1 Alexander, S., “A Quantum Gravitational Relaxation of The Cosmological Constant”, (2005). URL (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/hep-th/0503146.
2 Alexander, S., Malecki, J., and Smolin, L., “Quantum Gravity and Inflation”, Phys. Rev. D, 70, 044025, (2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/hep-th/0309045.
3 Alfaro, J., Morales-Técotl, H.A., and Urrutia, L.F., “Quantum gravity corrections to neutrino propagation”, Phys. Rev. Lett., 84, 2318-2321, (2000). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9909079.
4 Alfaro, J., Morales-Técotl, H.A., and Urrutia, L.F., “Loop quantum gravity and light propagation”, Phys. Rev. D, 65, 103509, (2002). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/hep-th/0108061.
5 Anninos, P., “Computational Cosmology: From the Early Universe to the Large Scale Structure”, Living Rev. Relativity, 4, lrr-2001-2, (2001). URL (cited on 09 October 2005):
http://www.livingreviews.org/lrr-2001-2.
6 Arnowitt, R., Deser, S., and Misner, C.W., “The dynamics of general relativity”, in Witten, L., ed., Gravitation: An Introduction to Current Research, 227-265, (Wiley, New York, U.S.A., 1962).
7 Ashtekar, A., “New Variables for Classical and Quantum Gravity”, Phys. Rev. Lett., 57, 2244-2247, (1986).
8 Ashtekar, A., “New Hamiltonian Formulation of General Relativity”, Phys. Rev. D, 36(6), 1587-1602, (1987).
9 Ashtekar, A., “Quantum Geometry and Gravity: Recent Advances”, in Bishop, N.T., and Maharaj, S.D., eds., General Relativity and Gravitation, Proceedings of the 16th International Conference on General Relativity and Gravitation, Durban, South Africa, 15-21 July 2001, (World Scientific, Singapore; River Edge, U.S.A., 2002). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0112038.
10 Ashtekar, A., “Quantum Geometry In Action: Big Bang and Black Holes”, in Lyubich, M., and Takhtajan, L., eds., Graphs and Patterns in Mathematics and Theoretical Physics, Proceedings of the conference dedicated to Dennis Sullivan’s 60th birthday, June 14-21, 2001, Stony Brook University, Stony Brook, NY, (American Mathematical Society, Providence, U.S.A., 2002). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/math-ph/0202008.
11 Ashtekar, A., Baez, J.C., Corichi, A., and Krasnov, K.V., “Quantum Geometry and Black Hole Entropy”, Phys. Rev. Lett., 80, 904-907, (1998). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9710007.
12 Ashtekar, A., Baez, J.C., and Krasnov, K.V., “Quantum Geometry of Isolated Horizons and Black Hole Entropy”, Adv. Theor. Math. Phys., 4, 1-94, (2000). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0005126.
13 Ashtekar, A., and Bojowald, M., “Black hole evaporation: A paradigm”, Class. Quantum Grav., 22, 3349-3362, (2005). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0504029.
14 Ashtekar, A., and Bojowald, M., “Quantum Geometry and the Schwarzschild Singularity”, (2005). URL (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0509075.
15 Ashtekar, A., Bojowald, M., and Lewandowski, J., “Mathematical structure of loop quantum cosmology”, Adv. Theor. Math. Phys., 7, 233-268, (2003). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0304074.
16 Ashtekar, A., Bojowald, M., and Willis, J., in preparation.
17 Ashtekar, A., Corichi, A., and Zapata, J.A., “Quantum Theory of Geometry III: Non-commutativity of Riemannian Structures”, Class. Quantum Grav., 15, 2955-2972, (1998). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9806041.
18 Ashtekar, A., Fairhurst, S., and Willis, J.L., “Quantum gravity, shadow states, and quantum mechanics”, Class. Quantum Grav., 20, 1031-1062, (2003). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0207106.
19 Ashtekar, A., and Lewandowski, J., “Projective Techniques and Functional Integration for Gauge Theories”, J. Math. Phys., 36(5), 2170-2191, (1995).
20 Ashtekar, A., and Lewandowski, J., “Quantum Theory of Geometry I: Area Operators”, Class. Quantum Grav., 14, A55-A82, (1997). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9602046.
21 Ashtekar, A., and Lewandowski, J., “Quantum Theory of Geometry II: Volume Operators”, Adv. Theor. Math. Phys., 1, 388-429, (1997). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9711031.
22 Ashtekar, A., and Lewandowski, J., “Background independent quantum gravity: A status report”, Class. Quantum Grav., 21, R53-R152, (2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0404018.
23 Ashtekar, A., Lewandowski, J., Marolf, D., Mourão, J.M., and Thiemann, T., “Quantization of Diffeomorphism Invariant Theories of Connections with Local Degrees of Freedom”, J. Math. Phys., 36(11), 6456-6493, (1995). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9504018.
24 Ashtekar, A., Pawlowski, T., and Singh, P., in preparation.
25 Ashtekar, A., and Samuel, J., “Bianchi Cosmologies: The Role of Spatial Topology”, Class. Quantum Grav., 8, 2191-2215, (1991).
26 Ashtekar, A., and Schilling, T.A., “Geometrical Formulation of Quantum Mechanics”, in Harvey, A., ed., On Einstein’s Path: Essays in Honor of Engelbert Schücking, Proceedings of a symposium held at the Physics department in New York University, December 12-13, 1996, 23-65, (Springer, New York, U.S.A., 1999). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9706069.
27 Ashtekar, A., Singh, P., and Vandersloot, K., in preparation.
28 Ashtekar, A., and Tate, R.S., “An Algebraic Extension of Dirac Quantization: Examples”, J. Math. Phys., 35, 6434, (1994). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9405073.
29 Banerjee, K., and Date, G., “Discreteness Corrections to the Effective Hamiltonian of Isotropic Loop Quantum Cosmology”, Class. Quantum Grav., 22, 2017-2033, (2005). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0501102.
30 Barbero G, J.F., “Real Ashtekar Variables for Lorentzian Signature Space-Times”, Phys. Rev. D, 51(10), 5507-5510, (1995). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9410014.
31 Belinskii, V.A., Khalatnikov, I.M., and Lifschitz, E.M., “A general solution of the Einstein equations with a time singularity”, Adv. Phys., 13, 639-667, (1982).
32 Berger, B.K., “Numerical Approaches to Spacetime Singularities”, Living Rev. Relativity, 5, lrr-2002-1, (2002). URL (cited on 09 October 2005):
http://www.livingreviews.org/lrr-2002-1.
33 Bergmann, P.G., “Observables in General Relativity”, Rev. Mod. Phys., 33, 510-514, (1961).
34 Bičák, J., and Schmidt, B., “Asymptotically flat radiative space-times with boost-rotation symmetry: The general structure”, Phys. Rev. D, 40, 1827-1853, (1989).
35 Bojowald, M., “Abelian BF-Theory and Spherically Symmetric Electromagnetism”, J. Math. Phys., 41, 4313-4329, (2000). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/hep-th/9908170.
36 Bojowald, M., “Loop Quantum Cosmology: I. Kinematics”, Class. Quantum Grav., 17, 1489-1508, (2000). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9910103.
37 Bojowald, M., “Loop Quantum Cosmology: II. Volume Operators”, Class. Quantum Grav., 17, 1509-1526, (2000). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9910104.
38 Bojowald, M., Quantum Geometry and Symmetry, Ph.D. Thesis, (RWTH Aachen, Aachen, Germany, 2000).
39 Bojowald, M., “Absence of a Singularity in Loop Quantum Cosmology”, Phys. Rev. Lett., 86, 5227-5230, (2001). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0102069.
40 Bojowald, M., “Dynamical Initial Conditions in Quantum Cosmology”, Phys. Rev. Lett., 87, 121301, (2001). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0104072.
41 Bojowald, M., “Inverse Scale Factor in Isotropic Quantum Geometry”, Phys. Rev. D, 64, 084018, (2001). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0105067.
42 Bojowald, M., “Loop Quantum Cosmology III: Wheeler-DeWitt Operators”, Class. Quantum Grav., 18, 1055-1070, (2001). Related online version (cited on 23 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0008052.
43 Bojowald, M., “Loop Quantum Cosmology IV: Discrete Time Evolution”, Class. Quantum Grav., 18, 1071-1088, (2001). Related online version (cited on 23 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0008053.
44 Bojowald, M., “The Semiclassical Limit of Loop Quantum Cosmology”, Class. Quantum Grav., 18, L109-L116, (2001). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0105113.
45 Bojowald, M., “Inflation from quantum geometry”, Phys. Rev. Lett., 89, 261301, (2002). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0206054.
46 Bojowald, M., “Isotropic Loop Quantum Cosmology”, Class. Quantum Grav., 19, 2717-2741, (2002). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0202077.
47 Bojowald, M., “Quantization ambiguities in isotropic quantum geometry”, Class. Quantum Grav., 19, 5113-5130, (2002). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0206053.
48 Bojowald, M., “Homogeneous loop quantum cosmology”, Class. Quantum Grav., 20, 2595-2615, (2003). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0303073.
49 Bojowald, M., “Initial Conditions for a Universe”, Gen. Relativ. Gravit., 35, 1877-1883, (2003). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0305069.
50 Bojowald, M., “Loop quantum cosmology: Recent progress”, in Iyer, B.R., Kuriakose, V.C., and Vishveshwara, C.V., eds., Gravitation and Cosmology (ICGC-2004), Proceedings of the Fifth International Conference on Gravitation and Cosmology (ICGC-2004), Cochin University of Science and Technology, Cochin, India, vol. 63 of Pramana, Special Issues, 765-776, (Indian Academy of Sciences, Bangalore, India, 2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0402053.
51 Bojowald, M., “Quantum Gravity and the Big Bang”, in Basa, S., Ealet, A., Le Brun, V., Mazure, A., and Virey, J.M., eds., Where Cosmology and Fundamental Physics Meet, Proceedings of the IVth Marseille International Cosmology Conference, 54-58, (Frontier Group, France, 2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0309478.
52 Bojowald, M., “Spherically Symmetric Quantum Geometry: States and Basic Operators”, Class. Quantum Grav., 21, 3733-3753, (2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0407017.
53 Bojowald, M., “Cosmology: Original questions”, Nature, 436, 920-921, (2005).
54 Bojowald, M., “Degenerate Configurations, Singularities and the Non-Abelian Nature of Loop Quantum Gravity”, (2005). URL (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0508118.
55 Bojowald, M., “The Early Universe in Loop Quantum Cosmology”, in Cervantes, J., Alcubierre, M., and Montesinos, M., eds., Approaches to Quantum Gravity, VI Mexican School on Gravitation and Mathematical Physics, vol. 24 of J. Phys.: Conf. Ser., 77-86, (Institute of Physics Publishing, Bristol, U.K., Philadelphia, U.S.A., 2005). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0503020.
56 Bojowald, M., “Loop Quantum Cosmology”, in Ashtekar, A., ed., 100 Years of Relativity. Space-Time Structure: Einstein and Beyond, (World Scientific, Singapore, 2005). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0505057.
57 Bojowald, M., “Non-singular black holes and degrees of freedom in quantum gravity”, Phys. Rev. Lett., 95, 061301, (2005). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0506128.
58 Bojowald, M., “Quantum Riemannian Geometry and Black Holes”, in Moore, D.C., ed., Trends in Quantum Gravity Research, (Nova Science, New York, U.S.A., 2006). in press.
59 Bojowald, M., and Date, G., “Consistency conditions for fundamentally discrete theories”, Class. Quantum Grav., 21, 121-143, (2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0307083.
60 Bojowald, M., and Date, G., “Quantum Suppression of the Generic Chaotic Behavior Close to Cosmological Singularities”, Phys. Rev. Lett., 92, 071302, (2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0311003.
61 Bojowald, M., Date, G., and Hossain, G.M., “The Bianchi IX model in loop quantum cosmology”, Class. Quantum Grav., 21, 3541-3569, (2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0404039.
62 Bojowald, M., Date, G., and Vandersloot, K., “Homogeneous loop quantum cosmology: The role of the spin connection”, Class. Quantum Grav., 21, 1253-1278, (2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0311004.
63 Bojowald, M., Hernández, H.H., and Morales-Técotl, H.A., “Perturbative degrees of freedom in loop quantum gravity: Anisotropies”, (2005). URL (cited on 06 December 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0511058.
64 Bojowald, M., and Hinterleitner, F., “Isotropic loop quantum cosmology with matter”, Phys. Rev. D, 66, 104003, (2002). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0207038.
65 Bojowald, M., and Kastrup, H.A., “Symmetric States in Quantum Geometry”, in Gurzadyan, V.G., Jantzen, R.T., and Ruffini, R., eds., The Ninth Marcel Grossmann Meeting: On recent developments in theoretical and experimental general relativity, gravitation, and relativistic field theories, Part B, Proceedings of the MGIX MM meeting held at the University of Rome “La Sapienza”, 2-8 July 2000, 1271-1272, (World Scientific, Singapore; River Edge, U.S.A., 2000). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0101061.
66 Bojowald, M., and Kastrup, H.A., “Symmetry reduction for quantized diffeomorphism-invariant theories of connections”, Class. Quantum Grav., 17, 3009-3043, (2000). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/hep-th/9907042.
67 Bojowald, M., Lidsey, J.E., Mulryne, D.J., Singh, P., and Tavakol, R., “Inflationary Cosmology and Quantization Ambiguities in Semi-Classical Loop Quantum Gravity”, Phys. Rev. D, 70, 043530, (2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0403106.
68 Bojowald, M., Maartens, R., and Singh, P., “Loop Quantum Gravity and the Cyclic Universe”, Phys. Rev. D, 70, 083517, (2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/hep-th/0407115.
69 Bojowald, M., and Morales-Técotl, H.A., “Cosmological applications of loop quantum gravity”, in Bretón, N., Cervantes-Cota, J.L., and Salgado, M., eds., The Early Universe and Observational Cosmology, Fifth Mexican School on Gravitation and Mathematical Physics, November 2002, vol. 646 of Lecture Notes in Physics, 421-462, (Springer, Berlin, Germany; New York, U.S.A., 2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0306008.
70 Bojowald, M., Morales-Técotl, H.A., and Sahlmann, H., “Loop quantum gravity phenomenology and the issue of Lorentz invariance”, Phys. Rev. D, 71, 084012-1-7, (2005). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0411101.
71 Bojowald, M., and Rej, A., “Asymptotic Properties of Difference Equations for Isotropic Loop Quantum Cosmology”, Class. Quantum Grav., 22, 3399-3420, (2005). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0504100.
72 Bojowald, M., Singh, P., and Skirzewski, A., “Coordinate time dependence in quantum gravity”, Phys. Rev. D, 70, 124022, (2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0408094.
73 Bojowald, M., and Skirzewski, A., “Effective Equations of Motion for Quantum Systems”, (2005). URL (cited on 06 December 2005):
External Linkhttp://arXiv.org/abs/math-ph/0511043.
74 Bojowald, M., and Swiderski, R., “The Volume Operator in Spherically Symmetric Quantum Geometry”, Class. Quantum Grav., 21, 4881-4900, (2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0407018.
75 Bojowald, M., and Swiderski, R., “Spherically Symmetric Quantum Geometry: Hamiltonian Constraint”, (2005). URL (cited on 06 December 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0511108.
76 Bojowald, M., and Swiderski, R., “Spherically Symmetric Quantum Horizons”, Phys. Rev. D, 71, 081501(R), (2005). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0410147.
77 Bojowald, M., and Vandersloot, K., “Loop quantum cosmology, boundary proposals, and inflation”, Phys. Rev. D, 67, 124023, (2003). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0303072.
78 Bojowald, M., and Vandersloot, K., “Loop Quantum Cosmology and Boundary Proposals”, in Novello, M., Perez-Bergliaffa, S., and Ruffini, R., eds., The Tenth Marcel Grossmann Meeting: On recent developments in theoretical and experimental general relativity, gravitation, and relativistic field theories, Proceedings of the meeting held at Rio de Janeiro, July 20-26, 2003, (World Scientific, Singapore, 2005). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0312103. in press.
79 Booth, I., and Fairhurst, S., “The first law for slowly evolving horizons”, Phys. Rev. Lett., 92, 011102, (2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0307087.
80 Borde, A., Guth, A.H., and Vilenkin, A., “Inflationary spacetimes are not past-complete”, Phys. Rev. Lett., 90, 151301, (2003). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0110012.
81 Bröcker, T., and tom Dieck, T., Representations of Compact Lie Groups, vol. 98 of Graduate Texts in Mathematics, (Springer, New York, U.S.A., 1995), 2nd edition.
82 Brodbeck, O., “On Symmetric Gauge Fields for Arbitrary Gauge and Symmetry Groups”, Helv. Phys. Acta, 69, 321-324, (1996). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9610024.
83 Brunnemann, J., and Thiemann, T., “Simplification of the Spectral Analysis of the Volume Operator in Loop Quantum Gravity”, (2004). URL (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0405060.
84 Brunnemann, J., and Thiemann, T., “On (Cosmological) Singularity Avoidance in Loop Quantum Gravity”, (2005). URL (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0505032.
85 Brunnemann, J., and Thiemann, T., “Unboundedness of Triad-Like Operators in Loop Quantum Gravity”, (2005). URL (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0505033.
86 Cartin, D., and Khanna, G., “Absence of pre-classical solutions in Bianchi I loop quantum cosmology”, Phys. Rev. Lett., 94, 111302, (2005). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0501016.
87 Cartin, D., Khanna, G., and Bojowald, M., “Generating function techniques for loop quantum cosmology”, Class. Quantum Grav., 21, 4495-4509, (2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0405126.
88 Connors, S., and Khanna, G., “Approximate pre-classical solutions in loop quantum cosmology”, (2005). URL (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0509081.
89 Conradi, H.D., and Zeh, H.D., “Quantum cosmology as an initial value problem”, Phys. Lett. A, 154, 321-326, (1991).
90 Copeland, E.J., Lidsey, J.E., and Mizuno, S., “Correspondence between Loop-inspired and Braneworld Cosmology”, (2005). URL (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0510022.
91 Cordero, P., “Canonical Formulation of the Spherically Symmetric Einstein-Yang-Mills-Higgs System for a General Gauge Group”, Ann. Phys. (N.Y.), 108, 79-98, (1977).
92 Cordero, P., and Teitelboim, C., “Hamiltonian Treatment of the Spherically Symmetric Einstein-Yang-Mills System”, Ann. Phys. (N.Y.), 100, 607-631, (1976).
93 Corichi, A., and Hauser, A., “Bibliography of Publications related to Classical Self-dual variables and Loop Quantum Gravity”, (2005). URL (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0509039.
94 Coule, D.H., “Contrasting Quantum Cosmologies”, (2003). URL (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0312045.
95 Coule, D.H., “Quantum Cosmological Models”, Class. Quantum Grav., 22, R125-R166, (2005). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0412026.
96 Date, G., “Quantum Geometric Description of Cosmological Models”, Mod. Phys. Lett. A, 17, 967-976, (2002). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0205100.
97 Date, G., “Absence of the Kasner singularity in the effective dynamics from loop quantum cosmology”, Phys. Rev. D, 71, 127502, (2005). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0505002.
98 Date, G., “Preclassical solutions of the vacuum Bianchi I loop quantum cosmology”, Phys. Rev. D, 72, 067301-1-4, (2005). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0505030.
99 Date, G., and Hossain, G.M., “Effective Hamiltonian for Isotropic Loop Quantum Cosmology”, Class. Quantum Grav., 21, 4941-4953, (2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0407073.
100 Date, G., and Hossain, G.M., “Genericity of Big Bounce in isotropic loop quantum cosmology”, Phys. Rev. Lett., 94, 011302, (2005). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0407074.
101 Date, G., and Hossain, G.M., “Genericity of inflation in isotropic loop quantum cosmology”, Phys. Rev. Lett., 94, 011301, (2005). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0407069.
102 De Pietri, R., “Spin networks and recoupling in loop quantum gravity”, Nucl. Phys. B (Proc. Suppl.), 57, 251-254, (1997). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9701041.
103 De Pietri, R., and Rovelli, C., “Geometry Eigenvalues and the Scalar Product from Recoupling Theory in Loop Quantum Gravity”, Phys. Rev. D, 54(4), 2664-2690, (1996).
104 DeWitt, B.S., “Quantum Theory of Gravity. I. The Canonical Theory”, Phys. Rev., 160(5), 1113-1148, (1967).
105 Dirac, P.A.M., Lectures on Quantum Mechanics, vol. 2 of Belfer Graduate School of Science. Monographs Series, (Yeshiva Press, New York, U.S.A., 1964).
106 Dittrich, B., “Partial and Complete Observables for Hamiltonian Constrained Systems”, (2004). URL (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0411013.
107 Dittrich, B., and Loll, R., “Counting a black hole in Lorentzian product triangulations”, (2004). URL (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0506035.
108 Domagala, M., and Lewandowski, J., “Black hole entropy from Quantum Geometry”, Class. Quantum Grav., 21, 5233-5243, (2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0407051.
109 Einstein, A., and Rosen, N., “On Gravitational Waves”, J. Franklin Inst., 233, 43, (1937).
110 Ellis, G.F.R., and Maartens, R., “The Emergent Universe: inflationary cosmology with no singularity”, Class. Quantum Grav., 21, 223-232, (2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0211082.
111 Ellis, G.F.R., and MacCallum, M.A.H., “A Class of Homogeneous Cosmological Models”, Commun. Math. Phys., 12, 108-141, (1969).
112 Ellis, G.F.R., Murugan, J., and Tsagas, C.G., “The Emergent Universe: An Explicit Construction”, Class. Quantum Grav., 21, 233-250, (2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0307112.
113 Fleischhack, C., “Representations of the Weyl Algebra in Quantum Geometry”, (2004). URL (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/math-ph/0407006.
114 Freidel, L., and Smolin, L., “The linearization of the Kodama state”, Class. Quantum Grav., 21, 3831-3844, (2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/hep-th/0310224.
115 Gambini, R., and Pullin, J., “Nonstandard optics from quantum spacetime”, Phys. Rev. D, 59, 124021, (1999). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9809038.
116 Gaul, M., and Rovelli, C., “A generalized Hamiltonian Constraint Operator in Loop Quantum Gravity and its simplest Euclidean Matrix Elements”, Class. Quantum Grav., 18, 1593-1624, (2001). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0011106.
117 Giesel, K., and Thiemann, T., “Consistency Check on Volume and Triad Operator Quantisation in Loop Quantum Gravity I”, (2005). URL (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0507036.
118 Giles, R., “The reconstruction of gauge potentials from Wilson loops”, Phys. Rev. D, 24, 2160-2168, (1981).
119 Green, D., and Unruh, W.G., “Difficulties with recollapsing models in closed isotropic loop quantum cosmology”, Phys. Rev. D, 70, 103502-1-7, (2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0408074.
120 Halliwell, J.J., and Hawking, S.W., “Origin of Structure in the Universe”, Phys. Rev. D, 31(8), 1777-1791, (1985).
121 Hartle, J.B., and Hawking, S.W., “Wave function of the Universe”, Phys. Rev. D, 28, 2960-2975, (1983).
122 Hawking, S.W., and Ellis, G.F.R., The Large Scale Structure of Space-Time, (Cambridge University Press, Cambridge, U.K., 1973).
123 Hawking, S.W., and Penrose, R., “The singularities of gravitational collapse and cosmology”, Proc. R. Soc. London, Ser. A, 314, 529-548, (1970).
124 Hertog, T., and Horowitz, G.T., “Holographic Description of AdS Cosmologies”, J. High Energy Phys., 2005(04), 005, (2005). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/hep-th/0503071.
125 Hinterleitner, F., and Major, S., “Isotropic Loop Quantum Cosmology with Matter II: The Lorentzian Constraint”, Phys. Rev. D, 68, 124023, (2003). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0309035.
126 Hofmann, S., and Winkler, O., “The Spectrum of Fluctuations in Inflationary Quantum Cosmology”, (2004). URL (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0411124.
127 Hossain, G.M., “Hubble operator in isotropic loop quantum cosmology”, Class. Quantum Grav., 21, 179-196, (2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0308014.
128 Hossain, G.M., “Large volume quantum correction in loop quantum cosmology: Graviton illusion?”, (2005). URL (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0504125.
129 Hossain, G.M., “On Energy Conditions and Stability in Effective Loop Quantum Cosmology”, Class. Quantum Grav., 22, 2653-2670, (2005). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0503065.
130 Hossain, G.M., “Primordial Density Perturbation in Effective Loop Quantum Cosmology”, Class. Quantum Grav., 22, 2511-2532, (2005). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0411012.
131 Husain, V., and Winkler, O., “On singularity resolution in quantum gravity”, Phys. Rev. D, 69, 084016, (2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0312094.
132 Husain, V., and Winkler, O., “Quantum black holes”, (2004). URL (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0412039.
133 Immirzi, G., “Real and Complex Connections for Canonical Gravity”, Class. Quantum Grav., 14, L177-L181, (1997).
134 Jones, A., and Lasenby, A.N., “The Cosmic Microwave Background”, Living Rev. Relativity, 1, lrr-1998-11, (1998). URL (cited on 09 October 2005):
http://www.livingreviews.org/lrr-1998-11.
135 Kasner, E., “Geometrical Theorems on Einstein’s Cosmological Equations”, Am. J. Math., 43, 217, (1921).
136 Kastrup, H.A., and Thiemann, T., “Spherically Symmetric Gravity as a Completely Integrable System”, Nucl. Phys. B, 425, 665-686, (1994). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9401032.
137 Khoury, J., Ovrut, B.A., Steinhardt, P.J., and Turok, N., “The Ekpyrotic Universe: Colliding Branes and the Origin of the Hot Big Bang”, Phys. Rev. D, 64, 123522, (2001). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/hep-th/0103239.
138 Kobayashi, S., and Nomizu, K., Foundations of Differential Geometry, Vol. 1, (John Wiley, New York, U.S.A., 1963).
139 Kobayashi, S., and Nomizu, K., Foundations of Differential Geometry, Vol. 2, (John Wiley, New York, U.S.A., 1969).
140 Kodama, H., “Specialization of Ashtekar’s Formalism to Bianchi Cosmology”, Prog. Theor. Phys., 80(6), 1024-1040, (1988).
141 Kodama, H., “Holomorphic wave function of the Universe”, Phys. Rev. D, 42, 2548-2565, (1990).
142 Kontoleon, N., and Wiltshire, D.L., “Operator ordering and consistency of the wavefunction of the Universe”, Phys. Rev. D, 59, 063513, (1999). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9807075.
143 Kuchař, K.V., “Time and interpretations of quantum gravity”, in Kunstatter, G., Vincent, D.E., and Williams, J.G., eds., General Relativity and Relativistic Astrophysics, Proceedings of the Fourth Canadian Conference, held 16-18 May, 1991 at University of Winnipeg, (World Scientific, Singapore; River Edge, U.S.A., 1992).
144 Kuchař, K.V., and Ryan, M.P., “Is minisuperspace quantization valid?: Taub in Mixmaster”, Phys. Rev. D, 40, 3982-3996, (1989).
145 Lewandowski, J., Newman, E.T., and Rovelli, C., “Variations of the parallel propagator and holonomy operator and the Gauss law constraint”, J. Math. Phys., 34, 4646-4654, (1993).
146 Lewandowski, J., Okołów, A., Sahlmann, H., and Thiemann, T., “Uniqueness of diffeomorphism invariant states on holonomy-flux algebras”, (2005). URL (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0504147.
147 Lidsey, J.E., “Early Universe Dynamics in Semi-Classical Loop Quantum Cosmology”, J. Cosmol. Astropart. Phys., 2004(12), 007, (2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0411124.
148 Lidsey, J.E., Mulryne, D.J., Nunes, N.J., and Tavakol, R., “Oscillatory Universes in Loop Quantum Cosmology and Initial Conditions for Inflation”, Phys. Rev. D, 70, 063521, (2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0406042.
149 Loll, R., “Simplifying the Spectral Analysis of the Volume Operator”, Nucl. Phys. B, 500, 405-420, (1997). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9706038.
150 Loll, R., “Discrete Approaches to Quantum Gravity in Four Dimensions”, Living Rev. Relativity, 1, lrr-1998-13, (1998). URL (cited on 09 October 2005):
http://www.livingreviews.org/lrr-1998-13.
151 Maartens, R., “Brane-World Gravity”, Living Rev. Relativity, 7, lrr-2004-7, (2004). URL (cited on 09 October 2005):
http://www.livingreviews.org/lrr-2004-7.
152 Malecki, J., “Inflationary Quantum Cosmology: General Framework and Exact Bianchi I Solution”, Phys. Rev. D, 70, 084040, (2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0407114.
153 Marolf, D., “Refined Algebraic Quantization: Systems with a Single Constraint”, (1995). URL (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9508015.
154 Marolf, D., and Mourão, J.M., “On the support of the Ashtekar-Lewandowski measure”, Commun. Math. Phys., 170, 583-606, (1995). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/hep-th/9403112.
155 Meissner, K.A., “Black hole entropy in Loop Quantum Gravity”, Class. Quantum Grav., 21, 5245-5251, (2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0407052.
156 Misner, C.W., “The Isotropy of the Universe”, Astrophys. J., 151, 431-457, (1968).
157 Misner, C.W., “Mixmaster Universe”, Phys. Rev. Lett., 22, 1071-1074, (1969).
158 Modesto, L., “The Kantowski-Sachs Space-Time in Loop Quantum Gravity”, (2004). URL (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0411032.
159 Modesto, L., “Loop quantum black hole”, (2005). URL (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0509078.
160 Mulryne, D.J., Tavakol, R., Lidsey, J.E., and Ellis, G.F.R., “An emergent universe from a loop”, Phys. Rev. D, 71, 123512, (2005). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0502589.
161 Nicolai, H., Peeters, K., and Zamaklar, M., “Loop quantum gravity: an outside view”, Class. Quantum Grav., 22, R193-R247, (2005). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/hep-th/0501114.
162 Noui, K., Perez, A., and Vandersloot, K., “On the Physical Hilbert Space of Loop Quantum Cosmology”, Phys. Rev. D, 71, 044025, (2005). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0411039.
163 Nunes, N.J., “Inflation: A graceful entrance from Loop Quantum Cosmology”, (2005). URL (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0507683.
164 Okołów, A., and Lewandowski, J., “Diffeomorphism covariant representations of the holonomy-flux star-algebra”, Class. Quantum Grav., 20, 3543-3568, (2003). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0302059.
165 Padmanabhan, T., “Acceptable Density Perturbations From Inflation due to Quantum Gravitational Damping”, Phys. Rev. Lett., 60, 2229-2230, (1988).
166 Padmanabhan, T., Seshadri, T.R., and Singh, T.P., “Making inflation work: Damping of density perturbations due to Planck energy cutoff”, Phys. Rev. D, 39, 2100-2107, (1989).
167 Perez, A., “Introduction to Loop Quantum Gravity and Spin Foams”, (2004). URL (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0409061. Lectures presented at the II International Conference of Fundamental Interactions, Pedra Azul, Brazil, June 2004.
168 Rendall, A.D., “The Nature of Spacetime Singularities”, in Ashtekar, A., ed., 100 Years of Relativity. Space-Time Structure: Einstein and Beyond, (World Scientific, Singapore, 2005). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0503112.
169 Rovelli, C., “Quantum Reference Systems”, Class. Quantum Grav., 8, 317-332, (1991).
170 Rovelli, C., “Time in Quantum Gravity: An Hypothesis”, Phys. Rev. D, 43, 442-456, (1991).
171 Rovelli, C., “What is Observable in Classical and Quantum Gravity?”, Class. Quantum Grav., 8, 297-316, (1991).
172 Rovelli, C., “Loop Quantum Gravity”, Living Rev. Relativity, 1, lrr-1998-1, (1998). URL (cited on 09 October 2005):
http://www.livingreviews.org/lrr-1998-1.
173 Rovelli, C., “A dialog on quantum gravity”, Int. J. Mod. Phys. D, 12, 1509-1528, (2003). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/hep-th/0310077.
174 Rovelli, C., Quantum Gravity, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 2004).
175 Rovelli, C., and Smolin, L., “Loop Space Representation of Quantum General Relativity”, Nucl. Phys. B, 331, 80-152, (1990).
176 Rovelli, C., and Smolin, L., “The physical Hamiltonian in nonperturbative quantum gravity”, Phys. Rev. Lett., 72, 446-449, (1994). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9308002.
177 Rovelli, C., and Smolin, L., “Discreteness of Area and Volume in Quantum Gravity”, Nucl. Phys. B, 442, 593-619, (1995). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9411005. Erratum: Nucl. Phys. B 456 (1995) 753.
178 Rovelli, C., and Smolin, L., “Spin networks and quantum gravity”, Phys. Rev. D, 52, 5743-5759, (1995).
179 Sahlmann, H., “Some Comments on the Representation Theory of the Algebra Underlying Loop Quantum Gravity”, (2002). URL (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0207111.
180 Sahlmann, H., “When Do Measures on the Space of Connections Support the Triad Operators of Loop Quantum Gravity?”, (2002). URL (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0207112.
181 Sahlmann, H., and Thiemann, T., “Towards the QFT on Curved Spacetime Limit of QGR. I: A General Scheme”, (2002). URL (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0207030.
182 Sahlmann, H., and Thiemann, T., “Towards the QFT on Curved Spacetime Limit of QGR. II: A Concrete Implementation”, (2002). URL (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0207031.
183 Sahlmann, H., and Thiemann, T., “On the superselection theory of the Weyl algebra for diffeomorphism invariant quantum gauge theories”, (2003). URL (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0302090.
184 Sahlmann, H., Thiemann, T., and Winkler, O., “Coherent states for canonical quantum general relativity and the infinite tensor product extension”, Nucl. Phys. B, 606, 401-440, (2001). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0102038.
185 Shojai, A., and Shojai, F., “Causal Loop Quantum Gravity and Cosmological Solutions”, Europhys. Lett., 71, 886, (2005). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0409020.
186 Singh, P., “Effective State Metamorphosis in Semi-Classical Loop Quantum Cosmology”, Class. Quantum Grav., 22, 4203-4216, (2005). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0502086.
187 Singh, P., and Toporensky, A., “Big Crunch Avoidance in k=1 Semi-Classical Loop Quantum Cosmology”, Phys. Rev. D, 69, 104008, (2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0312110.
188 Singh, P., and Vandersloot, K., “Semiclassical states, effective dynamics, and classical emergence in loop quantum cosmology”, Phys. Rev. D, 72, 084004-1-8, (2005). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0507029.
189 Smolin, L., “The Classical Limit and the Form of the Hamiltonian Constraint in Non-Perturbative Quantum General Relativity”, (1996). URL (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9609034.
190 Smolin, L., “An invitation to loop quantum gravity”, (2004). URL (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/hep-th/0408048.
191 Thiemann, T., “Anomaly-free formulation of non-perturbative, four-dimensional Lorentzian quantum gravity”, Phys. Lett. B, 380, 257-264, (1996). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9606088.
192 Thiemann, T., “A Length Operator for Canonical Quantum Gravity”, J. Math. Phys., 39, 3372-3392, (1998). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9606092.
193 Thiemann, T., “QSD V: Quantum Gravity as the Natural Regulator of Matter Quantum Field Theories”, Class. Quantum Grav., 15, 1281-1314, (1998). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9705019.
194 Thiemann, T., “Quantum Spin Dynamics (QSD)”, Class. Quantum Grav., 15, 839-873, (1998). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9606089.
195 Thiemann, T., “Introduction to Modern Canonical Quantum General Relativity”, (2001). URL (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0110034.
196 Thiemann, T., and Kastrup, H.A., “Canonical Quantization of Spherically Symmetric Gravity in Ashtekar’s Self-Dual Representation”, Nucl. Phys. B, 399, 211-258, (1993). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9310012.
197 Tsujikawa, S., Singh, P., and Maartens, R., “Loop quantum gravity effects on inflation and the CMB”, Class. Quantum Grav., 21, 5767-5775, (2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0311015.
198 Vaas, R., “Beyond Space And Time (Jenseits von Raum und Zeit)”, Bild der Wiss., 2003(12), 50-56, (2003). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/physics/0401128. English translation by Amitabha Sen.
199 Vaas, R., “The Inverted Big-Bang (Der umgestülpte Urknall)”, Bild der Wiss., 2004(4), 50-56, (2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/physics/0407071. Translated by Amitabha Sen.
200 Vaas, R., “Time before Time: Classifications of universes in contemporary cosmology, and how to avoid the antinomy of the beginning and eternity of the world”, (2004). URL (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/physics/0408111.
201 Vandersloot, K., “On the Hamiltonian Constraint of Loop Quantum Cosmology”, Phys. Rev. D, 71, 103506, (2005). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0502082.
202 Velhinho, J.M., “Comments on the kinematical structure of loop quantum cosmology”, Class. Quantum Grav., 21, L109-L113, (2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0406008.
203 Vereshchagin, G.V., “Qualitative Approach to Semi-Classical Loop Quantum Cosmology”, J. Cosmol. Astropart. Phys., 2004(07), 013, (2004). Related online version (cited on 09 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0406108.
204 Vilenkin, A., “Quantum creation of universes”, Phys. Rev. D, 30, 509-511, (1984).
205 Will, C.M., “The Confrontation between General Relativity and Experiment”, Living Rev. Relativity, 4, lrr-2001-4, (2001). URL (cited on 09 October 2005):
http://www.livingreviews.org/lrr-2001-4.
206 Willis, J.L., On the Low-Energy Ramifications and a Mathematical Extension of Loop Quantum Gravity, Ph.D. Thesis, (The Pennsylvania State University, University Park, U.S.A., 2004). Related online version (cited on 09 October 2005):
External Linkhttp://cgpg.gravity.psu.edu/archives/thesis/2004/.