1 Abbott, L.F., and Deser, S., “Charge definition in non-abelian gauge theories”, Phys. Lett. B, 116, 259–263, (1982).
2 Aghababaie, Y., and Burgess, C.P., “Effective actions, boundaries, and precision calculations of Casimir energies”, Phys. Rev. D, 70, 085003, 1–6, (2004). URL (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/0304066.
3 Aghababaie, Y., Burgess, C.P., Parameswaran, S., and Quevedo, F., “Towards a naturally small cosmological constant from branes in 6D supergravity”, Nucl. Phys. B, 680, 389–414, (2004). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/0304256.
4 Aguirre, A., Burgess, C.P., Friedland, A., and Nolte, D., “Astrophysical constraints on modifying gravity at large distances”, Class. Quantum Grav., 18, R223–R232, (2001). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-ph/0105083.
5 Akhundov, A., Bellucci, S., and Shiekh, A., “Gravitational interaction to one loop in effective quantum gravity”, Phys. Lett. B, 395, 16–23, (1997). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9611018.
6 Arnowitt, R., Deser, S., and Misner, C.W., “Energy and the Criteria for Radiation in General Relativity”, Phys. Rev., 118, 1100–1104, (1960).
7 Arnowitt, R., Deser, S., and Misner, C.W., “Coordinate Invariance and Energy Expressions in General Relativity”, Phys. Rev., 122, 997–1006, (1961).
8 Arnowitt, R., Deser, S., and Misner, C.W., “Wave Zone in General Relativity”, Phys. Rev., 121, 1556–1566, (1961).
9 Arnowitt, R.L., and Deser, S., “Quantum Theory of Gravitation: General Formulation and Linearized Theory”, Phys. Rev., 113, 745–750, (1959).
10 Arnowitt, R.L., Deser, S., and Misner, C.W., “Dynamical Structure and Definition of Energy in General Relativity”, Phys. Rev., 116, 1322–1330, (1959).
11 Arnowitt, R.L., Deser, S., and Misner, C.W., “Canonical Variables for General Relativity”, Phys. Rev., 117, 1595–1602, (1960).
12 Arnowitt, R.L., Deser, S., and Misner, C.W., “Consistency of the Canonical Reduction of General Relativity”, J. Math. Phys., 1, 434–439, (1960).
13 Arnowitt, R.L., Deser, S., and Misner, C.W., “Gravitational-Electromagnetic Coupling and the Classical Self-Energy Problem”, Phys. Rev., 120, 313–320, (1960).
14 Arnowitt, R.L., Deser, S., and Misner, C.W., “Interior Schwarzschild Solutions and Interpretation of Source Terms”, Phys. Rev., 120, 321–324, (1960).
15 Arnowitt, R.L., Deser, S., and Misner, C.W., “Note on Positive-Definiteness of the Energy of the Gravitational Field”, Ann. Phys. (N.Y.), 11, 116, (1960).
16 Arnowitt, R.L., Deser, S., and Misner, C.W., Nuovo Cimento, 19, 668, (1961).
17 Banks, T., and Mannelli, L., “de Sitter vacua, renormalization and locality”, Phys. Rev. D, 67, 065009, 1–6, (2003). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/0209113.
18 Bern, Z., “Perturbative Quantum Gravity and its Relation to Gauge Theory”, Living Rev. Relativity, 5, lrr-2002-5, (2002). URL (cited on 7 March 2004):
http://www.livingreviews.org/lrr-2002-5.
19 Birrell, N.D., and Davies, P.C.W., Quantum fields in curved space, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1982).
20 Bjerrum-Bohr, N.E.J., Donoghue, F.J., and Holstein, B.R., “Quantum gravitational corrections to the nonrelativistic scattering potential of two masses”, Phys. Rev. D, 67, 084033, 1–12, (2003).
21 Bjerrum-Borh, N.E.J., Donoghue, J.F., and Holstein, B.R., “Quantum Corrections to the Schwarzschild and Kerr Metrics”, Phys. Rev. D, 68, 084005, 1–16, (2003).
22 Brandenberger, R.H., “Lectures on the theory of cosmological perturbations”, in Bretón, N., Cervantes-Cota, J., and Salgado, M., eds., The Early Universe and Observational Cosmology, Proceedings of the 5th Mexican School on Gravitation and Mathematical Physics (DGFM 2002), Playa del Carmen, Quintana Roo, Mexico, 24 – 29 November 2002, Lecture Notes in Physics, vol. 646, pp. 127–167, (Springer, Berlin, Germany; New York, U.S.A., 2004). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/0306071.
23 Brandenberger, R.H., and Martin, J., “The robustness of inflation to changes in super-Planck-scale physics”, Mod. Phys. Lett. A, 16, 999–1006, (2001). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/astro-ph/0005432.
24 Brout, R., Massar, S., Parentani, R., and Spindel, P., “Hawking radiation without trans-Planckian frequencies”, Phys. Rev. D, 52, 4559–4568, (1995). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/9506121.
25 Brown, M.R., and Duff, M.J., “Exact results for effective Lagrangians”, Phys. Rev. D, 11, 2124–2135, (1975).
26 Bunch, T.S., and Davies, P.C.W., “Quantum Field Theory In De Sitter Space: Renormalization By Point Splitting”, Proc. R. Soc. London, Ser. A, 360, 117–134, (1978).
27 Burgess, C.P., “An Ode to Effective Lagrangians”, in Solà, J., ed., Radiative corrections: Application of quantum field theory to phenomenology, Proceedings of the 4th International Symposium on Radiative Corrections (RADCOR 98), held in Barcelona, September 8 – 12, 1998, pp. 471–488, (World Scientific, Singapore, 1999). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-ph/9812470.
28 Burgess, C.P., “Goldstone and Pseudo-Goldstone Bosons in Nuclear, Particle and Condensed-Matter Physics”, Phys. Rep., 330, 193–261, (2000). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/9808176.
29 Burgess, C.P., “Supersymmetric large extra dimensions and the cosmological constant: an update”, Ann. Phys. (N.Y.), 313, 283–401, (2004). URL (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/0402200.
30 Burgess, C.P., Cline, J.M., and Holman, R., “Effective field theories and inflation”, J. Cosmol. Astropart. Phys., 2003(10), 004, (2003). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/0306079.
31 Burgess, C.P., Cline, J.M., Lemieux, F., and Holman, R., “Are inflationary predictions sensitive to very high energy physics?”, J. High Energy Phys., 2003(02), 048, (2003). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/0210233.
32 Callan Jr, C.G., Coleman, S., Wess, J., and Zumino, B., “Structure of Phenomenological Lagrangians. II”, Phys. Rev., 177, 2247–2250, (1969).
33 Capper, D.M., Duff, M.J., and Halpern, L., “Photon corrections to the graviton propagator”, Phys. Rev. D, 10, 461–467, (1974).
34 Caswell, W.E., and Lepage, G.P., “Effective lagrangians for bound state problems in QED, QCD, and other field theories”, Phys. Lett. B, 167, 437–442, (1986).
35 Chen, T., Fröhlich, J., and Seifert, M., “Renormalization Group Methods: Landau–Fermi Liquid and BCS Superconductor”, in David, F., Ginsparg, P., and Zinn-Justin, J., eds., Fluctuating Geometries in Statistical Mechanics and Field Theory, Proceedings of the Les Houches Summer School, Session LXII, 2 August – 9 September 1994, vol. 62, pp. 913–970, (North-Holland, Amsterdam, Netherlands, 1996). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/cond-mat/9508063.
36 Christensen, S.M., “Regularization, renormalization, and covariant geodesic point separation”, Phys. Rev. D, 17, 946–963, (1978).
37 Christensen, S.M., and Duff, M.J., “New gravitational index theorems and super theorems”, Nucl. Phys. B, 154, 301–342, (1979).
38 Christensen, S.M., and Duff, M.J., “Quantizing gravity with a cosmological constant”, Nucl. Phys. B, 170, 480–506, (1980).
39 Collins, H., Holman, R., and Martin, M.R., “The fate of the α-vacuum”, Phys. Rev. D, 68, 1240121–1–15, (2003). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/0306028.
40 Collins, H., and Martin, M.R., “The enhancement of inflaton loops in an α-vacuum”, Phys. Rev. D, 70, 084021, 1–9, (2004).
41 Collins, J.C., Renormalization: An introduction to renormalization, the renormalization group, and the operator-product expansion, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1984).
42 Corley, S., and Jacobson, T.A., “Hawking Spectrum and High Frequency Dispersion”, Phys. Rev. D, 54, 1568–1586, (1996). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/9601073.
43 Dalvit, D.A.R., and Mazzitelli, F.D., “Running coupling constants, Newtonian potential, and nonlocalities in the effective action”, Phys. Rev. D, 50, 1001–1009, (1994). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9402003.
44 Damour, T., and Ruffini, R., “Black-hole evaporation in the Klein–Sauter–Heisenberg–Euler formalism”, Phys. Rev. D, 14, 332–334, (1976).
45 Danielsson, U.H., “Inflation, holography, and the choice of vacuum in de Sitter space”, J. High Energy Phys., 2002(07), 040, (2002). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/0205227.
46 Danielsson, U.H., “On the consistency of de Sitter vacua”, J. High Energy Phys., 2002(12), 025, (2002). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/0210058.
47 Deruelle, N., and Ruffini, R., “Klein paradox in a kerr geometry”, Phys. Lett. B, 57, 248–252, (1975).
48 Deser, S., and Jackiw, R., “Three-Dimensional Cosmological Gravity: Dynamics Of Constant Curvature”, Ann. Phys. (N.Y.), 153, 405–416, (1984).
49 Deser, S., Jackiw, R., and ’t Hooft, G., “Three-dimensional Einstein gravity: Dynamics of flat space”, Ann. Phys. (N.Y.), 152, 220–235, (1984).
50 DeWitt, B.S., “Quantum Theory of Gravity. II. The Manifestly Covariant Theory”, Phys. Rev., 162, 1195–1239, (1967).
51 DeWitt, B.S., “Quantum Theory of Gravity. III. Applications of the Covariant Theory”, Phys. Rev., 162, 1239–1256, (1967).
52 DeWitt, B.S., “Errata: Quantum Theory of Gravity”, Phys. Rev., 171, 1834, (1968).
53 DeWitt, B.S., “The spacetime approach to quantum field theory”, in DeWitt, B.S., and Stora, R., eds., Relativity, Groups and Topology II, Proceedings of the 40th Summer School of Theoretical Physics, NATO Advanced Study Institute, Les Houches, France, June 27 – August 4, 1983, pp. 381–738, (North-Holland, Amsterdam, Netherlands, 1984).
54 Dirac, P.A.M., “Fixation of Coordinates in the Hamiltonian Theory of Gravitation”, Phys. Rev., 114, 924–930, (1959).
55 Donoghue, J.F., “General relativity as an effective field theory: The leading quantum corrections”, Phys. Rev. D, 50, 3874–3888, (1994). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9405057.
56 Donoghue, J.F., “Leading quantum correction to the Newtonian potential”, Phys. Rev. Lett., 72, 2996–2999, (1994). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9310024.
57 Donoghue, J.F., “Introduction to the Effective Field Theory Description of Gravity”, in Cornet, F., and Herrero, M.J., eds., Advanced School on Effective Theories, Proceedings of the conference held in Almuñecar, Granada, Spain, 26 June – 1 July 1995, pp. 217–240, (World Scientific, Singapore, 1997). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9512024.
58 Donoghue, J.F., Golowich, E., and Holstein, B.R., Dynamics of the Standard Model, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1992).
59 Donoghue, J.F., Holstein, B.R., Garbrecht, B., and Konstandin, T., “Quantum corrections to the Reissner-Nordström and Kerr-Newman metrics”, Phys. Lett. B, 529, 132–142, (2002). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/0112237.
60 Donoghue, J.F., and Torma, T., “Power counting of loop diagrams in general relativity”, Phys. Rev. D, 54, 4963–4972, (1996). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/9602121.
61 Donoghue, J.F., and Torma, T., “Infrared behavior of graviton-graviton scattering”, Phys. Rev. D, 60, 024003, (1999). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/9901156.
62 Duff, M.J., “Quantum corrections to the Schwarzschild solution”, Phys. Rev. D, 9, 1837–1839, (1974).
63 Dunbar, D.C., and Norridge, P.S., “Calculation of graviton scattering amplitudes using string-based methods”, Nucl. Phys. B, 433, 181–206, (1995).
64 Einhorn, M., and Larsen, F., “Interacting quantum field theory in de Sitter vacua”, Phys. Rev. D, 67, 024001, 1–13, (2003). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/0209159.
65 Einhorn, M., and Larsen, F., “Squeezed states in the de Sitter vacuum”, Phys. Rev. D, 68, 064002, 1–7, (2003). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/0305056.
66 Einstein, A., and Infeld, L., “The Gravitational Equations and the Problem of Motion. II”, Ann. Math., 41, 455–464, (1940).
67 Einstein, A., and Infeld, L., Can. J. Math., 1, 209, (1949).
68 Einstein, A., Infeld, L., and Hoffmann, B., “The Gravitational Equations and the Problem of Motion”, Ann. Math., 39, 65–100, (1938).
69 Faddeev, L.D., and Popov, V.N., “Feynman diagrams for the Yang–Mills field”, Phys. Lett. B, 25, 29–30, (1967).
70 Feynman, R.P., “Quantum theory of gravitation”, Acta Phys. Pol., 24, 697–722, (1963).
71 Fredenhagen, K., and Haag, R., “On the Derivation of Hawking Radiation Associated with the Formation of a Black Hole”, Commun. Math. Phys., 127, 273–284, (1990).
72 Gasser, J., and Leutwyler, H., “Chiral Perturbation Theory to One Loop”, Ann. Phys. (N.Y.), 158, 142–210, (1984).
73 Georgi, H., Weak Interactions and Modern Particle Theory, (Benjamin/Cummings, Menlo Park, U.S.A., 1984).
74 Georgi, H., “Effective Field Theory”, Annu. Rev. Nucl. Part. Sci., 43, 209–252, (1995).
75 Gilkey, P.B., “The spectral geometry of a Riemannian manifold”, J. Differ. Geom., 10, 601–618, (1975).
76 Goldstein, K., and Lowe, D.A., “A note on α-vacua and interacting field theory in de Sitter space”, Nucl. Phys. B, 669, 325–340, (2003). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/0302050.
77 Goldstein, K., and Lowe, D.A., “Real-time perturbation theory in de Sitter space”, Phys. Rev. D, 69, 023507, 1–8, (2004). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/0308135.
78 Gomis, J., and Weinberg, S., “Are nonrenormalizable gauge theories renormalizable?”, Nucl. Phys. B, 469, 473–487, (1996). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/9510087.
79 Grisaru, M.T., and Zak, J., “One-loop scalar field contributions to graviton-graviton scattering and helicity non-conservation in quantum gravity”, Phys. Lett. B, 90, 237–240, (1980).
80 Gupta, S.N., “Quantization of Einstein’s Gravitational Field: General Treatment”, Proc. Phys. Soc. London, Sect. A, 65, 608–619, (1952).
81 Gupta, S.N., “Quantization of Einstein’s Gravitational Field: General Treatment”, Proc. Phys. Soc. London, Sect. B, 65, 608–619, (1952).
82 Gupta, S.N., and Radford, S.F., “Quantum field-theoretical electromagnetic and gravitational two-particle potentials”, Phys. Rev. D, 21, 2213–2225, (1980).
83 Guralnik, G.S., Hagen, C.R., and Kibble, T.W.B., in Cool, R.L., and Marshak, R.E., eds., Advances in Particle Physics, Vol. 2, (Wiley, New York, U.S.A., 1968).
84 Hahn, Y., and Zimmermann, W., “An elementary proof of Dyson’s power counting theorem”, Commun. Math. Phys., 10, 330–342, (1968).
85 Hamber, H.W., and Liu, S., “On the quantum corrections to the newtonian potential”, Phys. Lett. B, 357, 51–56, (1995). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/9505182.
86 Hambli, N., and Burgess, C.P., “Hawking radiation and ultraviolet regulators”, Phys. Rev. D, 53, 5717–5722, (1996). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/9510159.
87 Hawking, S.W., “Black hole explosions?”, Nature, 248, 30–31, (1974).
88 Hawking, S.W., “Particle creation by black holes”, Commun. Math. Phys., 43, 199–220, (1975).
89 Hiida, K., and Okamura, H., “Gauge Transformation and Gravitational Potentials”, Prog. Theor. Phys., 47, 1743, (1972).
90 Isgur, N., and Wise, M.B., “Weak decays of heavy mesons in the static quark approximation”, Phys. Lett. B, 232, 113–117, (1989).
91 Isgur, N., and Wise, M.B., “Weak transition form factors between heavy mesons”, Phys. Lett. B, 237, 527–530, (1990).
92 Iwasaki, Y., “Quantum Theory of Gravitation vs. Classical Theory: Fourth-Order Potential”, Prog. Theor. Phys., 46, 1587, (1971).
93 Jacobson, T., “Introduction to quantum fields in curved space-time and the Hawking effect”, Prog. Theor. Phys. Suppl., 136, 1–17, (1999). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0308048.
94 Jacobson, T.A., “Black hole evaporation and ultrashort distances”, Phys. Rev. D, 44, 1731–1739, (1991).
95 Jacobson, T.A., “Black hole radiation in the presence of a short distance cutoff”, Phys. Rev. D, 48, 728–741, (1993). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/9303103.
96 Jones, A.W., and Lasenby, A.N., “The Cosmic Microwave Background”, Living Rev. Relativity, 1, lrr-1998-11, (1998). URL (cited on 7 March 2004):
http://www.livingreviews.org/lrr-1998-11.
97 Kaloper, N., Kleban, M., Lawrence, A., Shenker, S.H., and Susskind, L., “Initial Conditions for Inflation”, J. High Energy Phys., 2002(11), 037, (2002). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/0209231.
98 Kaloper, N., Kleban, M., Lawrence, A.E., and Shenker, S.H., “Signatures of short distance physics in the cosmic microwave background”, Phys. Rev. D, 66, 123510, 1–21, (2002). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/0201158.
99 Kaplan, D.B., “Effective Field Theories”, (June 1995). URL (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/nucl-th/9506035.
100 Kaplan, D.B., Savage, M.J., and Wise, M.B., “Nucleon-nucleon scattering from effective field theory”, Nucl. Phys. B, 478, 629–659, (1996). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/nucl-th/9605002.
101 Kazakov, K.A., “Notion of potential in quantum gravity”, Phys. Rev. D, 63, 044004, 1–10, (2001). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/0009220.
102 Kirilin, G.G., and Khriplovich, I.B., “Quantum Power Correction to the Newton Law”, J. Exp. Theor. Phys., 95, 981–986, (2002).
103 Labelle, P., “Effective field theories for QED bound states: Extending nonrelativistic QED to study retardation effects”, Phys. Rev. D, 58, 093013, 1–15, (1998). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-ph/9608491.
104 Labelle, P., Zebarjad, S.M., and Burgess, C.P., “Nonrelativistic QED and next-to-leading hyperfine splitting in positronium”, Phys. Rev. D, 56, 8053–8061, (1997). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-ph/9706449.
105 Langacker, P., “Electroweak Physics”, (August 2003). URL (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-ph/0308145.
106 Leutwyler, H., “Goldstone Bosons”, (September 1994). URL (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-ph/9409422.
107 Leutwyler, H., “Principles of Chiral Perturbation Theory”, in Herscovitz, V.E., Vasconcellos, C.A., and Ferreira, E., eds., Hadron Physics 94: Topics on the Structure and Interaction of Hadronic Systems, Workshop held in Gramado, Rio Grande Do Sul, Brazil, 10 – 14 April 1994, pp. 1–46, (World Scientific, Singapore; River Edge, U.S.A., 1995). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-ph/9406283.
108 Luke, M.E., “Effects of subleading operators in the heavy quark effective theory”, Phys. Lett. B, 252, 447–455, (1990).
109 Luke, M.E., and Manohar, A.V., “Bound states and power counting in effective field theories”, Phys. Rev. D, 55, 4129–4140, (1997). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-ph/9610534.
110 Luke, M.E., Manohar, A.V., and Rothstein, I.Z., “Renormalization group scaling in nonrelativistic QCD”, Phys. Rev. D, 61, 074025, 1–14, (2000). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-ph/9910209.
111 Luke, M.E., and Savage, M.J., “Power counting in dimensionally regularized nonrelativistic QCD”, Phys. Rev. D, 57, 413–423, (1998). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-ph/9707313.
112 Mandelstam, S., “Feynman Rules for the Gravitational Field from the Coordinate-Independent Field-Theoretic Formalism”, Phys. Rev., 175, 1604–1623, (1968).
113 Manohar, A.V., “Effective Field Theories”, in Latal, H., and Schweiger, W., eds., Perturbative and nonperturbative aspects of quantum field theory, Proceedings of the 35. Internationale Universitätswochen für Kern- und Teilchenphysik, Schladming, Austria, March 2 – 9, 1996, Lecture Notes in Physics, vol. 479, pp. 311–362, (Springer, Berlin, Germany; New York, U.S.A., 1997). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-ph/9606222.
114 Martin, J., and Brandenberger, R.H., “Trans-Planckian problem of inflationary cosmology”, Phys. Rev. D, 63, 123501, 1–16, (2001). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/0005209.
115 McAvity, D.M., and Osborn, H., “A DeWitt expansion of the heat kernel for manifolds with a boundary”, Class. Quantum Grav., 8, 603–638, (1991).
116 Meissner, U.G., “Recent Developments in Chiral Perturbation Theory”, Rep. Prog. Phys., 56, 903–996, (1993). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-ph/9302247.
117 Melnikov, K., and Weinstein, M., “A Canonical Hamiltonian Derivation of Hawking Radiation”, (September 2001). URL (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/0109201.
118 Melnikov, K., and Weinstein, M., “On the Evolution of a Massless Scalar Field in a Schwarzschild Background: A New Look at Hawking Radiation and the Information Paradox”, Int. J. Mod. Phys. D, 13, 1595–1635, (May 2004). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/0205223.
119 Milgrom, M., “A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis”, Astrophys. J., 270, 365–370, (1983).
120 Milgrom, M., and Sanders, R.H., “MOND and the ‘Dearth of Dark Matter in Ordinary Elliptical Galaxies”’, Astrophys. J., 599, L25–L28, (2003). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/astro-ph/0309617.
121 Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, U.S.A., 1973).
122 Modanese, G., “Potential energy in quantum gravity”, Nucl. Phys. B, 434, 697–708, (1995). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/9408103.
123 Ovrut, B.A., and Schnitzer, H.J., “The decoupling theorem and minimal subtraction”, Phys. Lett. B, 100, 403–406, (1981).
124 Ovrut, B.A., and Schnitzer, H.J., “Gauge theories with minimal subtraction and the decoupling theorem”, Nucl. Phys. B, 179, 381–416, (1981).
125 Parikh, M.K., and Wilczek, F., “Hawking Radiation As Tunneling”, Phys. Rev. Lett., 85, 5042–5045, (2000). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/9907001.
126 Pich, A., “Effective Field Theory”, in Gupta, R., De Rafael, E., David, F., and Morel, A., eds., Probing the Standard Model of Particle Interactions, Proceedings of the Les Houches Summer School, Session LXVIII, 28 July – 5 September 1997, vol. 68, pp. 949–1049, (North-Holland, Amsterdam, Netherlands, 1999). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-ph/9806303.
127 Pineda, A., and Soto, J., “Potential NRQED: The positronium case”, Phys. Rev. D, 59, 016005, 1–10, (1999). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-ph/9805424.
128 Polchinski, J., “Renormalization and effective lagrangians”, Nucl. Phys. B, 231, 269–295, (1984).
129 Polchinski, J., “Effective Field Theory of the Fermi Surface”, in Harvey, J.and Polchinski, J., ed., Recent Directions in Particle Theory: From Superstrings and Black Holes to the Standard Model, Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, Boulder, Colorado, 1 – 26 June 1992 (TASI-92), p. quantum field theory, (World Scientific, Singapore, 1993). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/9210046.
130 Polchinski, J., “String Theory and Black Hole Complementarity”, in Bars, I., Bouwknegt, P., Minahan, J., Nemeschensky, D., and Pilch, K., eds., Future Perspectives in String Theory: Strings ’95, University of Southern California, Los Angeles, 13 – 18 March 1995, pp. 417–426, (World Scientific, Singapore; River Edge, U.S.A., 1996). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/9507094.
131 Redin, S.I. et al., “Recent results and current status of the muon g 2 experiment at BNL”, Can. J. Phys., 80, 1355–1364, (2002).
132 Rho, M., “Effective Field Theory for Nuclei and Dense Matter”, Acta Phys. Pol. B, 29, 2297–2308, (1998). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/nucl-th/9806029.
133 Schwinger, J.S., “On Gauge Invariance and Vacuum Polarization”, Phys. Rev., 82, 664–679, (1951).
134 Shankar, R., “Renormalization-group approach to interacting fermions”, Rev. Mod. Phys., 66, 129–192, (1994). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/cond-mat/9307009.
135 Shankar, R., “Effective Field Theory in Condensed Matter Physics”, (March 1997). URL (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/cond-mat/9703210.
136 Simon, J.Z., “Stability of flat space, semiclassical gravity, and higher derivatives”, Phys. Rev. D, 43, 3308–3316, (1991).
137 ’t Hooft, G., and Veltman, M.J.G., “One loop divergencies in the theory of gravitation”, Ann. Inst. Henri Poincare A, 20, 69–94, (1974).
138 Tinkham, M., Introduction to Superconductivity, (McGraw Hill, New York, U.S.A., 1996), 2nd edition.
139 Unruh, W.G., “Origin of the particles in black-hole evaporation”, Phys. Rev. D, 15, 365–369, (1977).
140 Unruh, W.G., “Experimental Black-Hole Evaporation?”, Phys. Rev. Lett., 46, 1351–1353, (1981).
141 Wald, R.M., “The Thermodynamics of Black Holes”, Living Rev. Relativity, 4, lrr-2001-6, (2001). URL (cited on 7 March 2004):
http://www.livingreviews.org/lrr-2001-6.
142 Weinberg, S., “High-Energy Behavior in Quantum Field Theory”, Phys. Rev., 118, 838–849, (1960).
143 Weinberg, S., “Infrared Photons and Gravitons”, Phys. Rev., 140(2), B516–B524, (1965).
144 Weinberg, S., “Dynamical Approach to Current Algebra”, Phys. Rev. Lett., 18, 188–191, (1967).
145 Weinberg, S., “Nonlinear Realizations of Chiral Symmetry”, Phys. Rev., 166, 1568–1577, (1968).
146 Weinberg, S., Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, (Wiley, New York, U.S.A., 1972).
147 Weinberg, S., “Phenomenological Lagrangians”, Physica A, 96, 327–340, (1979).
148 Weinberg, S., “Effective gauge theories”, Phys. Lett. B, 91, 51–55, (1980).
149 Weinberg, S., “Why the Renormalization Group is a Good Thing”, in Guth, A.H., Huang, K., and Jaffe, R.L., eds., Asymptotic Realms of Physics: Essays in Honor of Francis E. Low, pp. 1–19, (MIT Press, Cambridge, U.S.A., 1981).
150 Weinberg, S., “Superconductivity for Particular Theorists”, Prog. Theor. Phys. Suppl., 86, 43–53, (1986).
151 Weinberg, S., “The cosmological constant problem”, Rev. Mod. Phys., 61, 1–23, (1989).
152 Weinberg, S., “Nuclear forces from chiral lagrangians”, Phys. Lett. B, 251, 288–292, (1990).
153 Weinberg, S., “Effective chiral lagrangians for nucleon-pion interactions and nuclear forces”, Nucl. Phys. B, 363, 3–18, (1991).
154 Wessling, M.E., and Wise, M.B., “The long range gravitational potential energy between strings”, Phys. Lett. B, 523, 331–337, (2001). Related online version (cited on 7 March 2004):
External Linkhttp://arXiv.org/abs/hep-th/0110091.
155 Will, C.M., “The Confrontation between General Relativity and Experiment”, Living Rev. Relativity, 4, lrr-2001-4, (2001). URL (cited on 7 March 2004):
http://www.livingreviews.org/lrr-2001-4.
156 Wilson, K.G., “Non-Lagrangian Models of Current Algebra”, Phys. Rev., 179, 1499–1512, (1969).