1 Alvi, K., “Approximate binary-black-hole metric”, Phys. Rev. D, 61, 124013, 1–19, (2000). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9912113.
2 Barack, L., “Self-force on a scalar particle in spherically symmetric spacetime via mode-sum regularization: Radial trajectories”, Phys. Rev. D, 62, 084027, 1–21, (2000). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0005042.
3 Barack, L., “Gravitational self-force by mode sum regularization”, Phys. Rev. D, 64, 084021, 1–16, (2001). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0105040.
4 Barack, L., and Burko, L.M., “Radiation-reaction force on a particle plunging into a black hole”, Phys. Rev. D, 62, 084040, 1–5, (2000). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0007033.
5 Barack, L., and Lousto, C.O., “Computing the gravitational self-force on a compact object plunging into a Schwarzschild black hole”, Phys. Rev. D, 66, 061502, 1–5, (2002). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0205043.
6 Barack, L., Mino, Y., Nakano, H., Ori, A., and Sasaki, M., “Calculating the Gravitational Self-Force in Schwarzschild Spacetime”, Phys. Rev. Lett., 88, 091101, 1–4, (2002). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0111001.
7 Barack, L., and Ori, A., “Mode sum regularization approach for the self-force in black hole spacetime”, Phys. Rev. D, 61, 061502, 1–5, (2000). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9912010.
8 Barack, L., and Ori, A., “Gravitational self-force and gauge transformations”, Phys. Rev. D, 64, 124003, 1–13, (2001). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0107056.
9 Barack, L., and Ori, A., “Regularization parameters for the self-force in Schwarzschild spacetime: Scalar case”, Phys. Rev. D, 66, 084022, 1–15, (2002). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0204093.
10 Barack, L., and Ori, A., “Gravitational Self-Force on a Particle Orbiting a Kerr Black Hole”, Phys. Rev. Lett., 90, 111101, 1–4, (2003). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0212103.
11 Barack, L., and Ori, A., “Regularization parameters for the self-force in Schwarzschild spacetime. II. Gravitational and electromagnetic cases”, Phys. Rev. D, 67, 024029, 1–11, (2003). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0209072.
12 Burko, L.M., “Self-force approach to synchrotron radiation”, Am. J. Phys., 68, 456–468, (2000). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9902079.
13 Burko, L.M., “Self-Force on a Particle in Orbit around a Black Hole”, Phys. Rev. Lett., 84, 4529–4532, (2000). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0003074.
14 Burko, L.M., “Self-force on static charges in Schwarzschild spacetime”, Class. Quantum Grav., 17, 227–250, (2000). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9911042.
15 Burko, L.M., Harte, A.I., and Poisson, E., “Mass loss by a scalar charge in an expanding universe”, Phys. Rev. D, 65, 124006, 1–11, (2002). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0201020.
16 Burko, L.M., and Liu, Y.T., “Self-force on a scalar charge in the spacetime of a stationary, axisymmetric black hole”, Phys. Rev. D, 64, 024006, 1–21, (2001). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0103008.
17 Burko, L.M., Liu, Y.T., and Soen, Y., “Self-force on charges in the spacetime of spherical shells”, Phys. Rev. D, 63, 024015, 1–18, (2001). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0008065.
18 Chrzanowski, P.L., “Vector potential and metric perturbations of a rotating black hole”, Phys. Rev. D, 11, 2042–2062, (1975).
19 D’Eath, P.D., Black holes: Gravitational interactions, (Clarendon Press, Oxford, U.K., 1996).
20 Detweiler, S., “Radiation Reaction and the Self-Force for a Point Mass in General Relativity”, Phys. Rev. Lett., 86, 1931–1934, (2001). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0011039.
21 Detweiler, S., Messaritaki, E., and Whiting, B.F., “Self-force of a scalar field for circular orbits about a Schwarzschild black hole”, Phys. Rev. D, 67, 104016, 1–18, (2003). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0205079.
22 Detweiler, S., and Poisson, E., “Low multipole contributions to the gravitational self-force”, Phys. Rev. D, 69, 084019, (2004). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0312010.
23 Detweiler, S., and Whiting, B.F., “Self-force via a Green’s function decomposition”, Phys. Rev. D, 67, 024025, (2003). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0202086.
24 DeWitt, B.S., and Brehme, R.W., “Radiation Damping in a Gravitational Field”, Ann. Phys. (N.Y.), 9, 220–259, (1960).
25 Dirac, P.A.M., “Classical theory of radiating electrons”, Proc. R. Soc. London, Ser. A, 167, 148, (1938).
26 Flanagan, É.É., and Wald, R.M., “Does back reaction enforce the averaged null energy condition in semiclassical gravity?”, Phys. Rev. D, 54, 6233–6283, (1996). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9602052.
27 Friedlander, F.G., The wave equation on a curved spacetime, (Cambridge University Press, Cambridge, U.K., 1975).
28 Hadamard, J., Lectures on Cauchy’s Problem in Linear Partial Differential Equations, (Yale University Press, New Haven, U.S.A., 1923).
29 Hobbs, J.M., “A Vierbein Formalism for Radiation Damping”, Ann. Phys. (N.Y.), 47, 141–165, (1968).
30 Jackson, J.D., Classical Electrodynamics, Third Edition, (Wiley, New York, U.S.A., 1999).
31 Jet Propulsion Laboratory/NASA, “LISA Home Page (NASA)”, project homepage, (1999). URL (cited on 2 April 2004):
External Linkhttp://lisa.jpl.nasa.gov.
32 Kates, R.E., “Motion of a small body through an external field in general relativity calculated by matched asymptotic expansions”, Phys. Rev. D, 22, 1853–1870, (1980).
33 Lousto, C.O., “Pragmatic Approach to Gravitational Radiation Reaction in Binary Black Holes”, Phys. Rev. Lett., 84, 5251–5254, (2000). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9912017.
34 Lousto, C.O., and Whiting, B.F., “Reconstruction of black hole metric perturbations from the Weyl curvature”, Phys. Rev. D, 66, 024026, 1–7, (2002). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0203061.
35 Manasse, F.K., “Distortion in the metric of a small center of gravitational attraction due to its proximity to a very large mass”, J. Math. Phys., 4, 746–761, (1963).
36 Manasse, F.K., and Misner, C.W., “Fermi normal coordinates and some basic concepts in differential geometry”, J. Math. Phys., 4, 735–745, (1963).
37 Mino, Y., “Perturbative approach to an orbital evolution around a supermassive black hole”, Phys. Rev. D, 67, 084027, 1–17, (2003). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0302075.
38 Mino, Y., Nakano, H., and Sasaki, M., “Covariant Self-Force Regularization of a Particle Orbiting a Schwarzschild Black Hole – Mode Decomposition Regularization”, Prog. Theor. Phys., 108, 1039–1064, (2003). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0111074.
39 Mino, Y., Sasaki, M., and Tanaka, T., “Gravitational radiation reaction to a particle motion”, Phys. Rev. D, 55, 3457–3476, (1997). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9606018.
40 Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, U.S.A., 1973).
41 Morette-DeWitt, C., and DeWitt, B.S., “Falling charges”, Physics (Long Island City, N.Y.), 1, 3, (1964).
42 Morette-DeWitt, C., and Ging, J.L., “Freinage dû à la radiation gravitationnelle”, C. R. Hebd. Seanc. Acad. Sci., 251, 1868, (1960).
43 Nakano, H., Sago, N., and Sasaki, M., “Gauge problem in the gravitational self-force: First post Newtonian force under Regge–Wheeler gauge”, Phys. Rev. D, 68, 124003, 1–31, (2003). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0308027.
44 Ori, A., “Reconstruction of inhomogeneous metric perturbations and electromagnetic four-potential in Kerr spacetime”, Phys. Rev. D, 67, 124010, 1–19, (2003). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0207045.
45 Ori, A., and Rosenthal, E., “Calculation of the self force using the extended-object approach”, Phys. Rev. D, 68, 041701, 1–4, (2003). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0205003.
46 Pfenning, M.J., and Poisson, E., “Scalar, electromagnetic, and gravitational self-forces in weakly curved spacetimes”, Phys. Rev. D, 65, 084001, 1–30, (2002). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0012057.
47 Poisson, E., “An introduction to the Lorentz–Dirac equation”, (December 1999). URL (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9912045.
48 Quinn, T.C., “Axiomatic approach to radiation reaction of scalar point particles in curved spacetime”, Phys. Rev. D, 62, 064029, 1–9, (2000). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0005030.
49 Quinn, T.C., and Wald, R.M., “An axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved spacetime”, Phys. Rev. D, 56, 3381–3394, (1997). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9610053.
50 Quinn, T.C., and Wald, R.M., “Energy conservation for point particles undergoing radiation reaction”, Phys. Rev. D, 60, 064009, 1–20, (1999). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/9903014.
51 Regge, T., and Wheeler, J.A., “Stability of a Schwarzschild singularity”, Phys. Rev., 108, 1063–1069, (1957).
52 Rohrlich, F., Classical charged particles, (Addison-Wesley, Redwood City, U.S.A., 1990).
53 Sciama, D.W., Waylen, P.C., and Gilman, R.C., “Generally Covariant Integral Formulation of Einstein’s Field Equations”, Phys. Rev., 187, 1762–1766, (1969).
54 Smith, A.G., and Will, C.M., “Force on a static charge outside a Schwarzschild black hole”, Phys. Rev. D, 22, 1276–1284, (1980).
55 Synge, J.L., Relativity: The General Theory, (North-Holland, Amsterdam, Netherlands, 1960).
56 Teitelboim, C., Villarroel, D., and van Weert, C.G., “Classical electrodynamics of retarded fields and point particles”, Riv. Nuovo Cimento, 3, 9, (1980).
57 Teukolsky, S.A., “Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations”, Astrophys. J., 185, 635–648, (1973).
58 Thorne, K.S., and Hartle, J.B., “Laws of motion and precession for black holes and other bodies”, Phys. Rev. D, 31, 1815–1837, (1985).
59 Vishveshwara, C.V., “Stability of the Schwarzschild metric”, Phys. Rev. D, 1, 2870–2879, (1970).
60 Wald, R.M., “On perturbations of a Kerr black hole”, J. Math. Phys., 14, 1453–1461, (1973).
61 Wald, R.M., “Construction of Solutions of Gravitational, Electromagnetic, or Other Perturbation Equations from Solutions of Decoupled Equations”, Phys. Rev. Lett., 41, 203–206, (1978).
62 Wiseman, A.G., “Self-force on a static scalar test charge outside a Schwarzschild black hole”, Phys. Rev. D, 61, 084014, 1–14, (2000). Related online version (cited on 2 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0001025.
63 Zerilli, F.J., “Gravitational field of a particle falling in a Schwarzschild geometry analyzed in tensor harmonics”, Phys. Rev. D, 2(10), 2141– 2160, (1970).
64 Zhang, X.-H., “Multipole expansions of the general-relativistic gravitational field of the external universe”, Phys. Rev. D, 34, 991–1004, (1986).