eng
Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
Living Reviews in Relativity
1433-8351
2004-06-21
7
7
10.12942/lrr-2004-7
lrr-2004-7
article
Brane-World Gravity
Roy Maartens
1
Institute of Cosmology and Gravitation, Portsmouth University, Portsmouth PO12EG, U.K.
The observable universe could be a 1+3-surface (the "brane") embedded in a 1+3+$d$-dimensional spacetime (the "bulk"), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the $d$ extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak ($\sim$TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. General relativity cannot describe gravity at high enough energies and must be replaced by a quantum gravity theory, picking up significant corrections as the fundamental energy scale is approached. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity "leaks" into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review discusses the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall-Sundrum models.
http://www.livingreviews.org/lrr-2004-7