1 Abikoff, W., The Real Analytic Theory of Teichm ü ller Space, vol. 820 of Lecture Notes in Mathematics, (Springer, Berlin, Germany; New York, U.S.A., 1980).
2 Achúcarro, A., and Townsend, P.K., “A Chern-Simons action for three-dimensional anti-de Sitter supergravity theories”, Phys. Lett. B, 180, 89-92, (1986).
3 Alekseev, A.Y., Grosse, H., and Schomerus, V., “Combinatorial quantization of the Hamiltonian Chern-Simons theory I”, Commun. Math. Phys., 172, 317-358, (1995). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9403066 .
4 Alekseev, A.Y., Grosse, H., and Schomerus, V., “Combinatorial Quantization of the Hamiltonian Chern-Simons Theory II”, Commun. Math. Phys., 174, 561-604, (1995). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9408097 .
5 Alekseev, A.Y., and Malkin, A.Z., Commun. Math. Phys., 169, 99, (1995).
6 Amano, A., and Higuchi, S., “Topology change in ISO(2,1) Chern-Simons gravity”, Nucl. Phys. B, 377, 218-235, (1992). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9201075 .
7 Amano, K., and Higuchi, S., “ISO(2,1) gauge fields and (2+1)-dimensional space-time”, Prog. Theor. Phys. Suppl., 110, 151, (1992).
8 Ambjørn, J., Carfora, M., and Marzuoli, A., The Geometry of Dynamical Triangulations, vol. m50 of Lecture Notes in Physics, (Springer, Berlin, Germany; New York, U.S.A., 1997). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9612069 .
9 Ambjørn, J., Jurkiewicz, J., and Loll, R., “A non-perturbative Lorentzian path integral for gravity”, Phys. Rev. Lett., 85, 924-927, (2000). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0002050 .
10 Ambjørn, J., Jurkiewicz, J., and Loll, R., “Computer simulations of 3-d Lorentzian quantum gravity”, Nucl. Phys. B (Proc. Suppl.), 94, 689-692, (2001). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-lat/0011055 .
11 Ambjørn, J., Jurkiewicz, J., and Loll, R., “Lorentzian 3d Gravity with Wormholes via Matrix Models”, J. High Energy Phys., 09, 022, (2001). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0106082 .
12 Ambjørn, J., Jurkiewicz, J., and Loll, R., “Nonperturbative 3D Lorentzian quantum gravity”, Phys. Rev. D, 64, 044011-1-17, (2001). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0011276 .
13 Ambjørn, J., Jurkiewicz, J., and Loll, R., “3d Lorentzian, dynamically triangulated quantum gravity”, Nucl. Phys. B (Proc. Suppl.), 106, 980-982, (2002). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-lat/0201013 .
14 Ambjørn, J., Jurkiewicz, J., and Loll, R., “Renormalization of 3d quantum gravity from matrix models”, Phys. Lett. B, 581, 255-262, (2004). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0307263 .
15 Ambjørn, J., Jurkiewicz, J., Loll, R., and Vernizzi, G., “3D Lorentzian Quantum Gravity from the asymmetric ABAB matrix model”, Acta Phys. Pol. B, 34, 4667-4688, (2003). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0311072 .
16 Ambjørn, J., and Loll, R., “Non-perturbative Lorentzian Quantum Gravity, Causality and Topology Change”, Nucl. Phys. B, 536, 407-434, (1998). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9805108 .
17 Amelino-Camelia, G., “Testable scenario for relativity with minimum length”, Phys. Lett. B, 510, 255-263, (2001). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/012238 .
18 Amelino-Camelia, G., Smolin, L., and Starodubtsev, A., “Quantum symmetry, the cosmological constant and Planck scale phenomenology”, Class. Quantum Grav., 21, 3095-3110, (2004). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0306134 .
19 Anderson, M., Carlip, S., Ratcliffe, J.G., Surya, S., and Tschantz, S.T., “Peaks in the Hartle-Hawking Wave Function from Sums over Topologies”, Class. Quantum Grav., 21, 729-742, (2004). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0310002 .
20 Andersson, L., Moncrief, V., and Tromba, A.J., “On the global evolution problem in 2+1 gravity”, J. Geom. Phys., 23, 191, (1997). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9610013 .
21 Anselmi, D., “Finiteness of quantum gravity coupled with matter in three spacetime dimensions”, Nucl. Phys. B, 687, 124-142, (2004). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0309250 .
22 Anselmi, D., “Renormalization of quantum gravity coupled with matter in three dimensions”, Nucl. Phys. B, 687, 143-160, (2004). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0309249 .
23 Archer, F., and Williams, R.M., “The Turaev-Viro state sum model and three-dimensional quantum gravity”, Phys. Lett. B, 273, 438-444, (1991).
24 Arcioni, G., Blau, M., and O’Loughlin, M., “On the Boundary Dynamics of Chern-Simons Gravity”, J. High Energy Phys., 01, 067, (2003). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0210089 .
25 Arnowitt, R., Deser, S., and Misner, C.W., “The dynamics of general relativity”, in Witten, L., ed., Gravitation: An Introduction to Current Research, 227-265, (Wiley, New York, U.S.A., 1962). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0405109 .
26 Ashtekar, A., Lectures on Non-Perturbative Canonical Gravity, vol. 6 of Advanced Series in Astrophysics and Cosmology, (World Scientific, Singapore, 1991).
27 Ashtekar, A., “Large quantum gravity effects: Unexpected limitations of the classical theory”, Phys. Rev. Lett., 77, 4864-4867, (1996). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9610008 .
28 Ashtekar, A., Bombelli, L., and Reula, O.A., “Covariant phase space of asymptotically flat gravitational fields”, in Francaviglia, M., and Holm, D., eds., Mechanics, Analysis and Geometry: 200 Years after Lagrange, North-Holland Delta Series, 417-450, (North Holland, Amsterdam, Netherlands, 1990).
29 Ashtekar, A., Husain, V., Rovelli, C., Samuel, J., and Smolin, L., “2+1 quantum gravity as a toy model for the 3+1 theory”, Class. Quantum Grav., 6, L185-L193, (1989).
30 Ashtekar, A., and Loll, R., “New loop representations for 2+1 gravity”, Class. Quantum Grav., 11, 2417-2434, (1994). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9405031 .
31 Ashtekar, A., and Magnon, A., “Quantum fields in curved space-times”, Proc. R. Soc. London, Ser. A, 346, 375-394, (1975).
32 Ashtekar, A., and Pierri, M., “Probing Quantum Gravity Through Exactly Soluble Midi-Superspaces I”, J. Math. Phys., 37, 6250-6270, (1996). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9606085 .
33 Ashtekar, A., Wisniewski, J., and Dreyer, O., “Isolated Horizons in 2+1 Gravity”, Adv. Theor. Math. Phys., 6, 507-555, (2002). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0206024 .
34 Axelrod, S.E., DellaPietra, S., and Witten, E., “Geometric quantization of Chern-Simons gauge theory”, J. Differ. Geom., 33, 787-902, (1991).
35 Baez, J.C., “An Introduction to Spin Foam Models of Quantum Gravity and BF Theory”, in Gausterer, H., Grosse, H., and Pittner, L., eds., Geometry and Quantum Physics, Proceedings of the 38. Internationale Universitätswochen für Kern- und Teilchenphysik, Schladming, Austria, January 9-16, 1999, vol. 543 of Lecture Notes in Physics, 25-64, (Springer, Berlin, Germany; New York, U.S.A., 2000). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9905087 .
36 Bais, F.A., and Muller, N.M., “Topological field theory and the quantum double of SU(2)”, Nucl. Phys. B, 530, 349-400, (1998). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9804130 .
37 Bais, F.A., Muller, N.M., and Schroers, B.J., “Quantum group symmetry and particle scattering in (2+1)-dimensional quantum gravity”, Nucl. Phys. B, 640, 3-45, (2002). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0205021 .
38 Ballesteros, A., Rossano Bruno, N., and Herranz, F.J., “Non-commutative relativistic spacetimes and worldlines from 2+1 quantum (anti)de Sitter groups”, (2004). URL (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0401244 .
39 Bañados, M., “Three-dimensional quantum geometry and black holes”, (1999). URL (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9901148 .
40 Bañados, M., Henneaux, M., Teitelboim, C., and Zanelli, J., “Geometry of the 2+1 Black Hole”, Phys. Rev. D, 48, 1506-1525, (1993). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9302012 .
41 Bañados, M., Teitelboim, C., and Zanelli, J., “The Black Hole in Three Dimensional Space Time”, Phys. Rev. Lett., 69, 1849-1851, (1992). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9204099 .
42 Banks, T., Fischler, W., and Susskind, L., “Quantum cosmology in 2+1 and 3+1 dimensions”, Nucl. Phys. B, 262, 159-186, (1985).
43 Bar-Natan, D., and Witten, E., “Perturbative expansion of Chern-Simons theory with non-compact gauge group”, Commun. Math. Phys., 141, 423-440, (1991).
44 Barbero, J.F., and Varadarajan, M., “The Phase Space of 2+1 Dimensional Gravity in the Ashtekar Formulation”, Nucl. Phys. B, 415, 515-532, (1994). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9307006 .
45 Barbero, J.F., and Varadarajan, M., “Homogeneous 2+1 Dimensional Gravity in the Ashtekar Formulation”, Nucl. Phys. B, 456, 355-376, (1995). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9507044 .
46 Barrett, J.W., “Geometrical measurements in three-dimensional quantum gravity”, Int. J. Mod. Phys. A, 18S2, 97-113, (2003). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0203018 .
47 Barrett, J.W., and Crane, L., “An algebraic interpretation of the Wheeler-DeWitt equation”, Class. Quantum Grav., 14, 2113-2121, (1997). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9609030 .
48 Barrett, J.W., and Foxon, T.J., “Semiclassical limits of simplicial quantum gravity”, Class. Quantum Grav., 11, 543-556, (1994). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9310016 .
49 Barrow, J.D., Burd, A.B., and Lancaster, D., “Three-dimensional classical spacetimes”, Class. Quantum Grav., 3, 551-567, (1986).
50 Basu, S., “Perturbation theory in covariant canonical quantization”, (2004). URL (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0410015 .
51 Bautier, K., Englert, F., Rooman, M., and Spindel, P., “The Fefferman-Graham Ambiguity and AdS Black Holes”, Phys. Lett. B, 479, 291-298, (2000). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0002156 .
52 Becker, K., Becker, M., and Strominger, A., “Three-Dimensional Supergravity and the Cosmological Constant”, Phys. Rev. D, 51, 6603-6607, (1995). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9502107 .
53 Beetle, C., “Midi-Superspace Quantization of Non-Compact Toroidally Symmetric Gravity”, Adv. Theor. Math. Phys., 2, 471-495, (1998). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9801107 .
54 Beliakova, A., and Durhuus, B., “Topological quantum field theory and invariants of graphs for quantum groups”, Commun. Math. Phys., 167, 395, (1995). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9309024 .
55 Benedetti, R., and Guadagnini, E., “Cosmological Time in (2+1) - Gravity”, Nucl. Phys. B, 613, 330-352, (2001). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0003055 .
56 Birman, J.S., “The algebraic structure of surface mapping class groups”, in Harvey, W.J., ed., Discrete Groups and Automorphic Functions, Proceedings of an instructional conference, Cambridge, England, 1975, 163-198, (Academic Press, London, U.K.; New York, U.S.A., 1977).
57 Birman, J.S., and Hilden, H.M., “On the mapping class groups of closed surfaces as covering spaces”, in Ahlfors, L.V. et al., ed., Advances in the Theory of Riemann Surfaces, vol. 66 of Annals of Math. Studies, 81-115, (Princeton University Press, Princeton, U.S.A., 1971).
58 Birmingham, D., and Carlip, S., unknown status. unpublished.
59 Birmingham, D., Sachs, I., and Sen, S., “Entropy of Three-Dimensional Black Holes in String Theory”, Phys. Lett. B, 424, 275-280, (1998). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9801019 .
60 Boulatov, D., “A Model of Three-Dimensional Lattice Gravity”, Mod. Phys. Lett. A, 7, 1629-1646, (1992). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9202074 .
61 Buffenoir, E., Noui, K., and Roche, P., “Hamiltonian Quantization of Chern-Simons theory with SL(2,C) Group”, Class. Quantum Grav., 19, 4953-5015, (2002). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0202121 .
62 Canary, R.D., Epstein, D.B.A., and Green, P., in Epstein, D.B.A., ed., Analytical and Geometric Aspects of Hyperbolic Space: Warwick and Durham 1984, Papers presented at two symposia held at the Universities of Warwick and Durham, vol. 111 of London Mathematical Society Lecture Notes Series, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1987).
63 Cantini, L., and Menotti, P., “Functional approach to 2+1 dimensional gravity coupled to particles”, Class. Quantum Grav., 20, 845-858, (2003). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0209061 .
64 Carbone, G., Carfora, M., and Marzuoli, A., “Quantum states of elementary three-geometry”, Class. Quantum Grav., 19, 3761-3774, (2002). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0112043 .
65 Carlip, S., “Exact quantum scattering in 2 + 1 dimensional gravity”, Nucl. Phys. B, 324, 106-122, (1989).
66 Carlip, S., “Observables, gauge invariance, and time in (2+1)-dimensional quantum gravity”, Phys. Rev. D, 42, 2647-2654, (1990).
67 Carlip, S., “Measuring the metric in (2+1)-dimensional quantum gravity”, Class. Quantum Grav., 8, 5-17, (1991).
68 Carlip, S., “(2+1)-dimensional Chern-Simons gravity as a Dirac square root”, Phys. Rev. D, 45, 3584-3590, (1992). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9109006 . Erratum: Phys. Rev. D 47 (1993) 1729.
69 Carlip, S., “Entropy versus action in the (2 + 1)-dimensional Hartle-Hawking wave function”, Phys. Rev. D, 46, 4387-4395, (1992). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9205022 .
70 Carlip, S., “Modular group, operator ordering, and time in (2+1)-dimensional gravity”, Phys. Rev. D, 47, 4520-4524, (1993). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9209011 .
71 Carlip, S., “The Sum over Topologies in Three-Dimensional Euclidean Quantum Gravity”, Class. Quantum Grav., 10, 207-218, (1993). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9206103 .
72 Carlip, S., “Geometric structures and loop variables in (2+1)-Dimensional gravity”, in Baez, J.C., ed., Knots and Quantum Gravity, Proceedings of a conference held at U. C. Riverside on May 14-16th, 1993, vol. 1 of Oxford Lecture Series in Mathematics and its Applications, (Clarendon Press; Oxford University Press, Oxford, U.K.; New York, U.S.A., 1994). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9309020 .
73 Carlip, S., “Notes on the (2+1)-Dimensional Wheeler-DeWitt Equation”, Class. Quantum Grav., 11, 31, (1994). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9309002 .
74 Carlip, S., “Six ways to quantize (2+1)-dimensional gravity”, in Mann, R.B., and McLenaghan, R.G., eds., Proceedings of the 5th Canadian Conference on General Relativity and Relativistic Astrophysics, University of Waterloo 13-15 May, 1993, (World Scientific, Singapore; River Edge, U.S.A., 1994). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9305020 .
75 Carlip, S., “The (2+1)-Dimensional Black Hole”, Class. Quantum Grav., 12, 2853-2880, (1995). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9506079 .
76 Carlip, S., “Lectures in (2+1)-Dimensional Gravity”, J. Korean Phys. Soc., 28, S447-S467, (1995). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9503024 .
77 Carlip, S., “A Phase Space Path Integral for (2+1)-Dimensional Gravity”, Class. Quantum Grav., 12, 2201-2208, (1995). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9504033 .
78 Carlip, S., “The Statistical Mechanics of the (2+1)-Dimensional Black Hole”, Phys. Rev. D, 51, 632-637, (1995). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9409052 .
79 Carlip, S., “Spacetime Foam and the Cosmological Constant”, Phys. Rev. Lett., 79, 4071-4074, (1997). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9708026 .
80 Carlip, S., “Dominant Topologies in Euclidean Quantum Gravity”, Class. Quantum Grav., 15, 2629-2638, (1998). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9710114 .
81 Carlip, S., Quantum Gravity in 2+1 Dimensions, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1998).
82 Carlip, S., “What We Don’t Know about BTZ Black Hole Entropy”, Class. Quantum Grav., 15, 3609-3625, (1998). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9806026 .
83 Carlip, S., “Quantum gravity: a Progress Report”, Rep. Prog. Phys., 64, 885-942, (2001). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0108040 .
84 Carlip, S., and Cosgrove, R., “Topology Change in (2+1)-Dimensional Gravity”, J. Math. Phys., 35, 5477-5493, (1994). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9406006 .
85 Carlip, S., and Gegenberg, J., “Gravitating topological matter in 2+1 dimensions”, Phys. Rev. D, 44, 424-428, (1991).
86 Carlip, S., and Nelson, J.E., “Equivalent Quantisations of (2+1)-Dimensional Gravity”, Phys. Lett. B, 324, 299-302, (1994). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9311007 .
87 Carlip, S., and Nelson, J.E., “Comparative quantizations of (2+1)-dimensional gravity”, Phys. Rev. D, 51, 5643-5653, (1995). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9411031 .
88 Carlip, S., and Nelson, J.E., “Quantum modular group in (2+1)-dimensional gravity”, Phys. Rev. D, 59, 024012-1-12, (1998). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9807087 .
89 Carlip, S., and Nelson, J.E., “Quantum modular group in (2+1)-dimensional gravity”, Heavy Ion Phys., 10, 361, (1999).
90 Carter, J.S., Flath, D.E., and Saito, M., The classical and quantum 6 j -symbols, vol. 43 of Mathematical Notes, (Princeton University Press, Princeton, U.S.A., 1995).
91 Chen, Y.-J., “Quantum Liouville theory and BTZ black hole entropy”, Class. Quantum Grav., 21, 1153-1180, (2004). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0310234 .
92 Clarke, C.J.S., The Analysis of Space-Time Singularities, Cambridge Lecture Notes in Physics, (Cambridge University Press, Cambridge, U.K., 1993).
93 Cornfeld, I.P., Fomin, S.V., and Sinai, Y.G., Ergodic theory, vol. 245 of Grundlehren der mathematischen Wissenschaften, (Springer, New York, U.S.A., 1982).
94 Cornish, N.J., and Frankel, N.E., “Gravitation in 2+1 dimensions”, Phys. Rev. D, 43, 2555-2565, (1991).
95 Cosgrove, R., “Consistent evolution with different time slicings in quantum gravity”, Class. Quantum Grav., 13, 891-919, (1996). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9511059 .
96 Coussaert, O., Henneaux, M., and van Driel, P., “The asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant”, Class. Quantum Grav., 12, 2961-2966, (1995). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9506019 .
97 Criscuolo, A., Quevedo, H., and Waelbroeck, H., “Quantization of (2+1) gravity on the torus”, in Khanna, F., and Vinet, L., eds., Field Theory, Integrable Systems and Symmetries, Lectures from the Congress of the Canadian Association of Physicists (CAP) held in Québec City, June 11-16, 1995, (CRM, Montreal, Canada, 1997)Related online version:
External Linkhttp://arXiv.org/abs/gr-qc/9509041 .
98 Crnkovic, C., and Witten, E., “Covariant description of canonical formalism in geometrical theories”, in Hawking, S.W., and Israel, W., eds., Three Hundred Years of Gravitation, 676-684, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1987).
99 Dasgupta, A., “The Real Wick Rotations in Quantum Gravity”, J. High Energy Phys., 07, 062, (2002). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0202018 .
100 Dasgupta, A., and Loll, R., “A proper-time cure for the conformal sickness in quantum gravity”, Nucl. Phys. B, 606, 357-379, (2001). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0103186 .
101 Davids, S., “Semiclassical Limits of Extended Racah Coefficients”, J. Math. Phys., 41, 924-943, (2000). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9807061 .
102 Davids, S., “A State Sum Model for (2+1) Lorentzian Quantum Gravity”, (2001). URL (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0110114 .
103 de Sousa Gerbert, P., and Jackiw, R., “The Analysis of Space-Time Singularities”, Commun. Math. Phys., 124, 229-260, (1989).
104 de Wit, B., Matschull, H.-J., and Nicolai, H., “Physical States in d=3,N=2 Supergravity”, Phys. Lett. B, 318, 115-121, (1993). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9309006 .
105 Deser, S., and Jackiw, R., “Three-dimensional cosmological gravity: Dynamics of constant curvature”, Ann. Phys. (N.Y.), 153, 405-416, (1984).
106 Deser, S., and Jackiw, R., “Classical and quantum scattering on a cone”, Commun. Math. Phys., 118, 495-509, (1988).
107 Deser, S., Jackiw, R., and ’t Hooft, G., “Three dimensional Einstein gravity: Dynamics of at space”, Ann. Phys. (N.Y.), 152, 220, (1984).
108 Deser, S., and van Nieuwenhuizen, P., “Nonrenormalizability of the quantized Dirac-Einstein system”, Phys. Rev. D, 10, 411-420, (1974).
109 DeWitt, B.S., “Gravity: a Universal Regulator?”, Phys. Rev. Lett., 13, 114-118, (1964).
110 DeWitt, B.S., “Quantum Theory of Gravity. I. The Canonical Theory”, Phys. Rev., 160, 1113-1148, (1967).
111 Dijkgraaf, R., Maldacena, J.M., Moore, G.W., and Verlinde, E., “A Black Hole Farey Tail”, (2000). URL (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0005003 .
112 Dirac, P.A.M., “Generalized Hamiltonian dynamics”, Can. J. Math., 2, 129-148, (1950).
113 Dirac, P.A.M., “The Hamiltonian form of field dynamics”, Can. J. Math., 3, 1, (1951).
114 Dirac, P.A.M., “Generalized Hamilton dynamics”, Proc. R. Soc. London, Ser. A, 246, 326, (1958).
115 Dittrich, B., and Loll, R., “Hexagon model for 3D Lorentzian quantum cosmology”, Phys. Rev. D, 66, 084016-1-15, (2002). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0204210 .
116 Elitzur, S., Moore, G.W., Schwimmer, A., and Seiberg, N., “Remarks on the canonical quantization of the Chern-Simons-Witten theory”, Nucl. Phys. B, 326, 108-134, (1989).
117 Ezawa, K., “Addendum to “Classical and Quantum Evolutions of the de Sitter and the anti-de Sitter Universes in 2+1 dimensions””, Phys. Rev. D, 50, 2935-2938, (1994). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9403160 .
118 Ezawa, K., “Transition Amplitude in 2+1 dimensional Chern-Simons Gravity on a Torus”, Int. J. Mod. Phys. A, 9, 4727-4746, (1994). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9305170 .
119 Ezawa, K., “Chern-Simons quantization of (2+1)-anti-de Sitter gravity on a torus”, Class. Quantum Grav., 12, 373-391, (1995). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9409074 .
120 Fay, J.D., “Fourier coefficients of the resolvent for a Fuchsian group”, J. reine angew. Math., 293, 143, (1977).
121 Fischer, A., and Tromba, A., “On a purely Riemmanian proof of the structure and dimension of the unramified moduli space of a compact Riemann surface”, Math. Ann., 267, 311-345, (1984).
122 Fock, V.V., and Rosly, A.A., “Poisson structure on moduli of flat connections on Riemann surfaces and the r -matrix”, Am. Math. Soc. Transl., 191, 67-86, (1999).
123 Forni, D.M., Iriondo, M., and Kozameh, C.N., “Null surfaces formulation in 3D”, J. Math. Phys., 41, 5517-5534, (2000). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0005120 .
124 Franzosi, R., and Guadagnini, E., “Topology and classical geometry in (2 + 1) gravity”, Class. Quantum Grav., 13, 433-460, (1996).
125 Freidel, L., “A Ponzano-Regge model of Lorentzian 3-dimensional gravity”, Nucl. Phys. B (Proc. Suppl.), 88, 237-240, (2000). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0102098 .
126 Freidel, L., Kowalski-Glikman, J., and Smolin, L., “2+1 gravity and Doubly Special Relativity”, Phys. Rev. D, 69, 044001, (2004). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0307085 .
127 Freidel, L., and Krasnov, K., “Discrete spacetime volume for three-dimensional BF theory and quantum gravity”, Class. Quantum Grav., 16, 351-362, (1999). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9804185 .
128 Freidel, L., and Krasnov, K., “Spin Foam Models and the Classical Action Principle”, Adv. Theor. Math. Phys., 2, 1183-1247, (1999). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9807092 .
129 Freidel, L., and Livine, E.R., “Spin Networks for Non-Compact Groups”, J. Math. Phys., 44, 1322-1356, (2003). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0205268 .
130 Freidel, L., Livine, E.R., and Rovelli, C., “Spectra of length and area in (2 + 1) Lorentzian loop quantum gravity”, Class. Quantum Grav., 20, 1463-1478, (2003). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0212077 .
131 Freidel, L., and Louapre, D., “Diffeomorphisms and spin foam models”, Nucl. Phys. B, 662, 279-298, (2003). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0212001 .
132 Freidel, L., and Louapre, D., “Non-perturbative summation over 3D discrete topologies”, Phys. Rev. D, 68, 104004, (2003). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0211026 .
133 Fujiwara, Y., “Geometrical construction of holonomy in three-dimensional hyperbolic manifold”, Class. Quantum Grav., 10, 219-232, (1993).
134 Fujiwara, Y., Higuchi, S., Hosoya, A., Mishima, T., and Siino, M., “Nucleation of a universe in (2+1)-dimensional gravity with a negative cosmological constant”, Phys. Rev. D, 44, 1756-1762, (2001).
135 Fujiwara, Y., and Soda, J., “Teichmüller Motion of (2+1)-Dimensional Gravity with the Cosmological Constant”, Prog. Theor. Phys., 83, 733-748, (1990).
136 Gambini, R., and Pullin, J., Loops, Knots, Gauge Theories and Quantum Gravity, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1996).
137 Gambini, R., and Pullin, J., “Large quantum gravity effects: backreaction on matter”, Mod. Phys. Lett. A, 12, 2407-2414, (1997). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9703088 .
138 Gambini, R., and Pullin, J., “Consistent discretization and loop quantum geometry”, (2004). URL (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0409057 .
139 García-Islas, J. Manuel, “Observables in 3-dimensional quantum gravity and topological invariants”, Class. Quantum Grav., 21, 3933-3952, (2004). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0401093 .
140 Gegenberg, J., Kunstatter, G., and Leivo, H.P., “Topological matter coupled to gravity in 2 + 1 dimensions”, Phys. Lett. B, 252, 381-386, (1990).
141 Gibbons, G.W., and Hartle, J.B., “Real tunneling geometries and the large-scale topology of the universe”, Phys. Rev. D, 42, 2458-2468, (1990).
142 Gibbons, G.W., Hawking, S.W., and Perry, M.J., “Path integrals and the indefiniteness of the gravitational action”, Nucl. Phys. B, 138, 141-150, (1978).
143 Giulini, D., and Louko, J., “Diffeomorphism invariant subspaces in Witten’s 2+1 quantum gravity on R × T 2 ”, Class. Quantum Grav., 12, 2735-2746, (1995). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9504035 .
144 Giulini, D., and Marolf, D., “On the Generality of Refined Algebraic Quantization”, Class. Quantum Grav., 16, 2479-2488, (1999). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9812024 .
145 Goldman, W.M., “The symplectic nature of fundamental groups of surfaces”, Adv. Math., 54, 200-225, (1984).
146 Goldman, W.M., “Invariant functions on Lie groups and Hamiltonian flows of surface group representations”, Invent. Math., 85, 263-302, (1986).
147 Goldman, W.M., in Goldman, W.M., and Magid, A.R., eds., Geometry of Group Representations, Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference held July 5-11, 1987, vol. 74 of Contemporary Mathematics, (American Mathematical Society, Providence, U.S.A., 1988).
148 Goldman, W.M., “Topological components of spaces of representation”, Invent. Math., 93, 557-607, (1988).
149 Goroff, M.H., and Sagnotti, A., “The ultraviolet behavior of Einstein gravity”, Nucl. Phys. B, 266, 709-736, (1986).
150 Gukov, S., “Three-Dimensional Quantum Gravity, Chern-Simons Theory, and the A-Polynomial”, (2003). URL (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0306165 .
151 Hamber, H.W., and Williams, R.M., “Simplicial quantum gravity in three dimensions: Analytical and numerical results”, Phys. Rev. D, 47, 510-532, (1993).
152 Hartle, J.B., and Hawking, S.W., “Wave function of the Universe”, Phys. Rev. D, 28, 2960-2975, (1983).
153 Hasslacher, B., and Perry, M.J., “Spin networks are simplicial quantum gravity”, Phys. Lett. B, 103, 21-24, (1981).
154 Hawking, S.W., in Hawking, S.W., and Israel, W., eds., General Relativity: An Einstein Centenary Survey, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1979).
155 Hayashi, N., “Quantum Hilbert Space of G(C) Cher-Simons-Witten Theory and Gravity”, Prog. Theor. Phys. Suppl., 114, 125-147, (1993).
156 Hollmann, H.R., and Williams, R.M., “Hyperbolic geometry in ’t Hooft’s approach to (2 + 1)-dimensional gravity”, Class. Quantum Grav., 16, 1503-1518, (1999). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9810021 .
157 Horowitz, G.T., and Welch, D.L., “Exact Three Dimensional Black Holes in String Theory”, Phys. Rev. Lett., 71, 328-331, (1993). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9302126 .
158 Hosoya, A., “Quantum smearing of spacetime singularity”, Class. Quantum Grav., 12, 2967-2975, (1995).
159 Hosoya, A., and Nakao, K., “(2+1)-dimensional pure gravity for an arbitrary closed initial surface”, Class. Quantum Grav., 7, 163-176, (1990).
160 Hosoya, A., and Nakao, K., “(2+1)-dimensional quantum gravity”, Prog. Theor. Phys., 84, 739-748, (1990).
161 Ionicioiu, R., “Amplitudes for topology change in Turaev-Viro theory”, Class. Quantum Grav., 15, 1885-1894, (1998).
162 Ionicioiu, R., and Williams, R.M., “Lens spaces and handlebodies in three-dimensional quantum gravity”, Class. Quantum Grav., 15, 3469-3477, (1998). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9806027 .
163 Isenberg, J.A., and Marsden, J.E., “A slice theorem for the space of solutions of Einstein’s equations”, Phys. Rep., 89, 179-222, (1982).
164 Isham, C.J., “Theta states induced by the diffeomorphism group in canonically quantized gravity”, in Duff, M.J., and Isham, C.J., eds., Quantum Structure of Space and Time, Proceedings of the Nuffield Workshop, Imperial College, London, 3-21 August, 1981, 37-52, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1982).
165 Isham, C.J., Salam, A., and Strathdee, J., “Infinity Suppression in Gravity-Modified Quantum Electrodynamics”, Phys. Rev. D, 3, 1805-1817, (1971).
166 Isham, C.J., Salam, A., and Strathdee, J., “Infinity Suppression in Gravity-Modified Electrodynamics. II”, Phys. Rev. D, 5, 2548-2565, (1972).
167 Iwaniec, H., in Rankin, R.A., ed., Modular Forms, Papers from a symposium on modular forms held June 30-July 10, 1983, University of Durham, England, (Ellis Horwood; Halsted Press, Chichester, U.K.; New York, U.S.A., 1984).
168 Jejjala, V., Leigh, R.G., and Minic, D., “The Cosmological Constant and the Deconstruction of Gravity”, Phys. Lett. B, 556, 71-79, (2003). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0212057 .
169 Kádár, Z., and Loll, R., “(2+1) gravity for higher genus in the polygon model”, Class. Quantum Grav., 21, 2465-2491, (2004). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0312043 .
170 Kaloper, N., “Miens of The Three Dimensional Black Hole”, Phys. Rev. D, 48, 2598-2605, (1993). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9303007 .
171 Kowalski-Glikman, J., “Introduction to Doubly Special Relativity”, (2004). URL (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0405273 .
172 Krasnov, K., “On holomorphic factorization in asymptotically AdS 3D gravity”, Class. Quantum Grav., 20, 4015-4042, (2003). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0109198 .
173 Kuchař, K., in Kunstatter, G., Vincent, D.E., and Williams, J.G., eds., General Relativity and Relativistic Astrophysics, Proceedings of the 4th Canadian Conference, University of Winnipeg, 16-18 May, 1991, 211, (World Scientific, Singapore; River Edge, U.S.A., 1992).
174 Kugo, T., unknown status. Kyoto preprint KUNS 1014 HE(TH)90/05 (1990).
175 Lee, J., and Wald, R.M., “Local symmetries and constraints”, J. Math. Phys., 31, 725-473, (1990).
176 Leutwyler, H., Nuovo Cimento, 42, 159, (1966).
177 Livine, E.R., and Oeckl, R., “Three-dimensional Quantum Supergravity and Supersymmetric Spin Foam”, Adv. Theor. Math. Phys., 7, 951-1001, (2004). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0307251 .
178 Loll, R., “Independent Loop Invariants for 2+1 Gravity”, Class. Quantum Grav., 12, 1655-1662, (1995). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9408007 .
179 Loll, R., “Discrete Approaches to Quantum Gravity in Four Dimensions”, Living Rev. Relativity, 1, (1998). URL (cited on 5 January 2005):
http://www.livingreviews.org/lrr-1998-13 .
180 Loll, R., “Discrete Lorentzian quantum gravity”, Nucl. Phys. B (Proc. Suppl.), 94, 96-107, (2001). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0011194 .
181 Louko, J., “Witten’s 2+1 gravity on R x (Klein bottle)”, Class. Quantum Grav., 12, 2441-2468, (1995). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9505026 .
182 Louko, J., and Marolf, D., “Solution space of 2+1 gravity on R × T 2 in Witten’s connection formulation”, Class. Quantum Grav., 11, 311-330, (1994). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9308018 .
183 Louko, J., and Matschull, H.-J., “The 2+1 Kepler Problem and Its Quantization”, Class. Quantum Grav., 18, 2731-2784, (2001). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0103085 .
184 Maass, H., Lectures on Modular Functions of One Complex Variable, vol. 29 of Lectures on Mathematics and Physics. Mathematics, (Tata Institute of Fundamental Research, Bombay, India, 1964).
185 Magueijo, J., and Smolin, L., “Lorentz invariance with an invariant energy scale”, Phys. Rev. Lett., 88, 190403, (2002). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0112090 .
186 Mäkelä, J., “Simplicial Wheeler-DeWitt equation in 2+1 spacetime dimensions”, Phys. Rev. D, 48, 1679-1686, (1993).
187 Maldacena, J.M., and Ooguri, H., “Strings in AdS 3 and the SL(2,R) WZW model. I: The spectrum”, J. Math. Phys., 42, 2929-2960, (2001). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0001053 .
188 Maldacena, J.M., and Ooguri, H., “Strings in AdS 3 and the SL(2,R) WZW model. II: Euclidean black hole”, J. Math. Phys., 42, 2961-2977, (2001). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0005183 .
189 Maldacena, J.M., and Ooguri, H., “Strings in AdS 3 and the SL(2,R) WZW model. III. Correlation functions”, Phys. Rev. D, 65, 106006-1-43, (2002). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0111180 .
190 Mandelstam, S., “Feynman Rules for Electromagnetic and Yang-Mills Fields from the Gauge-Independent Field-Theoretic Formalism”, Phys. Rev., 175, 1580-1603, (1968).
191 Manuel García-Islas, J., “(2 + 1)-dimensional quantum gravity, spin networks and asymptotics”, Class. Quantum Grav., 21, 445-464, (2004). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0307054 .
192 Marolf, D., “Loop representations for 2+1 gravity on a torus”, Class. Quantum Grav., 10, 2625-2647, (1993). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9303019 .
193 Martinec, E.J., “Soluble systems in quantum gravity”, Phys. Rev. D, 30, 1198-1204, (1984).
194 Matschull, H.-J., “On the relation between 2+1 Einstein gravity and Chern Simons theory”, Class. Quantum Grav., 16, 2599-2609, (1999). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9903040 .
195 Matschull, H.-J., “The Phase Space Structure of Multi Particle Models in 2+1 Gravity”, Class. Quantum Grav., 18, 3497-3560, (2001). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0103084 .
196 Matschull, H.-J., and Nicolai, H., “Canonical quantum supergravity in three dimensions”, Nucl. Phys. B, 411, 609-649, (1994). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9306018 .
197 Matschull, H.-J., and Welling, M., “Quantum Mechanics of a Point Particle in 2+1 Dimensional Gravity”, Class. Quantum Grav., 15, 2981-3030, (1998). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9708054 .
198 Mazur, P.O., and Mottola, E., “The path integral measure, conformal factor problem and stability of the ground state of quantum gravity”, Nucl. Phys. B, 341, 187-212, (1990).
199 Menotti, P., and Seminara, D., “ADM Approach to 2+1 Dimensional Gravity Coupled to Particles”, Ann. Phys. (N.Y.), 279, 282-310, (2000). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9907111 .
200 Mess, G., “Lorentz Spacetimes of Constant Curvature”, unknown status, (1990). Institut des Hautes Etudes Scientifiques preprint IHES/M/90/28.
201 Meusburger, C., and Schroers, B.J., “Poisson structure and symmetry in the Chern-Simons formulation of (2+1)-dimensional gravity”, Class. Quantum Grav., 20, 2193-2234, (2003). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0301108 .
202 Minassian, E.A., “Spacetime Singularities in (2+1)-Dimensional Quantum Gravity”, Class. Quantum Grav., 19, 5877-5901, (2002). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0203026 .
203 Mizoguchi, S., and Tada, T., “3-dimensional Gravity and the Turaev-Viro Invariant”, Prog. Theor. Phys. Suppl., 110, 207, (1992).
204 Mizoguchi, S., and Tada, T., “3-dimensional Gravity from the Turaev-Viro Invariant”, Phys. Rev. Lett., 68, 1795-1798, (1992). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9110057 .
205 Mizoguchi, S., and Yamamoto, H., “On the stability of renormalizable expansions in three-dimensional gravity”, Phys. Rev. D, 50, 7351-7362, (1994). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9307131 .
206 Moncrief, V., “Reduction of the Einstein equations in 2+1 dimensions to a Hamiltonian system over Teichmüller space”, J. Math. Phys., 30, 2907-2914, (1989).
207 Moncrief, V., “How solvable is (2+1)-dimensional Einstein gravity?”, J. Math. Phys., 31, 2978-2982, (1990).
208 Nelson, J.E., and Picken, R.F., “Quantum Holonomies in (2+1)-Dimensional Gravity”, Phys. Lett. B, 471, 367-372, (2000). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9911005 .
209 Nelson, J.E., and Picken, R.F., “Parametrization of the moduli space of flat SL(2,R) connections on the torus”, Lett. Math. Phys., 59, 215-226, (2002). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/math-ph/0105015 .
210 Nelson, J.E., and Regge, T., “Homotopy groups and 2+1 dimensional quantum gravity”, Nucl. Phys. B, 328, 190-202, (1989).
211 Nelson, J.E., and Regge, T., “Homotopy groups and (2 + 1)-dimensional quantum de Sitter gravity”, Nucl. Phys. B, 339, 516-532, (1990).
212 Nelson, J.E., and Regge, T., “(2+1) gravity for genus ¿ 1”, Commun. Math. Phys., 141, 211-223, (1991).
213 Nelson, J.E., and Regge, T., “2+1 quantum gravity”, Phys. Lett. B, 272, 213-216, (1991).
214 Nelson, J.E., and Regge, T., “Quantisation of 2+1 gravity for genus 2”, Phys. Rev. D, 50, 5125-5129, (1994). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9311029 .
215 Noui, K., and Perez, A., “Three dimensional loop quantum gravity: coupling to point particles”, (2004). URL (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0402111 .
216 Noui, K., and Perez, A., “Three dimensional loop quantum gravity: physical scalar product and spin foam models”, (2004). URL (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0402110 .
217 Okamura, T., and Ishihara, H., “Perturbation of higher-genus spatial surfaces in (2 + 1)-dimensional gravity”, Phys. Rev. D, 46, 572-577, (1992).
218 Okamura, T., and Ishihara, H., “Perturbation of higher-genus surfaces in (2+1)-dimensional gravity with a cosmological constant”, Phys. Rev. D, 47, 1706-1708, (1993).
219 Ooguri, H., “Partition Functions and Topology-Changing Amplitudes in the 3D Lattice Gravity of Ponzano and Regge”, Nucl. Phys. B, 382, 276-304, (1992). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9112072 .
220 Ooguri, H., and Sasakura, N., “Discrete and Continuum Approaches to Three-Dimensional Quantum Gravity”, Mod. Phys. Lett. A, 6, 3591-3600, (1991). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9108006 .
221 Peldán, P., “Large Diffeomorphisms in (2+1)-Quantum Gravity on the Torus”, Phys. Rev. D, 53, 3147-3155, (1996). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9501020 .
222 Perez, A., “Spin foam models for quantum gravity”, Class. Quantum Grav., 20, R43-R104, (2003). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0301113 .
223 Petryk, R., and Schleich, K., “Conditional probabilities in Ponzano-Regge minisuperspace”, Phys. Rev. D, 67, 024019-1-13, (2003). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0109083 .
224 Pierri, M., “Probing Quantum General Relativity Through Exactly Soluble Midi-Superspaces II: Polarized Gowdy Models”, Int. J. Mod. Phys. D, 11, 135, (2002). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0101013 .
225 Ponzano, G., and Regge, T., in Bloch, F. et al., ed., Spectroscopic and group theoretical methods in physics: Racah memorial volume, (North-Holland, Amsterdam, Netherlands, 1968).
226 Puzio, R.S., “The Gauss map and 2 + 1 gravity”, Class. Quantum Grav., 11, 2667-2675, (1994). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9403012 .
227 Puzio, R.S., “On the square root of the Laplace-Beltrami operator as a Hamiltonian”, Class. Quantum Grav., 11, 609-620, (1994).
228 Rama, S.K., and Sen, S., “3-D manifolds, graph invariants, and Chern-Simons theory”, Mod. Phys. Lett. A, 7, 2065-2076, (1992).
229 Ratcliffe, J.G., and Tschantz, S.T., “On the Growth of the Number of Hyperbolic Gravitational Instantons with Respect to Volume”, Class. Quantum Grav., 17, 2999-3007, (2000). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0009004 .
230 Ray, D.B., and Singer, I.M., “ R -torsion and the Laplacian on Riemannian manifolds”, Adv. Math., 7, 145-210, (1971).
231 Regge, T., “General relativity without coordinates”, Nuovo Cimento, 19, 558-571, (1961).
232 Regge, T., and Williams, R.M., “Discrete structures in gravity”, J. Math. Phys., 41, 3964-3984, (2000). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0012035 .
233 Roberts, J., “Skein theory and Turaev-Viro invariants”, Topology, 34, 771-788, (1995).
234 Roberts, J.D., “Classical 6j-symbols and the tetrahedron”, Geom. Topol., 3, 21-66, (1999). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/math-ph/9812013 .
235 Roček, M., and Williams, R.M., “Three-dimensional Einstein gravity and Regge calculus”, Class. Quantum Grav., 2, 701-706, (1985).
236 Rovelli, C., “Quantum mechanics without time: A model”, Phys. Rev. D, 42, 2638-2646, (1990).
237 Rovelli, C., “Time in quantum gravity: An hypothesis”, Phys. Rev. D, 43, 442-456, (1991).
238 Rovelli, C., “The basis of the Ponzano-Regge-Turaev-Viro-Ooguri model is the loop representation basis”, Phys. Rev. D, 48, 2702-2707, (1993). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9304164 .
239 Rovelli, C., “Loop Quantum Gravity”, Living Rev. Relativity, 1, (1998). URL (cited on 5 January 2005):
http://www.livingreviews.org/lrr-1998-1 .
240 Rovelli, C., “Notes for a brief history of quantum gravity”, (2000). URL (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0006061 .
241 Rovelli, C., Colosi, D., Doplicher, L., Fairbairn, W., Modesto, L., and Noui, K., “Background independence in a nutshell”, (2004). URL (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0408079 .
242 Sasakura, N., “Exact three-dimensional lattice gravities”, Prog. Theor. Phys. Suppl., 110, 191-206, (1992).
243 Schwarz, A.S., “The partition function of degenerate quadratic functional and Ray-Singer invariants”, Lett. Math. Phys., 2, 247-252, (1978).
244 Schwarz, A.S., “The partition function of a degenerate functional”, Commun. Math. Phys., 67, 1-16, (1979).
245 Seriu, M., “Partition Function for (2+1)-Dimensional Einstein Gravity”, Phys. Rev. D, 55, 781-790, (1997). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9609052 .
246 Staruszkiewicz, A., “Gravitation theory in three-dimensional space”, Acta Phys. Pol., 6, 734, (1963).
247 Strominger, A., “Black Hole Entropy from Near-Horizon Microstates”, J. High Energy Phys., 02, 009, (1998). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9712251 .
248 Sullivan, D., and Thurston, W.P., “Manifolds with canonical coordinate charts: Some examples”, Enseign. Math., 29, 15-25, (1983).
249 ’t Hooft, G., “Non-perturbative 2 particle scattering amplitudes in 2+1 dimensional quantum gravity”, Commun. Math. Phys., 117, 685-700, (1988).
250 ’t Hooft, G., “Causality in (2+1)-dimensional gravity”, Class. Quantum Grav., 9, 1335-1348, (1992).
251 ’t Hooft, G., “Canonical Quantization of Gravitating Point Particles in 2+1 Dimensions”, Class. Quantum Grav., 10, 1653-1664, (1993). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9305008 .
252 ’t Hooft, G., “Classical N-particle cosmology in 2+1 dimensions”, Class. Quantum Grav., 10, S79-S91, (1993).
253 ’t Hooft, G., “The evolution of gravitating point particles in 2+1 dimensions”, Class. Quantum Grav., 10, 1023-1038, (1993).
254 ’t Hooft, G., “Quantization of Point Particles in 2+1 Dimensional Gravity and Space-Time Discreteness”, Class. Quantum Grav., 13, 1023-1040, (1996). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9601014 .
255 Taylor, Y.U., and Woodward, C.T., “6 j symbols for U q (sl 2 ) and non-Euclidean tetrahedra”, (2003). URL (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/math.QA/0305113 .
256 Thurston, W.P., The Geometry and Topology of Three-Manifolds, Princeton Lecture Notes, (Princeton University Press, Princeton, U.S.A., 1979). Related online version (cited on 5 January 2005):
External Linkhttp://www.msri.org/publications/books/gt3m/ .
257 Torre, C.G., “Gravitational observables and local symmetries”, Phys. Rev. D, 48, 2373-2376, (1993). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9306030 .
258 Torre, C.G., and Varadarajan, M., “Functional evolution of free quantum fields”, Class. Quantum Grav., 16, 2651-2668, (1999). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9811222 .
259 Troost, J., and Tsuchiya, A., “Towards black hole scattering”, Phys. Lett. B, 574, 301-308, (2003). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0307158 .
260 Turaev, V.G., “Quantum invariants of 3-manifolds and a glimpse of shadow topology”, C. R. Acad. Sci. Ser. I, 313, 395-398, (1991).
261 Turaev, V.G., Quantum Invariants of Knots and 3-Manifolds, vol. 18 of De Gruyter Studies in Mathematics, (Walter de Gruyter, Berlin, Germany; New York, U.S.A., 1994).
262 Turaev, V.G., and Viro, O.Y., “State Sum Invariants of 3-Manifolds and Quantum 6 j -Symbols”, Topology, 31, 865-902, (1992).
263 Unruh, W.G., and Newbury, P., “Solution to 2+1 gravity in dreibein formalism”, Int. J. Mod. Phys. D, 3, 131-138, (1994). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9307029 .
264 Valtancoli, P., “(2+1)-AdS Gravity on Riemann Surfaces”, Int. J. Mod. Phys. A, 16, 2817-2839, (2001). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9907174 .
265 Varadarajan, M., “On the metric operator for quantum cylindrical waves”, Class. Quantum Grav., 17, 189-199, (2000). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9910043 .
266 Waelbroeck, H., “2+1 lattice gravity”, Class. Quantum Grav., 7, 751, (1990).
267 Waelbroeck, H., “Time-dependent solutions of 2+1 gravity”, Phys. Rev. Lett., 64, 2222-2225, (1990).
268 Waelbroeck, H., “Solving the time-evolution problem in 2 + 1 gravity”, Nucl. Phys. B, 364, 475-494, (1991).
269 Waelbroeck, H., “Canonical quantization of (2+1)-dimensional gravity”, Phys. Rev. D, 50, 4982-4992, (1994). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9401022 .
270 Waelbroeck, H., and Zapata, J.A., “Translation symmetry in 2+1 Regge calculus”, Class. Quantum Grav., 10, 1923-1932, (1993).
271 Waelbroeck, H., and Zapata, J.A., “(2 + 1) covariant lattice theory and ’t Hooft’s formulation”, Class. Quantum Grav., 13, 1761-1768, (1996). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9601011 .
272 Wald, R.M., “Black hole entropy is Noether charge”, Phys. Rev. D, 48, R3427-R3431, (1993). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9307038 .
273 Waldron, A., “Milne and Torus Universes Meet”, (2004). URL (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/0408088 .
274 Welling, M., “The Torus Universe in the Polygon Approach to 2+1-Dimensional Gravity”, Class. Quantum Grav., 14, 929-943, (1997). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9606011 .
275 Welling, M., “Two particle Quantummechanics in 2+1 Gravity using Non Commuting”, Class. Quantum Grav., 14, 3313-3326, (1997). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9703058 .
276 Wheeler, J.A., “Superspace and the nature of quantum geometrodynamics”, in DeWitt, C., and Wheeler, J.A., eds., Battelle Rencontres: 1967 Lectures in Mathematics and Physics, (W.A. Benjamin, New York, U.S.A., 1968).
277 Witten, E., “2 + 1 dimensional gravity as an exactly soluble system”, Nucl. Phys. B, 311, 46-78, (1988).
278 Witten, E., “Quantum field theory and the Jones polynomial”, Commun. Math. Phys., 121, 351-399, (1989).
279 Witten, E., “Topology-changing amplitudes in 2 + 1 dimensional gravity”, Nucl. Phys. B, 323, 113-140, (1989).
280 Witten, E., “Quantization of Chern-Simons gauge theory with complex gauge group”, Commun. Math. Phys., 137, 29-66, (1991).
281 Witten, E., “Is Supersymmetry Really Broken?”, Int. J. Mod. Phys. A, 10, 1247-1248, (1995). Related online version (cited on 5 January 2005):
External Linkhttp://arXiv.org/abs/hep-th/9409111 .
282 Woodard, R.P., “Enforcing the Wheeler-DeWitt constraint the easy way”, Class. Quantum Grav., 10, 483-496, (1993).
283 Wu, S., “Topological quantum field theories on manifolds with a boundary”, Commun. Math. Phys., 136, 157-168, (1991).
284 York Jr, J.W., “Role of Conformal Three-Geometry in the Dynamics of Gravitation”, Phys. Rev. Lett., 28, 1082-1085, (1972).