quasilocal calculation of tidal heating”, Phys. Rev. D, 62, 067503-1-4, (2000). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0003038v2.
77 Booth, I.S., and Mann, R.B., “Moving observers, nonorthogonal boundaries, and quasilocal energy”, Phys. Rev. D, 59, 0640221-1-9, (1999). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9810009v2.
78 Booth, I.S., and Mann, R.B., “Static and infalling quasilocal energy of charged and naked black holes”, Phys. Rev. D, 60, 124009-1-22, (1999). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9907072v1.
79 Borowiec, A., Ferraris, M., Francaviglia, M., and Volovich, I., “Energy-momentum complex for nonlinear gravitational Lagrangians in the first-order formalism”, Gen. Relativ. Gravit., 26, 637-645, (1994).
80 Bousso, R., “Holography in general space-times”, J. High Energy Phys., 06, 028, (1999). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/hep-th/9906022v2.
81 Bousso, R., “The holographic principle”, Rev. Mod. Phys., 74, 825-874, (2002). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/hep-th/0203101v2.
82 Brady, P.R., Droz, S., Israel, W., and Morsink, S.M., “Covariant double-null dynamics: (2+2)-splitting of the Einstein equations”, Class. Quantum Grav., 13, 2211-2230, (1996). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9510040v1.
83 Bramson, B.D., “The alignment of frames of reference at null infinity for asymptotically flat Einstein-Maxwell manifolds”, Proc. R. Soc. London, Ser. A, 341, 451-461, (1975).
84 Bramson, B.D., “Relativistic angular momentum for asymptotically flat Einstein-Maxwell manifolds”, Proc. R. Soc. London, Ser. A, 341, 463-490, (1975).
85 Bramson, B.D., “Physics in cone space”, in Espositio, P., and Witten, L., eds., Asymptotic structure of spacetime, Proceedings of a Symposium on Asymptotic Structure of Space-Time (SOASST), held at the University of Cincinnati, Ohio, June 14-18, 1976, 273-359, (Plenum Press, New York, U.S.A., 1977).
86 Bramson, B.D., “The invariance of spin”, Proc. R. Soc. London, Ser. A, 364, 463-490, (1978).
87 Bray, H.L., “Proof of the Riemannian Penrose inequality using the positive energy theorem”, J. Differ. Geom., 59, 177-267, (2001). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/math.DG/9911173v1.
88 Bray, H.L., “Black holes and the Penrose inequality in general relativity”, in Tatsien, L., ed., Proceedings of the International Congress of Mathematicians, Beijing, China 20-28 August 2002, vol. II, (World Scientific, Singapore, 2002). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/math.DG/0304261v1.
89 Bray, H.L., “Black holes, geometric flows, and the Penrose inequality in general relativity”, Notices AMS, 49, 1372-1381, (2002).
90 Bray, H.L., and Chruściel, P.T., “The Penrose Inequality”, (2003). URL (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0312047v1.
91 Brinkmann, H.W., “On Riemann spaces conformal to Euclidean space”, Proc. Natl. Acad. Sci. USA, 9, 1-3, (1923).
92 Brown, J.D., Creighton, J.D.E., and Mann, R., “Temperature, energy, and heat capacity of asymptotically anti-de-Sitter black holes”, Phys. Rev. D, 50, 6394-6403, (1994). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9405007v1.
93 Brown, J.D., Lau, S.R., and York Jr, J.W., “Energy of isolated systems at retarded times as the null limit of quasilocal energy”, Phys. Rev. D, 55, 1977-1984, (1997). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9609057v1.
94 Brown, J.D., Lau, S.R., and York Jr, J.W., “Canonical quasilocal energy and small spheres”, Phys. Rev. D, 59, 064028-1-13, (1999). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9810003.
95 Brown, J.D., Lau, S.R., and York Jr, J.W., “Action and energy of the gravitational field”, Ann. Phys. (N.Y.), 297, 175-218, (2002). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0010024v3.
96 Brown, J.D., and York, J.M., “Quasilocal energy in general relativity”, in Gotay, M.J., Marsden, J.E., and Moncrief, V.E., eds., Mathematical Aspects of Classical Field Theory, Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference held July 20-26, 1991 at the University of Washington, Seattle, vol. 132 of Contemporary Mathematics, 129-142, (American Mathematical Society, Providence, U.S.A., 1992).
97 Brown, J.D., and York Jr, J.W., “Quasilocal energy and conserved charges derived from the gravitational action”, Phys. Rev. D, 47, 1407-1419, (1993). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9209012.
98 Cahill, M.E., and McVittie, G.C., “Spherical symmetry and mass-energy in general relativity I. General theory”, J. Math. Phys., 11, 1382-1391, (1970).
99 Carlip, S., “Statistical Mechanics and Black Hole Entropy”, (1995). URL (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9509024v2.
100 Carlip, S., “Black hole entropy from conformal field theory in any dimension”, Phys. Rev. Lett., 82, 2828-2831, (1999). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/hep-th/9812013v3.
101 Carlip, S., “Entropy from conformal field theory at Killing horizons”, Class. Quantum Grav., 16, 3327-3348, (1999). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9906126v2.
102 Carlip, S., “Black hole entropy from conformal field theory”, Nucl. Phys. B (Proc. Suppl.), 88, 10-16, (2000). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9912118v1.
103 Carlip, S., “Near-horizon conformal symmetry and black hole entropy”, Phys. Rev. Lett., 88, 241301-1-241301-4, (2002). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0203001v1.
104 Chang, C.-C., Nester, J.M., and Chen, C.-M., “Pseudotensors and quasi-local energy-momentum”, Phys. Rev. Lett., 83, 1897-1901, (1999). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9809040v2.
105 Chang, C.-C., Nester, J.M., and Chen, C.-M., “Energy-momentum quasi-localization for gravitating systems”, in Liu, L., Luo, J., Li, X.-Z., and Hsu, J.-P., eds., Gravitation and Astrophysics, Proceedings of the Fourth International Workshop, held at Beijing Normal University, China, October 10-15, 1999, 163-173, (World Scientific, Singapore; River Edge, U.S.A., 2000). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9912058v1.
106 Chellathurai, V., and Dadhich, N., “Effective mass of a rotating black hole in a magnetic field”, Class. Quantum Grav., 7, 361-370, (1990).
107 Chen, C.-M., and Nester, J.M., “Quasilocal quantities for general relativity and other gravity theories”, Class. Quantum Grav., 16, 1279-1304, (1999). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9809020v2.
108 Chen, C.-M., and Nester, J.M., “A symplectic Hamiltonian derivation of quasi-local energy-momentum for GR”, Grav. Cosmol., 6, 257-270, (2000). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0001088v1.
109 Chen, C.-M., Nester, J.M., and Tung, R.-S., “Quasilocal energy-momentum for geometric gravity theories”, Phys. Lett. A, 203, 5-11, (1995). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9411048v2.
110 Chen, C.-M., Nester, J.M., and Tung, R.-S., “Spinor Formulations for Gravitational Energy-Momentum”, (2002). URL (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0209100v2.
111 Christodoulou, D., and Yau, S.-T., “Some remarks on the quasi-local mass”, in Isenberg, J.A., ed., Mathematics and General Relativity, Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference held June 22-28, 1986, vol. 71 of Contemporary Mathematics, 9-14, (American Mathematical Society, Providence, U.S.A., 1988).
112 Chruściel, P.T., “Boundary conditions at spacelike infinity from a Hamiltonian point of view”, in Bergmann, P.G., and de Sabbata, V., eds., Topological Properties and Global Structure of Space-time, Proceedings of a NATO Advanced Study Institute, held May 12-22, 1985, in Erice, Italy, vol. 138 of NATO ASI Series B, 49-59, (Plenum Press, New York, U.S.A., 1986).
113 Chruściel, P.T., “A remark on the positive-energy theorem”, Class. Quantum Grav., 3, L115-L121, (1986).
114 Chruściel, P.T., Jezierski, J., and Kijowski, J., Hamiltonian Field Theory in the Radiating Regime, vol. m70 of Lecture Notes in Physics, (Springer, Berlin, Germany; New York, U.S.A., 2002).
115 Chruściel, P.T., Jezierski, J., and MacCallum, M.A.H., “Uniqueness of scalar field energy and gravitational energy in the radiating regime”, Phys. Rev. Lett., 80, 5052-5055, (1998). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9801073v1.
116 Chruściel, P.T., Jezierski, J., and MacCallum, M.A.H., “Uniqueness of the Trautman-Bondi mass”, Phys. Rev. D, 58, 084001-1-16, (1998). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9803010v1.
117 Chruściel, P.T., and Nagy, G., “A Hamiltonian mass of asymptotically anti-de Sitter space-times”, Class. Quantum Grav., 18, L61-L68, (2001). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/hep-th/0011270v2.
118 Coleman, S., “Non-Abelian plane waves”, Phys. Lett., 70B, 59-60, (1977).
119 Corvino, J., “Scalar curvature deformation and a gluing construction for the Einstein constraint equations”, Commun. Math. Phys., 214, 137-189, (2000).
120 Corvino, J., and Schoen, R.M., “On the Asymptotics for the Vacuum Einstein Constraint Equations”, (2003). URL (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0301071v1.
121 Creighton, J.D.E., and Mann, R., “Quasilocal thermodynamics of dilaton gravity coupled to gauge fields”, Phys. Rev. D, 52, 4569-4587, (1995). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9505007v1.
122 Crnkovic, C., and Witten, E., “Covariant description of canonical formalism in geometrical theories”, in Hawking, S.W., and Israel, W., eds., Three Hundred Years of Gravitation, 676-684, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1987).
123 d’ Inverno, R.A., and Smallwood, J., “Covariant 2+2 formalism of the initial-value problem in general relativity”, Phys. Rev. D, 22, 1233-1247, (1980).
124 Dain, S., personal communication, (September, 2003).
125 Dain, S., and Moreschi, O.M., “General existence proof for rest frame systems in asymptotically flat spacetime”, Class. Quantum Grav., 17, 3663-3672, (2000). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0203048v1.
126 Dougan, A.J., “Quasi-local mass for spheres”, Class. Quantum Grav., 9, 2461-2475, (1992).
127 Dougan, A.J., and Mason, L.J., “Quasilocal mass constructions with positive energy”, Phys. Rev. Lett., 67, 2119-2122, (1991).
128 Dray, T., “Momentum flux at null infinity”, Class. Quantum Grav., 2, L7-L10, (1985).
129 Dray, T., and Streubel, M., “Angular momentum at null infinity”, Class. Quantum Grav., 1, 15-26, (1984).
130 Dubois-Violette, M., and Madore, J., “Conservation laws and integrability conditions for gravitational and Yang-Mills equations”, Commun. Math. Phys., 108, 213-223, (1987).
131 Eardley, D.M., “Global problems in numerical relativity”, in Smarr, L.L., ed., Sources of Gravitational Radiation, Proceedings of the Battelle Seattle Workshop, July 24 - August 4, 1978, 127-138, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1979).
132 Eastwood, M., and Tod, K.P., “Edth - a differential operator on the sphere”, Math. Proc. Camb. Phil. Soc., 92, 317-330, (1982).
133 Epp, R.J., “Angular momentum and an invariant quasilocal energy in general relativity”, Phys. Rev. D, 62, 124018-1-30, (2000). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0003035v1.
134 Exton, A.R., Newman, E.T., and Penrose, R., “Conserved quantities in the Einstein-Maxwell theory”, J. Math. Phys., 10, 1566-1570, (1969).
135 Fatibene, L., Ferraris, M., Francaviglia, M., and Raiteri, M., “Noether charges, Brown-York quasilocal energy, and related topics”, J. Math. Phys., 42, 1173-1195, (2001). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0003019v1.
136 Favata, M., “Energy localization invariance of tidal work in general relativity”, Phys. Rev. D, 63, 064013-1-14, (2001). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0008061v1.
137 Ferraris, M., and Francaviglia, M., “Covariant first-order Lagrangians, energy-density and superpotentials in general relativity”, Gen. Relativ. Gravit., 22, 965-985, (1990).
138 Ferraris, M., and Francaviglia, M., “Conservation laws in general relativity”, Class. Quantum Grav., 9, S79-S95, (1992).
139 Flanagan, É.É., “Hoop conjecture for black-hole horizon formation”, Phys. Rev. D, 44, 2409-2420, (1991).
140 Flanagan, É.É., Marolf, D., and Wald, R.M., “Proof of classical versions of the Bousso entropy bound and of the generalized second law”, Phys. Rev. D, 62, 084035-1-11, (2000). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/hep-th/9908070v4.
141 Francaviglia, M., and Raiteri, M., “Hamiltonian, energy and entropy in general relativity with non-orthogonal boundaries”, Class. Quantum Grav., 19, 237-258, (2002). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0107074v1.
142 Frauendiener, J., “Geometric description of energy-momentum pseudotensors”, Class. Quantum Grav., 6, L237-L241, (1989).
143 Frauendiener, J., “On an integral formula on hypersurfaces in general relativity”, Class. Quantum Grav., 14, 2413-3423, (1997). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9511036v1.
144 Frauendiener, J., “Conformal infinity”, Living Rev. Relativity, 3, lrr-2000-4, (2000). URL (cited on 29 January 2004):
http://www.livingreviews.org/lrr-2000-4.
145 Frauendiener, J., “On the Penrose inequality”, Phys. Rev. Lett., 87, 101101-1-101101-4, (2001). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0105093v1.
146 Frauendiener, J., and Sparling, G.A.J., “On the symplectic formalism for general relativity”, Proc. R. Soc. London, 436, 141-153, (1992).
147 Frauendiener, J., and Szabados, L.B., “The kernel of the edth operators on higher-genus spacelike 2-surfaces”, Class. Quantum Grav., 18, 1003-1014, (2001). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0010089.
148 Friedrich, H., “Gravitational fields near space-like and null infinity”, J. Geom. Phys., 24, 83-163, (1998).
149 Garfinkle, D., and Mann, R., “Generalized entropy and Noether charge”, Class. Quantum Grav., 17, 3317-3324, (2000). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0004056v2.
150 Geroch, R., “Energy extraction”, Ann. N.Y. Acad. Sci., 224, 108-117, (1973).
151 Geroch, R., “Asymptotic structure of space-time”, in Esposito, F.P., and Witten, L., eds., Asymptotic Structure of Spacetime, Proceedings of a Symposium on Asymptotic Structure of Space-Time (SOASST), held at the University of Cincinnati, Ohio, June 14-18, 1976, 1-105, (Plenum Press, New York, U.S.A., 1977).
152 Geroch, R., Held, A., and Penrose, R., “A spacetime calculus based on pairs of null directions”, J. Math. Phys., 14, 874-881, (1973).
153 Geroch, R., and Winicour, J., “Linkages in general relativity”, J. Math. Phys., 22, 803-812, (1981).
154 Giachetta, G., and Sardanashvily, G., “Stress-Energy-Momentum Tensors in Lagrangian Field Theory. Part 1. Superpotentials”, (1995). URL (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9510061v1. Preprint MPH-CAM-103-95.
155 Giachetta, G., and Sardanashvily, G., “Stress-Energy-Momentum Tensors in Lagrangian Field Theory. Part 2. Gravitational Superpotential”, (1995). URL (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9511040v1. Preprint MPH-CAM-108-95.
156 Gibbons, G.W., “The isoperimetric and Bogomolny inequalities for black holes”, in Willmore, T.J., and Hitchin, N.J., eds., Global Riemannian Geometry, 194-202, (Ellis Horwood; Halsted Press, Chichester, U.K.; New York, U.S.A., 1984).
157 Gibbons, G.W., “Collapsing shells and the isoperimetric inequality for black holes”, Class. Quantum Grav., 14, 2905-2915, (1997). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/hep-th/9701049v1.
158 Gibbons, G.W., and Hawking, S.W., “Action integrals and partition functions in general relativity”, Phys. Rev. D, 15, 2752-2756, (1977).
159 Gibbons, G.W., Hawking, S.W., Horowitz, G.T., and Perry, M.J., “Positive mass theorem for black holes”, Commun. Math. Phys., 88, 295-308, (1983).
160 Gibbons, G.W., and Hull, C.M., “A Bogomolny bound for general relativity and solutions in N=2 supergravity”, Phys. Lett. B, 109, 190-194, (1982).
161 Gibbons, G.W., Hull, C.M., and Warner, N.P., “The stability of gauged supergravity”, Nucl. Phys. B, 218, 173-190, (1983).
162 Goldberg, J.N., “Conservation laws in general relativity”, Phys. Rev., 111, 315-320, (1958).
163 Goldberg, J.N., “Invariant transformations, conservation laws, and energy-momentum”, in Held, A., ed., General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, vol. 1, 469-489, (Plenum Press, New York, U.S.A., 1980).
164 Goldberg, J.N., “Conserved quantities at spatial and null infinity: The Penrose potential”, Phys. Rev. D, 41, 410-417, (1990).
165 Goldberg, J.N., and Soteriou, C., “Canonical general relativity on a null surface with coordinate and gauge fixing”, Class. Quantum Grav., 12, 2779-2797, (1995).
166 Gour, G., “Entropy bounds for charged and rotating systems”, Class. Quantum Grav., 20, 3403-3412, (2003). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0302117v1.
167 Güven, R., “Solutions for gravity coupled to non-Abelian plane waves”, Phys. Rev. D, 19, 471-472, (1979).
168 Haag, R., Local Quantum Physics, Fields, Particles, Algebras, Texts and Monographs in Physics, (Springer, Berlin, Germany; New York, U.S.A., 1992).
169 Haag, R., and Kastler, D., “An algebraic approach to quantum field theory”, J. Math. Phys., 5, 848-861, (1964).
170 Harnett, G., “The flat generalized affine connection and twistors for the Kerr solution”, Class. Quantum Grav., 10, 407-415, (1993).
171 Hawking, S.W., “Gravitational radiation in an expanding universe”, J. Math. Phys., 9, 598-604, (1968).
172 Hawking, S.W., “Black holes in general relativity”, Commun. Math. Phys., 25, 152-166, (1972).
173 Hawking, S.W., “The Event Horizon”, in DeWitt, C., and DeWitt, B.S., eds., Black Holes, Based on lectures given at the 23rd session of the Summer School of Les Houches, 1972, 1-56, (Gordon and Breach, New York, U.S.A., 1973).
174 Hawking, S.W., “Particle creation by black holes”, Commun. Math. Phys., 43, 199-220, (1975).
175 Hawking, S.W., and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K., 1973).
176 Hawking, S.W., and Horowitz, G., “The gravitational Hamiltonian, action, entropy and surface terms”, Class. Quantum Grav., 13, 1487-1498, (1996). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9501014v1.
177 Hawking, S.W., and Hunter, C.J., “The gravitational Hamiltonian in the presence of non-orthogonal boundaries”, Class. Quantum Grav., 13, 2735-2752, (1996). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9603050v2.
178 Hayward, G., “Gravitational action for spacetimes with nonsmooth boundaries”, Phys. Rev. D, 47, 3275-3280, (1993).
179 Hayward, G., “Quasilocal energy conditions”, Phys. Rev. D, 52, 2001-2006, (1995). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9403039v1.
180 Hayward, S.A., “Dual-null dynamics of the Einstein field”, Class. Quantum Grav., 10, 779-790, (1993).
181 Hayward, S.A., “General laws of black-hole dynamics”, Phys. Rev. D, 49, 6467-6474, (1994). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9303006v3.
182 Hayward, S.A., “Quasi-localization of Bondi-Sachs energy loss”, Class. Quantum Grav., 11, 3037-3048, (1994). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9405071v1.
183 Hayward, S.A., “Quasilocal gravitational energy”, Phys. Rev. D, 49, 831-839, (1994). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9303030v1.
184 Hayward, S.A., “Spin coefficient form of the new laws of black hole dynamics”, Class. Quantum Grav., 11, 3025-3035, (1994). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9406033v1.
185 Hayward, S.A., “Gravitational energy in spherical symmetry”, Phys. Rev. D, 53, 1938-1949, (1996). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9408002.
186 Hayward, S.A., “Inequalities relating area, energy, surface gravity and charge of black holes”, Phys. Rev. Lett., 81, 4557-4559, (1998). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9807003v1.
187 Hayward, S.A., “Unified first law of black hole dynamics and relativistic thermodynamics”, Class. Quantum Grav., 15, 3147-3162, (1998). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9710089v2.
188 Hayward, S.A., “Gravitational energy as Noether charge”, (2000). URL (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0004042v1.
189 Hayward, S.A., “Gravitational-wave dynamics and black-hole dynamics: second quasi-spherical approximation”, Class. Quantum Grav., 18, 5561-5581, (2001). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0102013v1.
190 Hayward, S.A., Mukohyama, S., and Ashworth, M.C., “Dynamic black-hole entropy”, Phys. Lett. A, 256, 347-350, (1999). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9810006v1.
191 Hecht, R.D., and Nester, J.M., “A new evaluation of PGT mass and spin”, Phys. Lett. A, 180, 324-331, (1993).
192 Hecht, R.D., and Nester, J.M., “An evaluation of mass and spin at null infinity for the PGT and GR gravity theories”, Phys. Lett. A, 217, 81-89, (1996).
193 Hehl, F.W., “On the energy tensor of spinning massive matter in classical field theory and general relativity”, Rep. Math. Phys., 9, 55-82, (1976).
194 Hehl, F.W., von der Heyde, P., Kerlick, G.D., and Nester, J.M., “General relativity with spin and torsion: Foundation and prospects”, Rev. Mod. Phys., 48, 393-416, (1976).
195 Heinz, E., “On Weyl’s embedding problems”, J. Math. Mech., 11, 421-454, (1962).
196 Helfer, A.D., “The angular momentum of gravitational radiation”, Phys. Lett. A, 150, 342-344, (1990).
197 Helfer, A.D., “Difficulties with quasi-local momentum and angular momentum”, Class. Quantum Grav., 9, 1001-1008, (1992).
198 Henneaux, M., Martinez, C., Troncose, R., and Zanelli, J., “Anti-de Sitter space, asymptotics, scalar fields”, Phys. Rev. D, 70, 044034-1-4, (2004). Related online version (cited on 21 February 2005):
External Linkhttp://arXiv.org/abs/hep-th/0404236v2.
199 Hernandez, W.C., and Misner, C.W., “Observer time as a coordinate in relativistic spherical hydrodynamics”, Astrophys. J., 143, 452-464, (1966).
200 Herzlich, M., “The positive mass theorem for black holes revisited”, J. Geom. Phys., 26, 97-111, (1998).
201 Hod, S., “Universal entropy bound for rotating systems”, Phys. Rev. D, 61, 024018-1-4, (1999). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9901035v2.
202 Horowitz, G.T., “The positive energy theorem and its extensions”, in Flaherty, F.J., ed., Asymptotic Behavior of Mass and Spacetime Geometry, Proceedings of the conference, held at Oregon State University, Corvallis, Oregon, USA, October 17-21, 1983, vol. 202 of Lecture Notes in Physics, 1-21, (Springer, Berlin, Germany; New York, U.S.A., 1984).
203 Horowitz, G.T., and Perry, M.J., “Gravitational energy cannot become negative”, Phys. Rev. Lett., 48, 371-374, (1982).
204 Horowitz, G.T., and Schmidt, B.G., “Note on gravitational energy”, Proc. R. Soc. London, Ser. A, 381, 215-224, (1982).
205 Horowitz, G.T., and Tod, K.P., “A relation between local and total energy in general relativity”, Commun. Math. Phys., 85, 429-447, (1982).
206 Hugget, S.A., and Tod, K.P., An Introduction to Twistor Theory, vol. 4 of London Mathematical Society Student Texts, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1985).
207 Huisken, G., and Ilmanen, T., “The Riemannian Penrose inequality”, Int. Math. Res. Notices, 20, 1045-1058, (1997). Related online version (cited on 29 January 2004):
External Linkhttp://www.math.ethz.ch/~ilmanen/papers/hpanno.ps.
208 Huisken, G., and Ilmanen, T., “The inverse mean curvature flow and the Riemannian Penrose inequality”, J. Differ. Geom., 59, 353-437, (2001). Max-Planck-Institut für Mathematik in den Naturwissenschaften Preprint No 16, Leipzig 1998.
209 Huisken, G., and Yau, S.-T., “Definition of center of mass for isolated physical systems and unique foliations by stable spheres with constant mean curvature”, Invent. Math., 124, 281-311, (1996).
210 Husain, V., and Major, S., “Gravity and BF theory defined in bounded regions”, Nucl. Phys. B, 500, 381-401, (1997). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9703043v2.
211 Ikumi, K., and Shiromizu, T., “Freely falling 2-surfaces and the quasi-local energy”, Gen. Relativ. Gravit., 31, 73-90, (1999). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9704020v3.
212 Isenberg, J., and Nester, J.M., “Canonical gravity”, in Held, A., ed., General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, vol. 1, 23-97, (Plenum Press, New York, U.S.A., 1980).
213 Isham, C.J., “Prima facie questions in quantum gravity”, in Ehlers, J., and Friedrich, H., eds., Canonical Gravity: From Classical to Quantum, Proceedings of the 117th WE Heraeus Seminar, Bad Honnef, Germany, 13-17 September 1993, vol. 434 of Lecture Notes in Physics, 1-21, (Springer, Berlin, Germany; New York, U.S.A., 1994).
214 Israel, W., and Nester, J.M., “Positivity of the Bondi gravitational mass”, Phys. Lett. A, 85, 259-260, (1981).
215 Iyer, V., and Wald, R.M., “Some properties of Noether charge and a proposal for dynamical black hole entropy”, Phys. Rev. D, 50, 846-864, (1994). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9403028v1.
216 Iyer, V., and Wald, R.M., “A comparison of Noether charge and Euclidean methods for computing the entropy of stationary black holes”, Phys. Rev. D, 52, 4430-4439, (1995). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9503052v1.
217 Jang, P.S., “On the positivity of energy in general relativity”, J. Math. Phys., 19, 1152-1155, (1978). Erratum: J. Math. Phys. 20 217 (1979).
218 Jang, P.S., “Note on cosmic censorship”, Phys. Rev. D, 20, 834-837, (1979).
219 Jang, P.S., and Wald, R.M., “The positive energy conjecture and the cosmic censor hypothesis”, J. Math. Phys., 17, 41-44, (1977).
220 Jeffryes, B.P., “Two-surface twistors and conformal embedding”, in Flaherty, F.J., ed., Asymptotic Behavior of Mass and Spacetime Geometry, Proceedings of the conference, held at Oregon State University, Corvallis, Oregon, USA, October 17-21, 1983, vol. 202 of Lecture Notes in Physics, 177-184, (Springer, Berlin, Germany; New York, U.S.A., 1984).
221 Jeffryes, B.P., “‘Extra’ solutions to the 2-surface twistor equations”, Class. Quantum Grav., 3, L9-L12, (1986).
222 Jeffryes, B.P., “The Newtonian limit of Penrose’s quasi-local mass”, Class. Quantum Grav., 3, 841-852, (1986).
223 Jeffryes, B.P., “2-Surface twistors, embeddings and symmetries”, Proc. R. Soc. London, Ser. A, 411, 59-83, (1987).
224 Jezierski, J., “Positivity of mass for spacetimes with horizons”, Class. Quantum Grav., 6, 1535-1539, (1989).
225 Jezierski, J., “Perturbation of initial data for spherically symmetric charged black hole and Penrose conjecture”, Acta Phys. Pol. B, 25, 1413-1417, (1994).
226 Jezierski, J., “Stability of Reissner-Nordström solution with respect to small perturbations of initial data”, Class. Quantum Grav., 11, 1055-1068, (1994).
227 Jezierski, J., and Kijowski, J., “The localization of energy in gauge field theories and in linear gravitation”, Gen. Relativ. Gravit., 22, 1283-1307, (1990).
228 Julia, B., and Silva, S., “Currents and superpotentials in classical gauge invariant theories I. Local results with applications to perfect fluids and general relativity”, Class. Quantum Grav., 15, 2173-2215, (1998). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9804029v2.
229 Katz, J., “A note on Komar’s anomalous factor”, Class. Quantum Grav., 2, 423-425, (1985).
230 Katz, J., Bicak, J., and Lynden-Bell, D., “Relativistic conservation laws and integral constraints for large cosmological perturbations”, Phys. Rev. D, 55, 5957-5969, (1997).
231 Katz, J., and Lerer, D., “On global conservation laws at null infinity”, Class. Quantum Grav., 14, 2249-66, (1997). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9612025.
232 Katz, J., Lynden-Bell, D., and Israel, W., “Quasilocal energy in static gravitational fields”, Class. Quantum Grav., 5, 971-987, (1988).
233 Katz, J., and Ori, A., “Localisation of field energy”, Class. Quantum Grav., 7, 787-802, (1990).
234 Kelly, R.M., “Asymptotically anti de Sitter space-times”, Twistor Newsletter, 1985(20), 11-23, (1985).
235 Kelly, R.M., Tod, K.P., and Woodhouse, N.M.J., “Quasi-local mass for small surfaces”, Class. Quantum Grav., 3, 1151-1167, (1986).
236 Kibble, T.W.B., “Lorentz invariance and the gravitational field”, J. Math. Phys., 2, 212-221, (1961).
237 Kijowski, J., “A simple derivation of canonical structure and quasi-local Hamiltonians in general relativity”, Gen. Relativ. Gravit., 29, 307-343, (1997).
238 Kijowski, J., “A consistent canonical approach to gravitational energy”, in Ferrarese, G., ed., Advances in General Relativity and Cosmology, Proceedings of the International Conference in Memory of A. Lichnerowicz, Isola d’Elba, Italy, 12-15 Jun 2002, 129-145, (Pitagora, Bologna, Italy, 2002).
239 Kijowski, J., and Tulczyjew, W.M., A Symplectic Framework for Field Theories, vol. 107 of Lecture Notes in Physics, (Springer, Berlin, Germany; New York, U.S.A., 1979).
240 Koc, P., and Malec, E., “Trapped surfaces in nonspherical open universes”, Acta Phys. Pol. B, 23, 123-133, (1992).
241 Kodama, H., “Conserved energy flux for the spherically symmetric system and the backreaction problem in the black hole evaporation”, Prog. Theor. Phys., 63, 1217-1228, (1980).
242 Komar, A., “Covariant conservation laws in general relativity”, Phys. Rev., 113, 934-936, (1959).
243 Kramer, D., Stephani, H., MacCallum, M.A.H., and Herlt, E., Exact Solutions of Einstein’s Field Equations, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1980).
244 Kulkarni, R., Chellathurai, V., and Dadhich, N., “The effective mass of the Kerr spacetime”, Class. Quantum Grav., 5, 1443-1445, (1988).
245 Lau, S.R., “Canonical variables and quasi-local energy in general relativity”, Class. Quantum Grav., 10, 2379-2399, (1993). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9307026v3. file corrupt.
246 Lau, S.R., “Spinors and the reference point of quasi-local energy”, Class. Quantum Grav., 12, 1063-1079, (1995). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9409022v2.
247 Lau, S.R., “New variables, the gravitational action and boosted quasilocal stress-energy-momentum”, Class. Quantum Grav., 13, 1509-1540, (1996). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9504026v3.
248 Lau, S.R., “Lightcone reference for total gravitational energy”, Phys. Rev. D, 60, 104034-1-4, (1999). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9903038.
249 Lau, S.R., “Lectures given at the ‘International Workshop on Geometric Physics”’, unknown status, (2000). Physics and Mathematical Divisions, NCTS, Hsinchu, Taiwan, 24-26 July.
250 Lau, S.R., personal communication, (July, 2003).
251 Lee, J., and Wald, R.M., “Local symmetries and constraints”, J. Math. Phys., 31, 725-743, (1990).
252 Lind, R.W., Messmer, J., and Newman, E.T., “Equations of motion for the sources of asymptotically flat spaces”, J. Math. Phys., 13, 1884-1891, (1972).
253 Liu, C.-C.M., and Yau, S.-T., “Positivity of quasilocal mass”, Phys. Rev. Lett., 90, 231102-1-4, (2003). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0303019v2.
254 Liu, C.-C.M., and Yau, S.-T., “Positivity of quasilocal mass II”, (2004). URL (cited on 21 February 2005):
External Linkhttp://arXiv.org/abs/math.DG/0412292v2.
255 Ludvigsen, M., and Vickers, J.A.G., “The positivity of the Bondi mass”, J. Phys. A, 14, L389-L391, (1981).
256 Ludvigsen, M., and Vickers, J.A.G., “A simple proof of the positivity of the Bondi mass”, J. Phys. A, 15, L67-L70, (1982).
257 Ludvigsen, M., and Vickers, J.A.G., “An inequality relating mass and electric charge in general relativity”, J. Phys. A, 16, 1169-1174, (1983).
258 Ludvigsen, M., and Vickers, J.A.G., “An inequality relating total mass and the area of a trapped surface in general relativity”, J. Phys. A, 16, 3349-3353, (1983).
259 Ludvigsen, M., and Vickers, J.A.G., “Momentum, angular momentum and their quasi-local null surface extensions”, J. Phys. A, 16, 1155-1168, (1983).
260 Malec, E., “Hoop conjecture and trapped surfaces in non-spherical massive systems”, Phys. Rev. Lett., 67, 949-952, (1991).
261 Malec, E., Mars, M., and Simon, W., “On the Penrose inequality for general horizons”, Phys. Rev. Lett., 88, 121102-1-121102-4, (2002). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0201024v2.
262 Malec, E., and Ó Murchadha, N., “Trapped surfaces and the Penrose inequality in spherically symmetric geometries”, Phys. Rev. D, 49, 6931-6934, (1994).
263 Maluf, J.W., “Hamiltonian formulation of the teleparallel description of general relativity”, J. Math. Phys., 35, 335-343, (1994).
264 Martinez, E.A., “Quasilocal energy for a Kerr black hole”, Phys. Rev. D, 50, 4920-4928, (1994). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9405033v2.
265 Mason, L.J., “A Hamiltonian interpretation of Penrose’s quasi-local mass”, Class. Quantum Grav., 6, L7-L13, (1989).
266 Mason, L.J., and Frauendiener, J., “The Sparling 3-form, Ashtekar variables and quasi-local mass”, in Bailey, T.N., and Baston, R.J., eds., Twistors in Mathematics and Physics, vol. 156 of London Mathematical Society Lecture Note Series, 189-217, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1990).
267 Miao, P., “On existence of static metric extensions in general relativity”, Commun. Math. Phys., 241, 27-46, (2003). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/math-ph/0309041v1.
268 Misner, C.W., and Sharp, D.H., “Relativistic Equations for Adiabatic, Spherically Symmetric Gravitational Collapse”, Phys. Rev., 136, B 571-B 576, (1964).
269 Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, U.S.A., 1973).
270 Møller, C., “On the localization of the energy of a physical system in general theory of relativity”, Ann. Phys. (N.Y.), 4, 347-371, (1958).
271 Møller, C., “Conservation laws and absolute parallelism in general relativity”, Mat.-Fys. Skr. K. Danske Vid. Selsk., 1(10), 1-50, (1961).
272 Moreschi, O.M., “Unambiguous angular momentum of radiative spacetimes and asymptotic structure in terms of the center of mass system”, (2003). URL (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0305010v1.
273 Moreschi, O.M., “Intrinsic angular momentum and centre of mass in general relativity”, Class. Quantum Grav., 21, 5409-5425, (2004). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0209097v2.
274 Moreschi, O.M., and Sparling, G.A.J., “On the positive energy theorem involving mass and electromagnetic charges”, Commun. Math. Phys., 95, 113-120, (1984).
275 Mukohyama, S., and Hayward, S.A., “Quasi-local first law of black hole mechanics”, Class. Quantum Grav., 17, 2153-2157, (2000). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9905085v2.
276 Nadirashvili, N., and Yuan, Y., “Counterexamples for local isometric embedding”, (2002). URL (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/math.DG/0208127v1.
277 Nahmad-Achar, E., “Is gravitational field energy density well defined for static, spherically symmetric configurations?”, in Blair, D.G., and Buckingham, M.J., eds., The Fifth Marcel Grossmann Meeting on recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories, Proceedings of the meeting held at The University of Western Australia, 8-13 August 1988, 1223-1225, (World Scientific, Singapore; River Edge, U.S.A., 1989).
278 Nakao, K., “On a Quasi-Local Energy Outside the Cosmological Horizon”, (1995). URL (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9507022v1. KUNS Preprint KUNS-1352.
279 Nester, J.M., “A new gravitational energy expression with a simple positivity proof”, Phys. Lett. A, 83, 241-242, (1981).
280 Nester, J.M., “The gravitational Hamiltonian”, in Flaherty, F.J., ed., Asymptotic Behavior of Mass and Spacetime Geometry, Proceedings of the conference, held at Oregon State University, Corvallis, Oregon, USA, October 17-21, 1983, vol. 202 of Lecture Notes in Physics, 155-163, (Springer, Berlin, Germany; New York, U.S.A., 1984).
281 Nester, J.M., “A gauge condition for orthonormal three-frames”, J. Math. Phys., 30, 624-626, (1989).
282 Nester, J.M., “A positive gravitational energy proof”, Phys. Lett. A, 139, 112-114, (1989).
283 Nester, J.M., “A covariant Hamiltonian for gravity theories”, Mod. Phys. Lett. A, 6, 2655-2661, (1991).
284 Nester, J.M., “Special orthonormal frames”, J. Math. Phys., 33, 910-913, (1992).
285 Nester, J.M., “General pseudotensors and quasilocal quantities”, Class. Quantum Grav., 21, S261-S280, (2004).
286 Nester, J.M., Ho, F.H., and Chen, C.-M., “Quasi-local center-of-mass for teleparallel gravity”, (2004). URL (cited on 21 February 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0403101v1.
287 Nester, J.M., Meng, F.F., and Chen, C.-M., “Quasi-local center-of-mass”, J. Korean Phys. Soc., 45, S22-S25, (2004). Related online version (cited on 21 February 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0403103v2.
288 Nester, J.M., and Tung, R.-S., “A quadratic spinor Lagrangian for general relativity”, Gen. Relativ. Gravit., 27, 115-119, (1995). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9407004.
289 Newman, E.T., and Tod, K.P., “Asymptotically flat space-times”, in Held, A., ed., General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, vol. 2, 1-36, (Plenum Press, New York, U.S.A., 1980).
290 Newman, E.T., and Unti, T.W.J., “Behavior of asymptotically flat empty spaces”, J. Math. Phys., 3, 891-901, (1962).
291 Ó Murchadha, N., “Total energy-momentum in general relativity”, J. Math. Phys., 27, 2111-2128, (1986).
292 Ó Murchadha, N., Szabados, L.B., and Tod, K.P., “Comment on “Positivity of Quasilocal Mass””, Phys. Rev. Lett., 92, 259001-1, (2004). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0311006v1.
293 Page, D.N., “Defining entropy bounds”, (2000). URL (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/hep-th/0007238. Report No. Alberta-Thy-09-00.
294 Page, D.N., “Huge Violations of Bekenstein’s Entropy Bound”, (2000). URL (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0005111v1. Report No. Alberta-Thy-06-00.
295 Page, D.N., “Subsystem entropy exceeding Bekenstein’s bound”, (2000). URL (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/hep-th/0007237v1. Report No. Alberta-Thy-08-00.
296 Park, M.I., “The Hamiltonian dynamics of bounded spacetime and black hole entropy: The canonical method”, Nucl. Phys. B, 634, 339-369, (2002). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/hep-th/0111224v4.
297 Parker, P.E., “On some theorem of Geroch and Stiefel”, J. Math. Phys., 25, 597-599, (1984).
298 Pelath, M.A., Tod, K.P., and Wald, R.M., “Trapped surfaces in prolate collapse in the Gibbons-Penrose construction”, Class. Quantum Grav., 15, 3917-3934, (1998). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9805051v1.
299 Pellegrini, C., and Plebanski, J., “Tetrad fields and gravitational fields”, Mat.-Fys. Skr. K. Danske Vid. Selsk., 2(4), 1-39, (1963).
300 Penrose, R., “Asymptotic properties of fields and space-times”, Phys. Rev. Lett., 10, 66-68, (1963).
301 Penrose, R., “Conformal treatment of infinity”, in DeWitt, C., and DeWitt, B.S., eds., Relativity, Groups and Topology, Lectures delivered at Les Houches during the 1963 session of the Summer School of Theoretical Physics, University of Grenoble, 564-584, (Gordon and Breach, New York, U.S.A., 1964).
302 Penrose, R., “Zero rest-mass fields including gravitation: asymptotic behaviour”, Proc. R. Soc. London, Ser. A, 248, 159-203, (1965).
303 Penrose, R., “Gravitational collapse: the role of general relativity”, Riv. Nuovo Cimento, 1, 252-276, (1969). reprinted in Gen. Relativ. Gravit. 34 (2002) 1141.
304 Penrose, R., Techniques of Differential Topology in Relativity, vol. 7 of Regional Conference Series in Applied Mathematics, (SIAM, Philadelphia, U.S.A., 1972).
305 Penrose, R., “Naked singularities”, Ann. N.Y. Acad. Sci., 224, 125-134, (1973).
306 Penrose, R., “Null hypersurface initial data for classical fields of arbitrary spin and for general relativity”, Gen. Relativ. Gravit., 12, 225-264, (1980).
307 Penrose, R., “Quasi-local mass and angular momentum in general relativity”, Proc. R. Soc. London, Ser. A, 381, 53-63, (1982).
308 Penrose, R., “Mass in general relativity”, in Willmore, T.J., and Hitchin, N., eds., Global Riemannian Geometry, 203-213, (Ellis Horwood; Halsted Press, Chichester, U.K.; New York, U.S.A., 1984).
309 Penrose, R., “New improved quasi-local mass and the Schwarzschild solutions”, Twistor Newsletter, 1984(18), 7-11, (1984).
310 Penrose, R., “A suggested further modification to the quasi-local formula”, Twistor Newsletter, 1985(20), 7, (1985).
311 Penrose, R., “Aspects of quasi-local angular momentum”, in Isenberg, J.A., ed., Mathematics and General Relativity, Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference held June 22-28, 1986, vol. 71 of Contemporary Mathematics, 1-8, (American Mathematical Society, Providence, U.S.A., 1988).
312 Penrose, R., and Rindler, W., Spinors and space-time. Vol.1: Two-spinor calculus and relativistic fields, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1984).
313 Penrose, R., and Rindler, W., Spinors and space-time. Vol.2: Spinor and twistor methods in space-time geometry, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1986).
314 Perry, M.J., “The positive energy theorem and black holes”, in Flaherty, F.J., ed., Asymptotic Behavior of Mass and Spacetime Geometry, Proceedings of the conference, held at Oregon State University, Corvallis, Oregon, USA, October 17-21, 1983, vol. 202 of Lecture Notes in Physics, 31-40, (Springer, Berlin, Germany; New York, U.S.A., 1984).
315 Petrov, A.N., and Katz, J., “Conservation laws for large perturbations on curved backgrounds”, in Frere, J.M., Henneaux, M., Servin, A., and Spindel, P., eds., Fundamental Interactions: From Symmetries to Black Holes, Proceedings of the conference held 24-27 March 1999 at the Université Libre de Bruxelles, Belgium, 147-157, (Université Libre de Bruxelles, Brussels, Belgium, 1999). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9905088v1.
316 Petrov, A.N., and Katz, J., “Relativistic conservation laws on curved backgrounds and the theory of cosmological perturbations”, Proc. R. Soc. London, 458, 319-337, (2002). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9911025v3.
317 Pons, J.M., “Boundary conditions from boundary terms, Noether charges and the trace K Lagrangian in general relativity”, Gen. Relativ. Gravit., 35, 147-174, (2003). Related online version (cited on 21 February 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0105032v3.
318 Purdue, P., “The gauge invariance of general relativistic tidal heating”, Phys. Rev. D, 60, 104054-1-8, (1999). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9901086v2.
319 Regge, T., and Teitelboim, C., “Role of surface integrals in the Hamiltonian formulation of general relativity”, Ann. Phys. (N.Y.), 88, 286-318, (1974).
320 Reula, O., “Existence theorem for solutions of Witten’s equation and nonnegativity of total mass”, J. Math. Phys., 23, 810-814, (1982).
321 Reula, O., and Tod, K.P., “Positivity of the Bondi energy”, J. Math. Phys., 25, 1004-1008, (1984).
322 Rosen, N., “Localization of gravitational energy”, Found. Phys., 15, 997-1008, (1986).
323 Rosenfeld, L., “Sur le tenseur d’impulsion-énergie”, Mem. R. Acad. Belg., Cl. Sci., 18(6), (1940).
324 Rovelli, C., “What is observable is classical and quantum physics?”, Class. Quantum Grav., 8, 297-316, (1991).
325 Sachs, R.K., “Asymptotic symmetries in gravitational theory”, Phys. Rev., 125, 2851-2864, (1962).
326 Sachs, R.K., “On the characteristic initial value problem in gravitational theory”, J. Math. Phys., 3, 908-914, (1962).
327 Saharian, A.A., “Energy-momentum tensor for a scalar field on manifolds with boundaries”, Phys. Rev. D, 69, 085005-1-16, (2004). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/hep-th/0308108v2.
328 Schoen, R., and Yau, S.-T., “Positivity of the total mass of a general space-time”, Phys. Rev. Lett., 43, 1457-1459, (1979).
329 Schoen, R., and Yau, S.-T., “Proof of the positive mass theorem. II”, Commun. Math. Phys., 79, 231-260, (1981).
330 Schoen, R., and Yau, S.-T., “Proof that the Bondi mass is positive”, Phys. Rev. Lett., 48, 369-371, (1982).
331 Sen, A., “On the existence of neutrino ‘zero-modes’ in vacuum spacetimes”, J. Math. Phys., 22, 1781-1786, (1981).
332 Senovilla, J.M.M., “Super-energy tensors”, Class. Quantum Grav., 17, 2799-2842, (2000). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9906087v1.
333 Senovilla, J.M.M., “(Super)n-energy for arbitrary fields and its interchange: Conserved quantities”, Mod. Phys. Lett. A, 15, 159-166, (2000). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9905057v1.
334 Shaw, W.T., “Spinor fields at spacelike infinity”, Gen. Relativ. Gravit., 15, 1163-1189, (1983).
335 Shaw, W.T., “Twistor theory and the energy-momentum and angular momentum of the gravitational field at spatial infinity”, Proc. R. Soc. London, Ser. A, 390, 191-215, (1983).
336 Shaw, W.T., “Symplectic geometry of null infinity and two-surface twistors”, Class. Quantum Grav., 1, L33-L37, (1984).
337 Shaw, W.T., “Twistors, asymptotic symmetries and conservation laws at null and spatial infinity”, in Flaherty, F.J., ed., Asymptotic Behavior of Mass and Spacetime Geometry, Proceedings of the conference, held at Oregon State University, Corvallis, Oregon, USA, October 17-21, 1983, vol. 202 of Lecture Notes in Physics, 165-176, (Springer, Berlin, Germany; New York, U.S.A., 1984).
338 Shaw, W.T., “The asymptopia of quasi-local mass and momentum: I. General formalism and stationary spacetimes”, Class. Quantum Grav., 3, 1069-1104, (1986).
339 Shaw, W.T., “Total angular momentum for asymptotically flat spacetimes with non-vanishing stress tensor”, Class. Quantum Grav., 3, L77-L81, (1986).
340 Shaw, W.T., “Quasi-local mass for ‘large’ spheres”, in Isenberg, J.A., ed., Mathematics and General Relativity, Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference held June 22-28, 1986, vol. 71 of Contemporary Mathematics, 15-22, (American Mathematical Society, Providence, U.S.A., 1988).
341 Shi, Y., and Tam, L.-F., “Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature”, J. Differ. Geom., 62, 79-125, (2002). Related online version (cited on 29 January 2004):
External Linkhttp://arxiv.org/abs/math.DG/0301047v1.
342 Shi, Y., and Tam, L.-F., “Some lower estimates of ADM mass and Brown-York mass”, (2004). URL (cited on 21 February 2005):
External Linkhttp://arXiv.org/abs/math.DG/0406559v3.
343 Smarr, L.L., “Surface geometry of charged rotating black holes”, Phys. Rev. D, 7, 289-295, (1973).
344 Sommers, P., “The geometry of the gravitational field at spacelike infinity”, J. Math. Phys., 19, 549-554, (1978).
345 Sparling, G.A.J., “Twistors, spinors and the Einstein vacuum equations”, unknown status, (1982). University of Pittsburgh Preprint.
346 Spivak, M., A Comprehensive Introduction to Differential Geometry, vol. 5, (Publish or Perish, Berkeley, U.S.A., 1979), 2nd edition.
347 Stewart, J.M., Advanced general relativity, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1990).
348 Stewart, J.M., and Friedrich, H., “Numerical relativity. I. The characteristic initial value problem”, Proc. R. Soc. London, Ser. A, 384, 427-454, (1982).
349 Streubel, M., ““Conserved” quantities for isolated gravitational systems”, Gen. Relativ. Gravit., 9, 551-561, (1978).
350 Susskind, L., “The world as a hologram”, J. Math. Phys., 36, 6377-6396, (1995). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/hep-th/9409089v2.
351 Szabados, L.B., “Commutation properties of cyclic and null Killing symmetries”, J. Math. Phys., 28, 2688-2691, (1987).
352 Szabados, L.B., “Canonical pseudotensors, Sparling’s form and Noether currents”, unknown status, (1991). KFKI Report 1991-29/B.
353 Szabados, L.B., “On canonical pseudotensors, Sparling’s form and Noether currents”, Class. Quantum Grav., 9, 2521-2541, (1992).
354 Szabados, L.B., “On the positivity of the quasi-local mass”, Class. Quantum Grav., 10, 1899-1905, (1993).
355 Szabados, L.B., “Two dimensional Sen connections”, in Kerr, R.P., and Perjés, Z., eds., Relativity Today, Proceedings of the Fourth Hungarian Relativity Workshop, July 12-17, 1992, Gárdony, 63-68, (Akadémiai Kiadó, Budapest, Hungary, 1994).
356 Szabados, L.B., “Two dimensional Sen connections and quasi-local energy-momentum”, Class. Quantum Grav., 11, 1847-1866, (1994). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9402005v1.
357 Szabados, L.B., “Two dimensional Sen connections in general relativity”, Class. Quantum Grav., 11, 1833-1846, (1994). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9402001v1.
358 Szabados, L.B., “Quasi-local energy-momentum and two-surface characterization of the pp-wave spacetimes”, Class. Quantum Grav., 13, 1661-1678, (1996). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9512013v1.
359 Szabados, L.B., “Quasi-local energy-momentum and the Sen geometry of two-surfaces”, in Chruściel, P.T., ed., Mathematics of Gravitation, Part I: Lorentzian Geometry and Einstein Equations, vol. 41 of Banach Center Publications, 205-219, (Polish Academy of Sciences, Institute of Mathematics, Warsaw, Poland, 1997).
360 Szabados, L.B., “On certain quasi-local spin-angular momentum expressions for small spheres”, Class. Quantum Grav., 16, 2889-2904, (1999). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9901068v1.
361 Szabados, L.B., “On certain global conformal invariants and 3-surface twistors of initial data sets”, Class. Quantum Grav., 17, 793-811, (2000). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9909052v1.
362 Szabados, L.B., “Quasi-local energy-momentum and angular momentum in general relativity I.: The covariant Lagrangian approach”, unknown status, (2000).
363 Szabados, L.B., “On certain quasi-local spin-angular momentum expressions for large spheres near the null infinity”, Class. Quantum Grav., 18, 5487-5510, (2001). Related online version (cited on 29 January 2004):
External Linkhttp://arxiv.org/abs/gr-qc/0109047. Corrigendum: Class. Quantum Grav. 19 2333 (2002).
364 Szabados, L.B., “On the roots of the Poincaré structure of asymptotically flat spacetimes”, Class. Quantum Grav., 20, 2627-2661, (2003). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0302033v2.
365 Szabados, L.B., “Quasi-local holography and quasi-local mass of classical fields in Minkowski spacetime”, Class. Quantum Grav., 22, 855-878, (2005). Related online version (cited on 21 February 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0411148v2.
366 ’t Hooft, G., “Dimensional Reduction in Quantum Gravity”, (1993). URL (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9310026v1. Utrecht preprint THU-93/26.
367 Thorne, K.S., “Nonspherical gravitational collapse, a short review”, in Klauder, J., ed., Magic Without Magic: John Archibald Wheeler. A Collection of Essays in Honor of His Sixtieth Birthday, 231-258, (W.H. Freeman, San Francisco, U.S.A., 1972).
368 Tipler, F.J., “Penrose’s quasi-local mass in the Kantowski-Sachs closed universe”, Class. Quantum Grav., 2, L99-L103, (1985).
369 Tod, K.P., “All metrics admitting super-covariantly constant spinors”, Phys. Lett. B, 121, 241-244, (1983).
370 Tod, K.P., “Quasi-local charges in Yang-Mills theory”, Proc. R. Soc. London, Ser. A, 389, 369-377, (1983).
371 Tod, K.P., “Some examples of Penrose’s quasi-local mass construction”, Proc. R. Soc. London, Ser. A, 388, 457-477, (1983).
372 Tod, K.P., “More on quasi-local mass”, Twistor Newsletter(18), 3-6, (1984).
373 Tod, K.P., “Three-surface twistors and conformal embedding”, Gen. Relativ. Gravit., 16, 435-443, (1984).
374 Tod, K.P., “Penrose’s quasi-local mass and the isoperimetric inequality for static black holes”, Class. Quantum Grav., 2, L65-L68, (1985).
375 Tod, K.P., “More on Penrose’s quasilocal mass”, Class. Quantum Grav., 3, 1169-1189, (1986).
376 Tod, K.P., “Quasi-local mass and cosmological singularities”, Class. Quantum Grav., 4, 1457-1468, (1987).
377 Tod, K.P., “Penrose’s quasi-local mass”, in Bailey, T.N., and Baston, R.J., eds., Twistors in Mathematics and Physics, vol. 156 of London Mathematical Society Lecture Note Series, 164-188, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1990).
378 Tod, K.P., “Penrose’s quasi-local mass and cylindrically symmetric spacetimes”, Class. Quantum Grav., 7, 2237-2266, (1990).
379 Tod, K.P., “The hoop conjecture and the Gibbons-Penrose construction of trapped surfaces”, Class. Quantum Grav., 9, 1581-1591, (1992).
380 Tod, K.P., “The Stützfunktion and the cut function”, in Janis, A.I., and Porter, J.R., eds., Recent Advances in General Relativity: Essays in honor of Ted Newman, Papers from the Discussion Conference on Recent Advances in General Relativity, held at the University of Pittsburgh, May 3-5, 1990, vol. 4 of Einstein Studies, 182-195, (Birkhäuser, Boston, U.S.A., 1992).
381 Torre, C.G., “Null surface geometrodynamics”, Class. Quantum Grav., 3, 773-791, (1986).
382 Trautman, A., “Conservation laws in general relativity”, in Witten, L., ed., Gravitation: An Introduction to Current Research, 169-198, (Wiley, New York, U.S.A., 1962).
383 Tung, R.-S., and Nester, J.M., “The quadratic spinor Lagrangian is equivalent to the teleparallel theory”, Phys. Rev. D, 60, 021501-1-5, (1999). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9809030v2.
384 Tung, R.S., and Jacobson, T., “Spinor 1-forms as gravitational potentials”, Class. Quantum Grav., 12, L51-L55, (1995). Related online version (cited on 21 February 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9502037v1.
385 Unruh, W.G., and Wald, R.M., “Acceleration radiation and the generalized second law of thermodynamics”, Phys. Rev. D, 25, 942-958, (1982).
386 Utiyama, R., “Invariant theoretical interpretation of interactions”, Phys. Rev., 101, 1597-1607, (1956).
387 Wald, R.M., General Relativity, (University of Chicago Press, Chicago, U.S.A., 1984).
388 Wald, R.M., “On identically closed forms locally constructed from a field”, J. Math. Phys., 31, 2378-2384, (1990).
389 Wald, R.M., “Black hole entropy is Noether charge”, Phys. Rev. D, 48, 3427-3431, (1993). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9307038v1.
390 Wald, R.M., Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics, Chicago Lectures in Physics, (University of Chicago Press, Chicago, U.S.A., 1994).
391 Wald, R.M., “Gravitational Collapse and Cosmic Censorship”, (1997). URL (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9710068v3. EFI Preprint No. 97-43.
392 Wald, R.M., “The Thermodynamics of Black Holes”, Living Rev. Relativity, 4, lrr-2001-6, (2001). URL (cited on 29 January 2004):
http://www.livingreviews.org/lrr-2001-6.
393 Weinstein, G., and Yamada, S., “On a Penrose inequality with charge”, (2004). URL (cited on 21 February 2005):
External Linkhttp://arXiv.org/abs/math.DG/0405602v3.
394 Winicour, J., “Angular momentum in general relativity”, in Held, A., ed., General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, vol. 2, 71-96, (Plenum Press, New York, U.S.A., 1980).
395 Winicour, J.H., and Tamburino, L., “Lorentz-covariant gravitational energy-momentum linkages”, Phys. Rev. Lett., 15, 601-605, (1965).
396 Wipf, A., “Hamilton’s formalism for systems with constraints”, in Ehlers, J., and Friedrich, H., eds., Canonical Gravity: From Classical to Quantum, Proceedings of the 117th WE Heraeus Seminar, Bad Honnef, Germany, 13-17 September 1993, vol. 434 of Lecture Notes in Physics, 22-58, (Springer, Berlin, Germany; New York, U.S.A., 1994).
397 Witten, E., “A new proof of the positive energy theorem”, Commun. Math. Phys., 30, 381-402, (1981).
398 Woodhouse, N.M.J., “Ambiguities in the definition of quasi-local mass”, Class. Quantum Grav., 4, L121-L123, (1987).
399 Yau, S.-T., “Geometry of three manifolds and existence of black holes due to boundary effect”, Adv. Theor. Math. Phys., 5, 755-767, (2001). Related online version (cited on 29 January 2004):
External Linkhttp://arxiv.org/abs/math.DG/0109053v2.
400 Yoon, J.H., “Quasi-local energy conservation law derived from the Einstein’s equations”, (1998). URL (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9806078v1.
401 Yoon, J.H., “Quasi-local energy for general spacetimes”, J. Korean Phys. Soc., 34, 108-111, (1999).
402 Yoon, J.H., “Quasi-local conservation equations in general relativity”, Phys. Lett. A, 292, 166-172, (2001). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0004074v2.
403 Yoon, J.H., “(1+1)-dimensional formalism and quasi-local conservation equations”, in Ferrarese, G., ed., Advances in General Relativity and Cosmology, Proceedings of the International Conference in Memory of A. Lichnerowicz, Isola d’Elba, Italy, 12-15 Jun 2002, (Pitagora, Bologna, Italy, 2002). Related online version (cited on 29 January 2004):
External Linkhttp://www.arxiv.org/abs/gr-qc/0212042v1.
404 Yoon, J.H., “New Hamiltonian formalism and quasilocal conservation equations of general relativity”, Phys. Rev. D, 70, 084037-1-20, (2004). Related online version (cited on 21 February 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0406047v2.
405 York, J.W., “Role of conformal three-geometry in the dynamics of gravitation”, Phys. Rev. Lett., 28, 1082-1085, (1972).
406 York Jr, J.W., “Boundary terms in the action principles of general relativity”, Found. Phys., 16, 249-257, (1986).
407 Yoshino, H., Nambu, Y., and Tomimatsu, A., “Hoop conjecture for colliding black holes: Non-time-symmetric initial data”, Phys. Rev. D, 65, 064034-1-6, (2002). Related online version (cited on 29 January 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0109016v1.
408 Zannias, T., “Trapped surfaces on a spherically symmetric initial data set”, Phys. Rev. D, 45, 2998-3001, (1992).
409 Zaslavskii, O.B., “Entropy and action bounds for charged black holes”, Gen. Relativ. Gravit., 24, 973-983, (1992).