1 Amati, D., and Russo, J.G., “Black holes by analytic continuation”, Phys. Rev. D, 56, 974-982, (1997). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/9602125.
2 Amelino-Camelia, G., “Doubly-Special Relativity: First Results and Key Open Problems”, Int. J. Mod. Phys. D, 11, 1643-1669, (2002). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0210063.
3 Amelino-Camelia, G., Ellis, J.R., Mavromatos, N.E., Nanopoulos, D.V., and Sarkar, S., “Potential Sensitivity of Gamma-Ray Burster Observations to Wave Dispersion in Vacuo”, Nature, 393, 763-765, (1998). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/astro-ph/9712103.
4 Anglin, J.R., “Influence functionals and the accelerating detector”, Phys. Rev. D, 47, 4525-4537, (1993). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/9210035.
5 Antunes, N.D., “Numerical simulation of vacuum particle production: applications to cosmology, dynamical Casimir effect and time-dependent non-homogeneous dielectrics”, (2003). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-ph/0310131.
6 Arbona, A., “Is a classical Euclidean TOE reasonable?”, (2003). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0310007.
7 Arteaga, D., Parentani, R., and Verdaguer, E., “Propagation in a thermal graviton background”, Phys. Rev. D, 70, 044019, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0311065.
8 Balazs, N.L., “Effect of a gravitational field, due to a rotating body, on the plane of polarization of an electromagnetic wave”, Phys. Rev., 110, 236-239, (1958).
9 Balbinot, R., Fagnocchi, S., and Fabbri, A., “Quantum effects in acoustic black holes: The backreaction”, Phys. Rev. D, 71, 064019-1-11, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0405098.
10 Balbinot, R., Fagnocchi, S., Fabbri, A., and Procopio, G.P., “Backreaction in Acoustic Black Holes”, Phys. Rev. Lett., 95, 161302-1-4, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0405096.
11 Baldovin, F., Novello, M., Perez Bergliaffa, S.E., and Salim, J.M., “A nongravitational wormhole”, Class. Quantum Grav., 17, 3265-3276, (2000). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0003075.
12 Barceló, C., and Campos, A., “Braneworld physics from the analog-gravity perspective”, Phys. Lett. B, 563, 217-223, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0206217.
13 Barceló, C., Liberati, S., Sonego, S., and Visser, M., “Causal structure of analogue spacetimes”, New J. Phys., 6, 186, (2004). URL (cited on 31 May 2005):
External Linkhttp://stacks.iop.org/NJP/6/186.
14 Barceló, C., Liberati, S., and Visser, M., “Analog gravity from Bose-Einstein condensates”, Class. Quantum Grav., 18, 1137-1156, (2001). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0011026.
15 Barceló, C., Liberati, S., and Visser, M., “Analog gravity from field theory normal modes?”, Class. Quantum Grav., 18, 3595-3610, (2001). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0104001.
16 Barceló, C., Liberati, S., and Visser, M., “Refringence, field theory, and normal modes”, Class. Quantum Grav., 19, 2961-2982, (2002). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0111059.
17 Barceló, C., Liberati, S., and Visser, M., “Analogue models for FRW cosmologies”, Int. J. Mod. Phys. D, 12, 1641-1650, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0305061.
18 Barceló, C., Liberati, S., and Visser, M., “Probing semiclassical analogue gravity in Bose-Einstein condensates with widely tunable interactions”, Phys. Rev. A, 68, 053613, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/cond-mat/0307491.
19 Barceló, C., Liberati, S., and Visser, M., “Towards the Observation of Hawking Radiation in Bose-Einstein Condensates”, Int. J. Mod. Phys. A, 18, 3735-1-11, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0110036.
20 Barceló, C., Visser, M., and Liberati, S., “Einstein gravity as an emergent phenomenon?”, Int. J. Mod. Phys. D, 10, 799-806, (2001). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0106002.
21 Bardeen, J.M., Carter, B., and Hawking, S.W., “The four laws of black hole mechanics”, Commun. Math. Phys., 31, 161-170, (1973).
22 Barrabès, C., Frolov, Valeri P., and Parentani, R., “Metric fluctuation corrections to Hawking radiation”, Phys. Rev. D, 59, 124010-1-14, (1999). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9812076.
23 Barrabès, C., Frolov, V.P., and Parentani, R., “Stochastically fluctuating black-hole geometry, Hawking radiation and the trans-Planckian problem”, Phys. Rev. D, 62, 044020-1-19, (2000). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0001102.
24 Basak, S., “Sound wave in vortex with sink”, (2003). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0310105.
25 Basak, S., “Analog of Superradiance effect in BEC”, (2005). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0501097.
26 Basak, S., and Majumdar, P., “Reflection coefficient for superresonant scattering”, Class. Quantum Grav., 20, 2929-2936, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0303012.
27 Basak, S., and Majumdar, P., “ ‘Superresonance’ from a rotating acoustic black hole”, Class. Quantum Grav., 20, 3907-3913, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0203059.
28 Bassett, B.A., Liberati, S., Molina-París, C., and Visser, M., “Geometrodynamics of variable-speed-of-light cosmologies”, Phys. Rev. D, 62, 103518-1-18, (2000). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0001441.
29 Bastero-Gil, M., “What can we learn by probing trans-Planckian physics”, in Khalil, S., Shafi, Q., and Tallat, H., eds., International Conference on High Energy Physics, Proceedings of the International Conference on High Energy Physics, January 9-14, 2001, Cairo, Egypt, 283-288, (Rinton Press, Princeton, U.S.A., 2001). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-ph/0106133.
30 Belgiorno, F., “Black Hole Thermodynamics in Carathéodory’s Approach”, Phys. Lett. A, 312, 324-330, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0210020.
31 Berti, E., Cardoso, V., and Lemos, J.P.S., “Quasinormal modes and classical wave propagation in analogue black holes”, Phys. Rev. D, 70, 124006, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0408099.
32 Bhattacharyya, G., Mathews, P., Rao, K., and Sridhar, K., “Searching for signals of minimal length in extra dimensional models using dilepton production at hadron colliders”, Phys. Lett. B, 603, 46-50, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-ph/0408295.
33 Bilic, N., “Relativistic Acoustic Geometry”, Class. Quantum Grav., 16, 3953-3964, (1999). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9908002.
34 Birrell, N.D., and Davies, P.C.W., Quantum Fields in Curved Space, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K., 1982).
35 Błaut, A., Kowalski-Glikman, J., and Nowak-Szczepaniak, D., “k-Poincaré dispersion relations and the black hole radiation”, Phys. Lett. B, 521, 364-370, (2001). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0108069.
36 Bogoliubov, N., “On the theory of superfluidity”, J. Phys. (Moscow), 11, 23, (1947).
37 Bombelli, L., and Sonego, S., “Relationships between various characterizations of wave tails”, J. Phys. A, 27, 7177-7199, (1994).
38 Boonserm, P., Cattoen, C., Faber, T., Visser, M., and Weinfurtner, S., “Effective refractive index tensor for weak field gravity”, Class. Quantum Grav., 22, 1905-1915, (2005). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0411034.
39 Born, M., and Wolf, E., Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, (Pergamon, Oxford, U.K.; New York, U.S.A., 1980), 6th edition.
40 Bousso, R., and Polchinski, J., “The string theory landscape”, Sci. Am., 291, 60-69, (2004).
41 Brandenberger, R.H., “Frontiers of inflationary cosmology”, Braz. J. Phys., 31, 131-146, (2001). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-ph/0102183.
42 Brandenberger, R.H., “A status review of inflationary cosmology”, (2001). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-ph/0101119.
43 Brandenberger, R.H., “Trans-Planckian Physics and Inflationary Cosmology”, (2002). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0210186.
44 Brandenberger, R.H., “Lectures on the theory of cosmological perturbations”, Lect. Notes Phys., 646, 127-167, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0306071.
45 Brandenberger, R.H., Joras, S.E., and Martin, J., “Trans-Planckian physics and the spectrum of fluctuations in a bouncing universe”, Phys. Rev. D, 66, 083514-1-9, (2002). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0112122.
46 Brandenberger, R.H., and Martin, J., “The robustness of inflation to changes in super-Planck-scale physics”, Mod. Phys. Lett. A, 16, 999-1006, (2001). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0005432.
47 Brandenberger, R.H., and Martin, J., “On signatures of short distance physics in the cosmic microwave background”, Int. J. Mod. Phys. A, 17, 3663-3680, (2002). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0202142.
48 Brevik, I., and Halnes, G., “Light rays at optical black holes in moving media”, Phys. Rev. D, 65, 024005-1-12, (2002). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0106045.
49 Brout, R., Gabriel, C., Lubo, M., and Spindel, P., “Minimal length uncertainty principle and the trans-Planckian problem of black hole physics”, Phys. Rev. D, 59, 044005-1-6, (1999). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/9807063.
50 Brout, R., Massar, S., Parentani, R., and Spindel, P., “Hawking radiation without trans-Planckian frequencies”, Phys. Rev. D, 52, 4559-4568, (1995). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/9506121.
51 Brout, R., Massar, S., Parentani, R., and Spindel, P., “A Primer for black hole quantum physics”, Phys. Rep., 260, 329-454, (1995).
52 Budker, D., Kimball, D.F., Rochester, S.M., and Yashchuk, V.V., “Nonlinear Magneto-optics and Reduced Group Velocity of Light in Atomic Vapor with Slow Ground State Relaxation”, Phys. Rev. Lett., 83, 1767-1770, (1999).
53 Burgess, C.P., “Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory”, Living Rev. Relativity, 7, lrr-2004-5, (2004). URL (cited on 31 May 2005):
http://www.livingreviews.org/lrr-2004-5.
54 Burgess, C.P., Cline, J.M., Filotas, E., Matias, J., and Moore, G.D., “Loop-generated bounds on changes to the graviton dispersion relation”, J. High Energy Phys., 2002(03), 043, (2002). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-ph/0201082.
55 Cadoni, M., “Acoustic analogues of two-dimensional black holes”, Class. Quantum Grav., 22, 409-419, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0410138.
56 Cadoni, M., and Mignemi, S., “Acoustic analogues of black hole singularities”, (2005). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0504143.
57 Calogeracos, A., and Volovik, G.E., “Rotational quantum friction in superfluids: Radiation from object rotating in superfluid vacuum”, J. Exp. Theor. Phys. Lett., 69, 281-287, (1999). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/cond-mat/9901163.
58 Calzetta, E.A., and Hu, B.L., “Bose-Novae as Squeezing of the Vacuum by Condensate Dynamics”, (2002). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/cond-mat/0208569.
59 Calzetta, E.A., and Hu, B.L., “Bose-Novae as Squeezing of Vacuum Fluctuations by Condensate Dynamics”, (2002). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/cond-mat/0207289.
60 Calzetta, E.A., Hu, B.L., and Mazzitelli, F.D., “Coarse-grained effective action and renormalization group theory in semiclassical gravity and cosmology”, Phys. Rep., 352, 459-520, (2001). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0102199.
61 Canfora, F., and Vilasi, G., “Back Reaction from Trace Anomaly in RN-blackholes Evaporation”, J. High Energy Phys., 2003(12), 055, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0402017.
62 Canfora, F., and Vilasi, G., “Trace anomaly and black holes evaporation”, (2003). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0302036.
63 Cardoso, V., “Acoustic black holes”, (2005). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/physics/0503042.
64 Cardoso, V., Lemos, J.P.S., and Yoshida, S., “Quasinormal modes and stability of the rotating acoustic black hole: Numerical analysis”, Phys. Rev. D, 70, 124032-1-7, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0410107.
65 Carlip, S., “Quantum gravity: A progress report”, Rep. Prog. Phys., 64, 885-942, (2001). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0108040.
66 Carter, B., “Relativistic superfluid models for rotating neutron stars”, in Blaschke, D., Glendenning, N.K., and Sedrakian, A., eds., Physics of Neutron Star Interiors, vol. 578 of Lecture Notes in Physics,  54, (Springer, Berlin, Germany; New York, U.S.A., 2001). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0101257.
67 Carter, B., and Chamel, N., “Covariant analysis of Newtonian multi-fluid models for neutron stars: I Milne-Cartan structure and variational formulation”, Int. J. Mod. Phys. D, 13, 291-326, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0305186.
68 Casadio, R., “On dispersion relations and the statistical mechanics of Hawking radiation”, Class. Quantum Grav., 19, 2453-2462, (2002). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0111287.
69 Casadio, R., “On brane-world black holes and short scale physics”, Ann. Phys. (N.Y.), 307, 195-208, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-ph/0304099.
70 Casadio, R., and Mersini, L., “Short distance signatures in cosmology: Why not in black holes?”, Int. J. Mod. Phys. A, 19, 1395-1412, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0208050.
71 Casher, A., Englert, F., Itzhaki, N., Massar, S., and Parentani, R., “Black hole horizon fluctuations”, Nucl. Phys. B, 484, 419-434, (1997). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/9606106.
72 Cassidy, M.J., and Hawking, S.W., “Models for chronology selection”, Phys. Rev. D, 57, 2372-2380, (1998). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/9709066.
73 Castin, Y., and Dum, R., “Bose-Einstein Condensates in Time Dependent Traps”, Phys. Rev. Lett., 77, 5315-5319, (1996).
74 Chang, D., Chu, C.-S., and Lin, F.-L., “Transplanckian dispersion relation and entanglement entropy of black hole”, Fortschr. Phys., 52, 477-482, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0312136.
75 Chang, D., Chu, C.-S., and Lin, F.-L., “Transplanckian entanglement entropy”, Phys. Lett. B, 583, 192-198, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0306055.
76 Chapline, G., Hohlfeld, E., Laughlin, R.B., and Santiago, D.I., “Quantum phase transitions and the breakdown of classical general relativity”, Int. J. Mod. Phys. A, 18, 3587-3590, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0012094.
77 Chapline, G., and Mazur, P.O., “Superfluid picture for rotating space-times”, (2004). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0407033.
78 Cherubini, C., Federici, F., Succi, S., and Tosi, M.P., “Excised acoustic black holes: The scattering problem in the time domain”, Phys. Rev. D, 72, 084016-1-9, (2005). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0504048.
79 Christensen, S.M., and Fulling, S.A., “Trace anomalies and the Hawking effect”, Phys. Rev. D, 15, 2088-2104, (1977).
80 Chruściel, P.T., “Black holes”, in Frauendiener, J., and Friedrich, H., eds., The Conformal Structure of Space-Time: Geometry, Analysis, Numerics, Proceedings of the internationl workshop, Tübingen, Germany, April 2001, vol. 604 of Lecture Notes in Physics, 61-102, (Springer, Berlin, Germany; New York, U.S.A., 2002). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0201053.
81 Chu, C.-S., Greene, B.R., and Shiu, G., “Remarks on inflation and noncommutative geometry”, Mod. Phys. Lett. A, 16, 2231-2240, (2001). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0011241.
82 Coleman, S.R., and Glashow, S.L., “High-energy tests of Lorentz invariance”, Phys. Rev. D, 59, 116008-1-14, (1999). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-ph/9812418.
83 Collins, H., and Martin, M.R., “The enhancement of inflaton loops in an a-vacuum”, Phys. Rev. D, 70, 084021-1-9, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-ph/0309265.
84 Comer, G.L., “Superfluid analog of the Davies-Unruh effect”, (1992). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0505005.
85 Consoli, M., “Approximate Lorentz invariance of the vacuum: A physical solution of the ‘hierarchy problem’?”, (2003). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-ph/0306070.
86 Corley, S., “Particle creation via high frequency dispersion”, Phys. Rev. D, 55, 6155-6161, (1997).
87 Corley, S., “Computing the spectrum of black hole radiation in the presence of high frequency dispersion: An analytical approach”, Phys. Rev. D, 57, 6280-6291, (1998). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/9710075.
88 Corley, S., and Jacobson, T.A., “Hawking Spectrum and High Frequency Dispersion”, Phys. Rev. D, 54, 1568-1586, (1996). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/9601073.
89 Corley, S., and Jacobson, T.A., “Lattice black holes”, Phys. Rev. D, 57, 6269-6279, (1998). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/9709166.
90 Corley, S., and Jacobson, T.A., “Black hole lasers”, Phys. Rev. D, 59, 124011-1-12, (1999). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/9806203.
91 Corley, S.R., The role of short distance physics in the Hawking effect, Ph.D. Thesis, (University of Maryland, College Park, U.S.A., 1997).
92 Courant, R., and Hilbert, D., Methods of Mathematical Physics, vol. 2 of Wiley Classics Library, (Interscience, New York, U.S.A., 1989).
93 Czerniawski, J., “What is wrong with Schwarzschild’s coordinates?”, (2002). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0201037.
94 Damour, T., “The entropy of black holes: A primer”, in Dalibard, J., Duplantier, B., and Rivasseau, V., eds., Poincaré Seminar 2003: Bose-Einstein Condensation - Entropy, Proceedings of the third and fourth Poincaré Seminars, vol. 38 of Progress in Mathematical Physics, (Birkhäuser, Basel, Switzerland; Boston, U.S.A., 2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0401160.
95 Das, S., “Black hole thermodynamics: Entropy, information and beyond”, Pramana, 63, 797-816, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0403202.
96 Das, T.K., “Analogous Hawking Radiation from Astrophysical Black Hole Accretion”, (2004). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0404482.
97 Das, T.K., “Analogue Hawking radiation from astrophysical black hole accretion”, Class. Quantum Grav., 21, 5253-5260, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0408081.
98 Das, T.K., “Transonic Black Hole Accretion as Analogue System”, (2004). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0411006.
99 Davies, P.C.W., Fulling, S.A., and Unruh, W.G., “Energy momentum tensor near an evaporating black hole”, Phys. Rev. D, 13, 2720-2723, (1976).
100 de Felice, F., “On the gravitational field acting as an optical medium”, Gen. Relativ. Gravit., 2, 347-357, (1971).
101 De Lorenci, V.A., and Klippert, R., “Analogue gravity from electrodynamics in nonlinear media”, Phys. Rev. D, 65, 064027-1-6, (2002). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0107008.
102 De Lorenci, V.A., Klippert, R., Novello, M., and Salim, J.M., “Nonlinear electrodynamics and FRW cosmology”, Phys. Rev. D, 65, 063501-1-5, (2002).
103 De Lorenci, V.A., Klippert, R., and Obukhov, Y.N., “On optical black holes in moving dielectrics”, Phys. Rev. D, 68, 061502-1-4, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0210104.
104 Donley, E.A., Claussen, N.R., Cornish, S.L., Roberts, J.L., Cornell, E.A., and Wieman, C.E., “Dynamics of collapsing and exploding Bose-Einstein condensates”, Nature, 412, 295-299, (2001). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/cond-mat/0105019.
105 Dumin, Y.V., “Topological defect density in 1D FRW cosmological model: Corrections inferred from the MJJL experiment”, (2003). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-ph/0308184.
106 Dziarmaga, J., “Analog electromagnetism in a symmetrized 3He-A”, (2001). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0112041.
107 Easther, R., Greene, B.R., Kinney, W.H., and Shiu, G., “Inflation as a probe of short distance physics”, Phys. Rev. D, 64, 103502-1-8, (2001). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0104102.
108 Ellis, G.F.R., and Uzan, J.-P., “ ‘c’ is the speed of light, isn’t it?”, Am. J. Phys., 73, 240-247, (2005). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0305099.
109 Ellis, J.R., Mavromatos, N.E., Nanopoulos, D.V., and Volkov, G., “Gravitational-recoil effects on fermion propagation in space-time foam”, Gen. Relativ. Gravit., 32, 1777-1798, (2000). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9911055.
110 Eltsov, V.B., Krusius, M., and Volovik, G.E., “Superfluid 3He: A Laboratory model system of quantum field theory”, (1998). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/cond-mat/9809125v1.
111 Englert, F., “The Black hole history in tamed vacuum”, (1994). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9408005.
112 Englert, F., Massar, S., and Parentani, R., “Source vacuum fluctuations of black hole radiance”, Class. Quantum Grav., 11, 2919-2938, (1994). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9404026.
113 Federici, F., Cherubini, C., Succi, S., and Tosi, M.P., “Superradiance from BEC vortices: a numerical study”, (2005). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0503089.
114 Fedichev, P.O., and Fischer, U.R., “Gibbons-Hawking Effect in the Sonic de Sitter Space-Time of an Expanding Bose-Einstein-Condensed Gas”, Phys. Rev. Lett., 91, 240407, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/cond-mat/0304342.
115 Fedichev, P.O., and Fischer, U.R., “ “Cosmological” quasiparticle production in harmonically trapped superfluid gases”, Phys. Rev. A, 69, 033602, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/cond-mat/0303063.
116 Fedichev, P.O., and Fischer, U.R., “Observer dependence for the phonon content of the sound field living on the effective curved space-time background of a Bose-Einstein condensate”, Phys. Rev. D, 69, 064021, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/cond-mat/0307200.
117 Fischer, U.R., “Motion of quantized vortices as elementary objects”, Ann. Phys. (N.Y.), 278, 62-85, (1999). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/cond-mat/9907457.
118 Fischer, U.R., “Quasiparticle universes in Bose-Einstein condensates”, Mod. Phys. Lett. A, 19, 1789-1812, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/cond-mat/0406086.
119 Fischer, U.R., and Schützhold, R., “Quantum simulation of cosmic inflation in two-component Bose-Einstein condensates”, Phys. Rev. A, 70, 063615, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/cond-mat/0406470.
120 Fischer, U.R., and Visser, M., “Riemannian geometry of irrotational vortex acoustics”, Phys. Rev. Lett., 88, 110201-1-4, (2002). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/cond-mat/0110211.
121 Fischer, U.R., and Visser, M., “On the space-time curvature experienced by quasiparticle excitations in the Painleve-Gullstrand effective geometry”, Ann. Phys. (N.Y.), 304, 22-39, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/cond-mat/0205139.
122 Fischer, U.R., and Visser, M., “Warped space-time for phonons moving in a perfect nonrelativistic fluid”, Europhys. Lett., 62, 1-7, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0211029.
123 Fischer, U.R., and Volovik, G.E., “Thermal quasi-equilibrium states across Landau horizons in the effective gravity of superfluids”, Int. J. Mod. Phys. D, 10, 57-88, (2001). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0003017.
124 Fiurásek, J., Leonhardt, U., and Parentani, R., “Slow-light pulses in moving media”, Phys. Rev. A, 65, 011802-1-4, (2002). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/quant-ph/0011100.
125 Fock, V.A., The Theory of Space, Time, and Gravitation, (Pergamon, New York, U.S.A., 1964), 2nd edition.
126 Fonseca-Barbatti, C., Novello, M., Salim, J.M., and Arcuri, R.C., “Creation of a wormhole due to nonlinear electrodynamics”, Mod. Phys. Lett. A, 17, 1305-1314, (2002).
127 Ford, L.H., “Quantum field theory in curved spacetime”, (1997). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9707062.
128 Ford, L.H., and Svaiter, N.F., “Cosmological and black hole horizon fluctuations”, Phys. Rev. D, 56, 2226-2235, (1997). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9704050.
129 Friedan, D., “A tentative theory of large distance physics”, J. High Energy Phys., 2003(10), 063, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0204131.
130 Frolov, V.P., “Black Hole Entropy and Physics at Planckian Scales”, in Sánchez, N., and Zichichi, A., eds., String gravity and physics at the Planck energy scale, Proceedings of the NATO Advanced Study Institute on String Gravity and Physics at the Planck Energy Scale, Erice, Italy, September 18-19, 1995, vol. 476 of NATO ASI series. Series C, Mathematical and physical sciences, (Kluwer Academic Publishers, Dordrecht, Netherlands; Boston, U.S.A., 1996). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/9510156.
131 Frolov, V.P., and Larsen, A.L., “Stationary strings and 2-D black holes”, Nucl. Phys. B, 449, 149-158, (1995). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/9503060.
132 Fulling, S.A., Aspects of Quantum Field Theory in Curved Space-Time, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1989).
133 Furtado, C., M de Carvalho, A.M., Garcia de Andrade, L.C., and Moraes, F., “Holonomy, Aharonov-Bohm effect and phonon scattering in superfluids”, (2004). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0401025.
134 Gambini, R., and Pullin, J., “Nonstandard optics from quantum space-time”, Phys. Rev. D, 59, 124021-1-4, (1999). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9809038.
135 Garay, L.J., “Quantum gravity and minimum length”, Int. J. Mod. Phys. A, 10, 145-166, (1995). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9403008.
136 Garay, L.J., Anglin, J.R., Cirac, J.I., and Zoller, P., “Sonic Analog of Gravitational Black Holes in Bose-Einstein Condensates”, Phys. Rev. Lett., 85, 4643-1-5, (2000). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0002015.
137 Garay, L.J., Anglin, J.R., Cirac, J.I., and Zoller, P., “Sonic black holes in dilute Bose-Einstein condensates”, Phys. Rev. A, 63, 023611-1-13, (2001). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0005131.
138 Garcia de Andrade, L.C., “Irrotational vortex geometry of torsion loops”, (2004). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0409115.
139 Garcia de Andrade, L.C., “Non-Riemannian acoustic black holes: Hawking radiation and Lorentz symmetry breaking”, (2004). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0411103.
140 Garcia de Andrade, L.C., “Non-Riemannian geometry of turbulent acoustic flows and analog gravity”, (2004). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0410036.
141 Garcia de Andrade, L.C., “Non-Riemannian geometry of vortex acoustics”, Phys. Rev. D, 70, 064004, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0405062.
142 Garcia de Andrade, L.C., “Non-Riemannian vortex geometry of rotational viscous fluids and breaking of the acoustic Lorentz invariance”, (2004). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0409116.
143 Garcia de Andrade, L.C., “On the necessity of non-Riemannian acoustic spacetime in fluids with vorticity”, Phys. Lett. A, 346, 327-329, (2005). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0502106.
144 Garcia de Andrade, L.C., “Relativistic superfluid hydrodynamics”, (2005). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0503088.
145 Garcia de Andrade, L.C., de M Carvalho, A.M., and Furtado, C., “Geometric phase for fermionic quasiparticles scattering by disgyration in superfluids”, Europhys. Lett., 67, 538-544, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0406057.
146 Ghafarnejad, H., and Salehi, H., “Hadamard renormalization, conformal anomaly and cosmological event horizons”, Phys. Rev. D, 56, 4633-4639, (1997). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/9709158.
147 Gibbons, G.W., and Hawking, S.W., “Action integrals and partition functions in quantum gravity”, Phys. Rev. D, 15, 2752-2756, (1977).
148 Giovanazzi, S., “Hawking Radiation in Sonic Black Holes”, Phys. Rev. Lett., 94, 061302-1-4, (2005). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/physics/0411064.
149 Giovanazzi, S., Farrell, C., Kiss, T., and Leonhardt, U., “Conditions for one-dimensional supersonic flow of quantum gases”, (2004). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/cond-mat/0405007.
150 Glass, E.N., and Krisch, J.P., “Schwarzschild atmospheric processes: A classical path to the quantum”, Gen. Relativ. Gravit., 32, 735-741, (2000). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9910080.
151 Gordon, W., “Zur Lichtfortpflanzung nach der Relativitätstheorie”, Ann. Phys. (Leipzig), 72, 421-456, (1923).
152 Górski, A.Z., and Szmigielski, J., “On Pairs of Difference Operators Satisfying: [D,X]=Id”, J. Math. Phys., 39, 545-568, (1998). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/9703015.
153 Griffin, A., Excitations in a Bose-condensed Liquid, vol. 4 of Cambridge Studies in Low Temperature Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1993).
154 Gullstrand, A., “Allgemeine Lösung des statischen Einkörperproblems in der Einsteinschen Gravitationstheorie”, Ark. Mat. Astron. Fys., 16(8), 1-15, (1922).
155 Hadamard, J., Leçons sur la propagation des ondes et les équations de l’hydrodynamique (Lectures on the propagation of waves and the equations of hydrodynamics), (Hermann, Paris, France, 1903).
156 Hambli, N., and Burgess, C.P., “Hawking radiation and ultraviolet regulators”, Phys. Rev. D, 53, 5717-5722, (1996). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/9510159.
157 Hamilton, A.J.S., and Lisle, J.P., “The river model of black holes”, (2004). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0411060.
158 Hassan, S.F., and Sloth, M.S., “Trans-Planckian effects in inflationary cosmology and the modified uncertainty principle”, Nucl. Phys. B, 674, 434-458, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0204110.
159 Hawking, S.W., “Black hole explosions?”, Nature, 248, 30-31, (1974).
160 Hawking, S.W., “Particle creation by black holes”, Commun. Math. Phys., 43, 199-220, (1975). Related online version (cited on 31 May 2005):
External Linkhttp://projecteuclid.org/getRecord?id=euclid.cmp/1103899181.
161 Hawking, S.W., “Chronology protection conjecture”, Phys. Rev. D, 46, 603-611, (1992).
162 Hawking, S.W., “The Chronology Protection Conjecture”, in Sato, H., and Nakamura, T., eds., The Sixth Marcel Grossmann Meeting: on recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories, Proceedings of the meeting held at Kyoto International Conference Hall, Kyoto, Japan, 23-29 June 1991, 3-16, (World Scientific, Singapore, 1992).
163 Hawking, S.W., “Chronology protection: Making the world safe for historians”, in Hawking, S.W. et al., ed., The Future of Spacetime, 87-108, (Norton, New York, U.S.A., 2002).
164 Hawking, S.W., and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K., 1973).
165 Hehl, F.W., and Obukhov, Y.N., “To consider the electromagnetic field as fundamental, and the metric only as a subsidiary field”, Found. Phys., submitted, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/physics/0404101.
166 Hehl, F.W., and Obukhov, Y.N., “Linear media in classical electrodynamics and the Post constraint”, Phys. Lett. A, 334, 249-259, (2005). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/physics/0411038.
167 Helfer, A.D., “Trans-Planckian modes, back-reaction, and the Hawking process”, (2000). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0008016.
168 Helfer, A.D., “Do black holes radiate?”, Rep. Prog. Phys., 66, 943-1008, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0304042.
169 Helfer, A.D., “State reduction and energy extraction from black holes”, Phys. Lett. A, 329, 277-283, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0407055.
170 Himemoto, Y., and Tanaka, T., “A generalization of the model of Hawking radiation with modified high frequency dispersion relation”, Phys. Rev. D, 61, 064004-1-18, (2000). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9904076.
171 Ho, P.-M., “Regularization of Newton constant, trans-Planckian dispersion relation, and symmetry of particle spectrum”, Class. Quantum Grav., 21, 2641-2650, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0308103.
172 Hochberg, D., “Evaporating black holes and collapsing bubbles in fluids”, unknown status, (1997).
173 Hochberg, D., and Pérez-Mercader, J., “A Liquid Model Analogue for Black Hole Thermodynamics”, Phys. Rev. D, 55, 4880-4888, (1997). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9609043.
174 Horwitz, L.P., and Oron, O., “Classical Gravity as an Eikonal Approximation to a Manifestly Lorentz Covariant Quantum Theory with Brownian Interpretation”, in Reimer, A., ed., Quantum Gravity Research Trends, vol. 250 of Horizons in World Physics, (Nova Science, New York, U.S.A., 2005). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0407076.
175 Hossenfelder, S., “The minimal length and large extra dimensions”, Mod. Phys. Lett. A, 19, 2727-2744, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-ph/0410122.
176 Hossenfelder, S., “Running coupling with minimal length”, Phys. Rev. D, 70, 105003, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-ph/0405127.
177 Hu, B.L., “Dynamical finite size effect, inflationary cosmology and thermal particle production”, in Lee, H.C., ed., CAP-NSERC Summer Institute in Theoretical Physics, 2 vols., Edmonton, Alberta, Jul 10-25, 1987, (World Scientific, Singapore; Teaneck, U.S.A., 1988).
178 Hu, B.L., “Nonequilibrium quantum fields in cosmology: Comments on selected current topics”, in De Vega, H.J., and Sánchez, N., eds., Second Paris Cosmology Colloquium, Proceedings of the 2nd Paris Cosmology Colloquium Within the Framework of the International School of Astrophysics, 2-4 June, 1994, Observatoire de Paris, France, 111, (World Scientific, Singapore; River Edge, U.S.A., 1995). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9409053.
179 Hu, B.L., “Stochastic gravity”, Int. J. Theor. Phys., 38, 2987-3037, (1999). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9902064.
180 Hu, B.L., and Verdaguer, E., “Stochastic gravity: A primer with applications”, Class. Quantum Grav., 20, R1-R42, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0211090.
181 Hu, B.L., and Verdaguer, E., “Stochastic Gravity: Theory and Applications”, Living Rev. Relativity, 7, lrr-2004-3, (2004). URL (cited on 31 May 2005):
http://www.livingreviews.org/lrr-2004-3.
182 Huhtala, P., and Volovik, G.E., “Fermionic microstates within Painleve-Gullstrand black hole”, J. Exp. Theor. Phys., 94, 853-861, (2002). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0111055.
183 Israel, W., “Dark stars: the evolution of an idea”, in Hawking, S.W., and Israel, W., eds., Three Hundred Years of Gravitation, 199-276, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1987). see especially the discussion on page 234.
184 Ito, K., and Ugakkai, N.S., eds., Encyclopedic Dictionary of Mathematics, (MIT, Cambridge, U.S.A., 1987), 2nd edition.
185 Jacobson, T.A., “Black hole evaporation and ultrashort distances”, Phys. Rev. D, 44, 1731-1739, (1991).
186 Jacobson, T.A., “Black hole radiation in the presence of a short distance cutoff”, Phys. Rev. D, 48, 728-741, (1993). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/9303103.
187 Jacobson, T.A., “Introduction to Black Hole Microscopy”, in Macías, A., Quevedo, H., Obregón, O., and Matos, T., eds., Recent Developments in Gravitation and Mathematical Physics, Proceedings of the First Mexican School on Gravitation and Mathematical Physics, Guanajuato, Mexico, 12-16 December 1994, (World Scientific, Singapore; River Edge, U.S.A., 1996). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/9510026.
188 Jacobson, T.A., “On the origin of the outgoing black hole modes”, Phys. Rev. D, 53, 7082-7088, (1996). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/9601064.
189 Jacobson, T.A., “Trans-Planckian redshifts and the substance of the space-time river”, Prog. Theor. Phys. Suppl., 136, 1-17, (1999). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0001085.
190 Jacobson, T.A., “Lorentz violation and Hawking radiation”, (2001). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0110079.
191 Jacobson, T.A., “Introduction to quantum fields in curved spacetime and the Hawking effect”, (2003). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0308048.
192 Jacobson, T.A., and Kang, G., “Conformal invariance of black hole temperature”, Class. Quantum Grav., 10, L201-L206, (1993). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9307002.
193 Jacobson, T.A., and Koike, T., “Black hole and baby universe in a thin film of 3He-A”, in Novello, M., Visser, M., and Volovik, G., eds., Artificial Black Holes, 87-108, (World Scientific, Singapore; River Edge, U.S.A., 2002). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/cond-mat/0205174.
194 Jacobson, T.A., Liberati, S., and Mattingly, D., “Lorentz violation and Crab synchrotron emission: A new constraint far beyond the Planck scale”, Nature, 424, 1019-1021, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0212190.
195 Jacobson, T.A., Liberati, S., and Mattingly, D., “Threshold effects and Planck scale Lorentz violation: Combined constraints from high energy astrophysics”, Phys. Rev. D, 67, 124011-1-26, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-ph/0209264.
196 Jacobson, T.A., Liberati, S., and Mattingly, D., “Astrophysical bounds on Planck suppressed Lorentz violation”, (2004). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-ph/0407370.
197 Jacobson, T.A., Liberati, S., and Mattingly, D., “Quantum gravity phenomenology and Lorentz violation”, in Trampetić, J., and Wess, J., eds., Particle Physics and the Universe, Proceedings of the 9th Adriatic Meeting, September 2003, Dubrovnik, vol. 98 of Springer Proceedings in Physics, (Springer, Berlin, Germany; New York, U.S.A., 2005). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0404067.
198 Jacobson, T.A., and Mattingly, D., “Hawking radiation on a falling lattice”, Phys. Rev. D, 61, 024017-1-10, (2000). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/9908099.
199 Jacobson, T.A., and Volovik, G.E., “Effective spacetime and Hawking radiation from moving domain wall in thin film of 3He-A”, J. Exp. Theor. Phys. Lett., 68, 874-880, (1998). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9811014.
200 Jacobson, T.A., and Volovik, G.E., “Event horizons and ergoregions in 3He”, Phys. Rev. D, 58, 064021-1-7, (1998).
201 Jevicki, A., and Thaler, J., “Dynamics of black hole formation in an exactly solvable model”, Phys. Rev. D, 66, 024041-1-6, (2002). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0203172.
202 Kagan, Y., Surkov, E.L., and Shlyapnikov, G.V., “Evolution of a Bose-condensed gas under variations of the confining potential”, Phys. Rev. A, 54, R1753-R1756, (1996).
203 Kagan, Y., Surkov, E.L., and Shlyapnikov, G.V., “Evolution and global collapse of trapped Bose condensates under variations of the scattering length”, Phys. Rev. Lett., 79, 2604-2607, (1997). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/physics/9705005.
204 Kash, M.M., Sautenkov, V.A., Zibrov, A.S., Hollberg, L., Welch, G.R., Lukin, M.D., Rostovtsev, Y., Fry, E.S., and Scully, M.O., “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas”, Phys. Rev. Lett., 82, 5229-5232, (1999).
205 Kempf, A., “Mode generating mechanism in inflation with a cutoff”, Phys. Rev. D, 63, 083514-1-5, (2001). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0009209.
206 Kempf, A., “A covariant information-density cutoff in curved space-time”, Phys. Rev. Lett., 92, 221301, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0310035.
207 Kempf, A., and Niemeyer, J.C., “Perturbation spectrum in inflation with cutoff”, Phys. Rev. D, 64, 103501-1-6, (2001). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0103225.
208 Kim, S.-W., and Oh, John J., “Decay rate and low-energy near-horizon dynamics of acoustic black holes”, Phys. Lett. B, 608, 10-16, (2005). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0409003.
209 Kim, W.T., Son, E.J., and Yoon, M.S., “Statistical entropy and superradiance in 2+1 dimensional acoustic black holes”, (2005). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0504127.
210 Kiss, T., and Leonhardt, U., “Towards a classification of wave catastrophes”, (2003). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/physics/0309036.
211 Kocharovskaya, O., Rostovtsev, Y., and Scully, M.O., “Stopping Light via Hot Atoms”, Phys. Rev. Lett., 86, 628-631, (2001).
212 Kokkotas, K.D., and Schmidt, B.G., “Quasi-Normal Modes of Stars and Black Holes”, Living Rev. Relativity, 2, lrr-1999-2, (1999). URL (cited on 31 May 2005):
http://www.livingreviews.org/lrr-1999-2.
213 Kopnin, N.B., and Volovik, G.E., “Critical velocity and event horizon in pair-correlated systems with relativistic fermionic quasiparticles”, J. Exp. Theor. Phys. Lett., 67, 528-532, (1998). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/cond-mat/9712187.
214 Kostelecký, V.A., and Samuel, S., “Spontaneous breaking of Lorentz symmetry in string theory”, Phys. Rev. D, 39, 683-685, (1989).
215 Kowalski-Glikman, J., “Testing dispersion relations of quantum kappa-Poincare algebra on cosmological ground”, Phys. Lett. B, 499, 1-8, (2001). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0006250.
216 Kowalski-Glikman, J., “De Sitter space as an arena for doubly special relativity”, Phys. Lett. B, 547, 291-296, (2002). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0207279.
217 Kowalski-Glikman, J., “Doubly special relativity: A kinematics of quantum gravity?”, in Semikhatov, A. et al., ed., Proceedings of the 3rd International Sakharov Conference on Physics, 2 vols., Moscow, Russia, June 24-29, 2002, (Scientific World, Moscow, Russia, 2002). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0209264.
218 Kraus, P., and Wilczek, F., “A Simple stationary line element for the Schwarzschild Geometry, and some applications”, (June, 1994). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9406042.
219 Lamb, H., Hydrodynamics, (Dover, Mineola, U.S.A., 1932), 6th edition. Reissue of 1932 ed., first edition publ. 1879.
220 Lämmerzahl, C., and Hehl, F.W., “Riemannian light cone from vanishing birefringence in premetric vacuum electrodynamics”, Phys. Rev. D, 70, 105022-1-10, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0409072.
221 Landau, L.D., and Lifshitz, E.M., Fluid Mechanics, (Pergamon; Addison-Wesley, London, U.K.; Reading, U.S.A., 1959).
222 Landau, L.D., and Lifshitz, E.M., The classical theory of fields, (Pergamon Press, Oxford, U.K.; New York, U.S.A., 1971), 3rd edition.
223 Landau, L.D., Lifshitz, E.M., and Pitaevskii, L.P., Statistical Physics, Part 2, vol. 9 of Course of Theoretical Physics, (Pergamon Press, Oxford, U.K.; New York, U.S.A., 1980).
224 Landau, L.D., Lifshitz, E.M., and Pitaevskii, L.P., Electrodynamics of continuous media, vol. 8 of Course of Theoretical Physics, (Pergamon Press, Oxford, U.K.; New York, U.S.A., 1984), 2nd edition.
225 Larsen, A.L., “Cosmic strings and black holes”, (1996). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/9610063.
226 Laschkarew, W., “Zur Theorie der Gravitation”, Z. Phys., 35, 473-476, (1926).
227 Laughlin, R.B., “Emergent relativity”, Int. J. Mod. Phys. A, 18, 831-854, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0302028.
228 Lemaître, G., “L’univers en expansion”, Ann. Soc. Sci. Bruxelles, Ser. A, 53, 51-85, (1933).
229 Lemoine, M., Lubo, M., Martin, J., and Uzan, J.-P., “Stress-energy tensor for trans-Planckian cosmology”, Phys. Rev. D, 65, 023510-1-14, (2002). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0109128.
230 Lemoine, M., Martin, J., and Uzan, J.-P., “Trans-Planckian dark energy?”, Phys. Rev. D, 67, 103520-1-13, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0212027.
231 Leonhardt, U., “Space-time geometry of quantum dielectrics”, Phys. Rev. A, 62, 012111-1-8, (2000). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/physics/0001064.
232 Leonhardt, U., “Slow Light”, in Novello, M., Visser, M., and Volovik, G., eds., Artificial Black Holes, 61-85, (World Scientific, Singapore; River Edge, U.S.A., 2002). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0108085.
233 Leonhardt, U., “Quantum physics of simple optical instruments”, Rep. Prog. Phys., 66, 1207-1250, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/quant-ph/0305007.
234 Leonhardt, U., Kiss, T., and Öhberg, P., “Intrinsic instability of sonic white holes”, (2002). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0211069.
235 Leonhardt, U., and Piwnicki, P., “Relativistic Effects of Light in Moving Media with Extremely Low Group Velocity”, Phys. Rev. Lett., 84, 822-825, (2000). Related online version (cited on 31 May 2005):
External Linkhttp://arxiv.org/abs/cond-mat/9906332.
236 Leonhardt, U., and Piwnicki, P., “Reply to Comment on “Relativistic Effects of Light in Moving Media with Extremely Low Group Velocity” by M. Visser”, Phys. Rev. Lett., 85, 5253, (2000). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0003016.
237 Lepe, S., and Saavedra, J., “Quasinormal modes, superradiance and area spectrum for 2+1 acoustic black holes”, Phys. Lett. B, 617, 174-181, (2005). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0410074.
238 Liberati, S., Quantum vacuum effects in gravitational fields: Theory and detectability, Ph.D. Thesis, (International School for Advanced Studies, Trieste, Italy, 2000). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0009050.
239 Liberati, S., Sonego, S., and Visser, M., “Unexpectedly large surface gravities for acoustic horizons?”, Class. Quantum Grav., 17, 2903-2923, (2000). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0003105.
240 Liberati, S., Sonego, S., and Visser, M., “Scharnhorst effect at oblique incidence”, Phys. Rev. D, 63, 085003-1-10, (2001). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/quant-ph/0010055.
241 Liberati, S., Sonego, S., and Visser, M., “Faster-than-c signals, special relativity, and causality”, Ann. Phys. (N.Y.), 298, 167-185, (2002). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0107091.
242 Lidsey, J.E., “Cosmic dynamics of Bose-Einstein condensates”, Class. Quantum Grav., 21, 777-786, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0307037.
243 Lubo, M., “Quantum minimal length and trans-Planckian photons”, Phys. Rev. D, 61, 124009-1-1, (2000). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/9911191.
244 Lubo, M., “Ultraviolet cut off, black hole-radiation equilibrium and big bang”, Phys. Rev. D, 68, 125005, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0306187.
245 Lubo, M., “Ultraviolet cutoff and bosonic dominance”, Phys. Rev. D, 68, 125004-1-9, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0305216.
246 M de Carvalho, A.M., Moraes, F., and Furtado, C., “The self-energy of a charged particle in the presence of a topological defect distribution”, Int. J. Mod. Phys. A, 19, 2113-2122, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0401030.
247 Magueijo, J., and Smolin, L., “Lorentz Invariance with an Invariant Energy Scale”, Phys. Rev. Lett., 88, 190403-1-4, (2002). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0112090.
248 Martin, J., “Inflationary cosmological perturbations of quantum-mechanical origin”, in Amelino-Camelia, G., and Kowalski-Glikman, J., eds., Planck Scale Effects in Astrophysics and Cosmology, 40th Karpacz Winter School of Theoretical Physics, Ladek Zdrój, Poland, 4-14 February 2004, vol. 669 of Lecture Notes in Physics, (Springer, Berlin, Germany; New York, U.S.A., 2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0406011.
249 Martin, J., and Brandenberger, R.H., “A Cosmological Window on Trans-Planckian Physics”, (2001). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0012031.
250 Martin, J., and Brandenberger, R.H., “Trans-Planckian problem of inflationary cosmology”, Phys. Rev. D, 63, 123501-1-16, (2001). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0005209.
251 Martin, J., and Brandenberger, R.H., “Corley-Jacobson dispersion relation and trans-Planckian inflation”, Phys. Rev. D, 65, 103514-1-5, (2002). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0201189.
252 Martin, J., and Brandenberger, R.H., “Dependence of the spectra of fluctuations in inflationary cosmology on trans-Planckian physics”, Phys. Rev. D, 68, 063513-1-16, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0305161.
253 Massar, S., “The semiclassical back reaction to black hole evaporation”, Phys. Rev. D, 52, 5857-5864, (1995). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9411039.
254 Massar, S., and Parentani, R., “From Vacuum Fluctuations to Radiation: Accelerated Detectors and Black Holes”, (1994). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9404057.
255 Massar, S., and Parentani, R., “From vacuum fluctuations to radiation. 2. Black holes”, Phys. Rev. D, 54, 7444-7458, (1996).
256 Massar, S., and Parentani, R., “From vacuum fluctuations to radiation: Accelerated detectors and black holes”, Phys. Rev. D, 54, 7426-7443, (1996). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9502024.
257 Massar, S., and Parentani, R., “How the change in horizon area drives black hole evaporation”, Nucl. Phys. B, 575, 333-356, (2000). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9903027.
258 Matarrese, S., “On the classical and quantum irrotational motions of a relativistic perfect fluid: I. Classical Theory”, Proc. R. Soc. London, Ser. A, 401, 53-66, (1985).
259 Matarrese, S., “Perturbations of an irrotational perfect fluid”, in Fabbri, R., and Modugno, M., eds., Atti del VI Convegno Nazionale di Relatività Generale e Fisica della Gravitazione, Proceedings of the 4th Italian conference on general relativity and the physics of gravitation, Florence, Italy, 10-13 October 1984, 283-287, (Pitagora Editrice, Bologna, Italy, 1986).
260 Matarrese, S., “Phonons in a relativistic perfect fluid”, in Ruffini, R, ed., The Fourth Marcel Grossmann Meeting on recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories, Proceedings of the meeting held at the University of Rome “La Sapienza”, 17-21 June, 1985, 1591-1595, (North-Holland; Elsevier, Amsterdam, Netherlands; New York, U.S.A., 1986).
261 Mattingly, D., “Modern Tests of Lorentz Invariance”, Living Rev. Relativity, 8, lrr-2005-5, (2005). URL (cited on 31 May 2005):
http://www.livingreviews.org/lrr-2005-5.
262 Mersini, L., “Dark energy from the trans-Planckian regime”, in Khalil, S., Shafi, Q., and Tallat, H., eds., International Conference on High Energy Physics, Proceedings of the International Conference on High Energy Physics, January 9-14, 2001, Cairo, Egypt, 289-294, (Rinton Press, Princeton, U.S.A., 2001). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-ph/0106134.
263 Mersini, L., Bastero-Gil, M., and Kanti, P., “Relic dark energy from trans-Planckian regime”, Phys. Rev. D, 64, 043508-1-9, (2001). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-ph/0101210.
264 Milne-Thomson, L.M., Theoretical Hydrodynamics, (Macmillan, London, U.K., New York, U.S.A., 1968), 5th edition.
265 Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, U.S.A., 1973).
266 Møller, C., The Theory of Relativity, (Clarendon, Oxford, U.K., 1972), 2nd edition.
267 Moncrief, V., “Gravitational perturbations of spherically symmetric systems. I. The exterior problem”, Ann. Phys. (N.Y.), 88, 323-342, (1974).
268 Moncrief, V., “Stability of stationary, spherical accretion onto a Schwarzschild black hole”, Astrophys. J., 235, 1038-1046, (1980). Related online version (cited on 02 December 2005):
External Linkhttp://adsabs.harvard.edu/cgi-bin/bib_query?1980ApJ...235.1038M.
269 Nakano, H., Kurita, Y., Ogawa, K., and Yoo, C.-M., “Quasinormal ringing for acoustic black holes at low temperature”, Phys. Rev. D, 71, 084006-1-7, (2005). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0411041.
270 Nandi, K.K., and Xu, D.H., “Unruh model for the Einstein-Rosen charge: Squealing wormholes?”, (2004). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0410052.
271 Nandi, K.K., Zhang, Y.-Z., Alsing, P.M., Evans, J.C., and Bhadra, A., “Analogue of the Fizeau effect in an effective optical medium”, Phys. Rev. D, 67, 025002-1-11, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0208035.
272 Nandi, K.K., Zhang, Y.-Z., and Cai, R.-G., “Acoustic wormholes”, (2004). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0409085.
273 Niemeyer, J.C., “Inflation with a Planck-scale frequency cutoff”, Phys. Rev. D, 63, 123502-1-7, (2001). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0005533.
274 Niemeyer, J.C., “Cosmological consequences of short distance physics”, (2002). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0201511.
275 Niemeyer, J.C., and Parentani, R., “Trans-Planckian dispersion and scale invariance of inflationary perturbations”, Phys. Rev. D, 64, 101301-1-4, (2001). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0101451.
276 Nikolic, H., “Time in quantum gravity by weakening the Hamiltonian constraint”, (2003). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0312063.
277 Nikolic, H., “Black holes radiate but do not evaporate”, (2004). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0402145.
278 Novello, M., “Effective geometry in nonlinear electrodynamics”, Int. J. Mod. Phys. A, 17, 4187-4196, (2002).
279 Novello, M., De Lorenci, V.A., Salim, J.M., and Klippert, R., “Geometrical aspects of light propagation in nonlinear electrodynamics”, Phys. Rev. D, 61, 045001-1-10, (2000). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9911085.
280 Novello, M., and Perez Bergliaffa, S.E., “Effective Geometry”, in Novello Santiago, M., and Perez Bergliaffa, E., eds., Cosmology and Gravitation, Xth Brazilian School of Cosmology and Gravitation, 25th Anniversary (1977-2002), Mangaratiba, Rio de Janeiro, Brazil, 29 July - 9 August 2002, vol. 668 of AIP Conference Proceedings, 288-300, (American Institute of Physics, Melville, U.S.A., 2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0302052.
281 Novello, M., Perez Bergliaffa, S.E., and Salim, J.M., “Nonlinear electrodynamics and the acceleration of the Universe”, Phys. Rev. D, 69, 127301-1-4, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0312093.
282 Novello, M., Perez Bergliaffa, S.E., Salim, J.M., De Lorenci, V.A., and Klippert, R., “Analog black holes in flowing dielectrics”, Class. Quantum Grav., 20, 859-871, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0201061.
283 Novello, M., and Salim, J.M., “Effective electromagnetic geometry”, Phys. Rev. D, 63, 083511-1-4, (2001).
284 Novello, M., Visser, M., and Volovik, G., eds., Artificial Black Holes, (World Scientific, Singapore; River Edge, U.S.A., 2002).
285 Obadia, N., and Parentani, R., “Notes on moving mirrors”, Phys. Rev. D, 64, 044019-1-17, (2001). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0103061.
286 Obadia, N., and Parentani, R., “Uniformly accelerated mirrors. II: Quantum correlations”, Phys. Rev. D, 67, 024022-1-18, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0209057.
287 Obukhov, Y.N., “Black hole hydrodynamics”, (2003). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0309114.
288 Obukhov, Y.N., and Hehl, F.W., “Spacetime metric from linear electrodynamics”, Phys. Lett. B, 458, 466-470, (1999). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9904067.
289 Oppenheim, J., “Thermodynamics with long-range interactions: From Ising models to black holes”, Phys. Rev. E, 68, 016108-1-17, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0212066.
290 Oron, O., and Horwitz, L.P., “Eikonal approximation to 5D wave equations as geodesic motion in a curved 4D spacetime”, Gen. Relativ. Gravit., 37, 491-506, (2005). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-ph/0205018.
291 Padmanabhan, T., “Gravity and the thermodynamics of horizons”, Phys. Rep., 406, 49-125, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0311036.
292 Padmanabhan, T., “Entropy of Horizons, Complex Paths and Quantum Tunneling”, Mod. Phys. Lett. A, 19, 2637-2643, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0405072.
293 Painlevé, P., “La mécanique classique et la theorie de la relativité”, C. R. Acad. Sci., 173, 677-680, (1921).
294 Parentani, R., “The Recoils of the accelerated detector and the decoherence of its fluxes”, Nucl. Phys. B, 454, 227-249, (1995). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9502030.
295 Parentani, R., “The Recoils of a Dynamical Mirror and the Decoherence of its Fluxes”, Nucl. Phys. B, 465, 175-214, (1996). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/9509104.
296 Parentani, R., “Time dependent perturbation theory in quantum cosmology”, Nucl. Phys. B, 492, 501-525, (1997). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9610045.
297 Parentani, R., “The validity of the background field approximation”, in Burko, L.M., and Ori, A., eds., Internal Sructure of Black Holes and Space Time Singularities, Workshop on The Internal Sructure of Black Holes and Space Time Singularities, June 29-July 3, 1997, Haifa, Israel, vol. 13 of Annals of the Israel Physical Society, (Institute of Physics Publishing, Bristol, U.K.; Philadelphia, U.S.A., 1997). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9710059.
298 Parentani, R., “Hawking radiation from Feynman diagrams”, Phys. Rev. D, 61, 027501-1-4, (2000). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9904024.
299 Parentani, R., “Quantum metric fluctuations and Hawking radiation”, Phys. Rev. D, 63, 041503-1-4, (2001). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0009011.
300 Parentani, R., “What did we learn from studying acoustic black holes?”, Int. J. Mod. Phys. A, 17, 2721-2726, (2002). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0204079.
301 Parentani, R., “The inflationary paradigm: Predictions for CMB”, (2004). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0404022.
302 Pashaev, O.K., and Lee, J.-H., “Resonance Solitons as Black Holes in Madelung Fluid”, Mod. Phys. Lett. A, 17, 1601-1619, (2002). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/9810139.
303 Peblanski, J., “Electromagnetic waves in gravitational fields”, Phys. Rev., 118, 1396-1408, (1960).
304 Peblanski, J., Lectures on Nonlinear Electrodynamics, (Nordita, Copenhagen, Denmark, 1970).
305 Penrose, R., “Gravitational collapse: The role of general relativity”, Riv. Nuovo Cimento, 1, 252-276, (1969).
306 Perez Bergliaffa, S.E., “Effective geometry in Astrophysics”, Int. J. Mod. Phys. D, 13, 1469-1476, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0401577.
307 Perez Bergliaffa, S.E., Hibberd, K., Stone, M., and Visser, M., “Wave Equation for Sound in Fluids with Vorticity”, Physica D, 191, 121-136, (2001). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/cond-mat/0106255.
308 Pham, Q.M., “Sur les équations de l’electromagné dans la materie”, C. R. Hebd. Seanc. Acad. Sci., 242, 465-467, (1956).
309 Philips, D.F., Fleischhauer, A., Mair, A., and Walsworth, R.L., “Storage of Light in Atomic Vapor”, Phys. Rev. Lett., 86, 783-786, (2001).
310 Pines, D., The Many-Body Problem: A Lecture Note and Reprint Volume, vol. 6 of Frontiers in Physics, (W.A. Benjamin, New York, U.S.A., 1962), 2nd edition.
311 Piwnicki, P., “Geometrical approach to light in inhomogeneous media”, Int. J. Mod. Phys. A, 17, 1543-1558, (2002). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0201007.
312 Press, W.H., and Teukolsky, S.A., “Floating Orbits, Superradiant Scattering and the Black-Hole Bomb”, Nature, 238, 211-212, (1972).
313 Radu, E., “On the Euclidean approach to quantum field theory in Gödel space-time”, Phys. Lett. A, 247, 207-210, (1998).
314 Raval, A., Hu, B.L., and Koks, D., “Near-thermal radiation in detectors, mirrors and black holes: A stochastic approach”, Phys. Rev. D, 55, 4795-4812, (1997). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9606074.
315 Ray, A.K., “Linearized perturbation on stationary inflow solutions in an inviscid and thin accretion disc”, Mon. Not. R. Astron. Soc., 344, 83-88, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0212515.
316 Ray, A.K., and Bhattacharjee, J.K., “A Dynamical Systems Approach to an Inviscid and Thin Accretion Disc”, (2003). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0307447.
317 Regge, T., and Wheeler, J.A., “Stability of a Schwarzschild Singularity”, Phys. Rev., 108, 1063-1069, (1957).
318 Reznik, B., “Trans-Planckian tail in a theory with a cutoff”, Phys. Rev. D, 55, 2152-2158, (1997). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9606083.
319 Reznik, B., “Origin of the thermal radiation in a solid-state analogue of a black hole”, Phys. Rev. D, 62, 044044-1-7, (2000). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9703076.
320 Rosquist, K., “Letter: A Moving Medium Simulation of Schwarzschild Black Hole Optics”, Gen. Relativ. Gravit., 36, 1977-1982, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0309104.
321 Rosu, H., “Towards measuring Hawking like effects in the laboratory. 1”, unknown status, (1989). Related online version (cited on 7 Dec 2005):
External Linkhttp://www.slac.stanford.edu/spires/find/hep/www?key=2056828.
322 Rosu, H., “Superoscillations and trans-Planckian frequencies”, Nuovo Cimento B, 112, 131-132, (1997). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9606070.
323 Rosu, Haret C., “On the circular vacuum noise in electron storage rings”, Nuovo Cimento B, 109, 423-430, (1994). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/physics/9711015.
324 Rosu, H.C., “Classical and quantum inertia: A matter of principles”, Grav. and Cosmol., 5, 81-91, (1999). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9412012.
325 Rosu, H.C., “Relativistic quantum field inertia and vacuum field noise spectra: By quest of the lost universality to high energy radiometric standards”, Int. J. Theor. Phys., 39, 285-295, (2000). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9905049.
326 Rovelli, C., “Loop quantum gravity”, Phys. World, 16, 37-41, (November, 2003).
327 Rovelli, C., Quantum Gravity, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 2004).
328 Rovelli, C., and Smolin, L., “Discreteness of area and volume in quantum gravity”, Nucl. Phys. B, 442, 593-619, (1995). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9411005.
329 Russo, J.G., “Model of black hole evolution”, Phys. Rev. D, 55, 871-877, (1997). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/9602124.
330 Saida, H., and Sakagami, M., “Black hole radiation with high frequency dispersion”, Phys. Rev. D, 61, 084023-1-8, (2000). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9905034.
331 Sakagami, M., and Ohashi, A., “Hawking Radiation in Laboratories”, Prog. Theor. Phys., 107, 1267-1272, (2002). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0108072.
332 Sakharov, A.D., “Vacuum quantum fluctuations in curved space and the theory of gravitation”, Sov. Phys. Dokl., 12, 1040-1041, (1968).
333 Salehi, H., “Evaporating Black Holes And An Entropic Scale-Hierarchy”, (1994). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9409023.
334 Salehi, H., “Evaporating black holes and long range scaling”, Gen. Relativ. Gravit., 35, 1679-1690, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0302178.
335 Saul, L.A., “The Dynamic Space of General Relativity in Second Atomization”, in Reimer, A., ed., General Relativity Research Trends, vol. 249 of Horizons in World Physics, 153-172, (Nova Science, New York, U.S.A., 2005). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0405132.
336 Schmelzer, I., “General Ether Theory”, (2000). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0001101.
337 Schmelzer, I., “A metric theory of gravity with condensed matter interpretation”, (2000). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0001096.
338 Schmelzer, I., “Derivation of the Einstein equivalence principle in a class of condensed matter theories”, (2001). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0104013.
339 Schmelzer, I., “A generalization of the Lorentz ether to gravity with general-relativistic limit”, (2002). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0205035.
340 Schützhold, R., “On the Hawking effect”, Phys. Rev. D, 64, 024029-1-14, (2001). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0011047.
341 Schützhold, R., “Particle definition in the presence of black holes”, Phys. Rev. D, 63, 024014-1-20, (2001). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0003020.
342 Schützhold, R., Plunien, G., and Soff, G., “Dielectric Black Hole Analogs”, Phys. Rev. Lett., 88, 061101-1-4, (2002). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/quant-ph/0104121.
343 Schützhold, R., Uhlmann, M., Xu, Y., and Fischer, U. R., “Quantum backreaction in dilute Bose-Einstein condensates”, Phys. Rev. D, 72, 105005-1-8, (2005). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/cond-mat/0503581.
344 Schützhold, R., and Unruh, W.G., “Gravity wave analogues of black holes”, Phys. Rev. D, 66, 044019-1-13, (2002). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0205099.
345 Schützhold, R., and Unruh, W.G., “Gravity wave analogues of black holes”, Phys. Rev. D, 66, 044019-1-13, (2002).
346 Schützhold, R., and Unruh, W.G., “Problems of doubly special relativity with variable speed of light”, J. Exp. Theor. Phys. Lett., 78, 431, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0308049.
347 Schützhold, R., and Unruh, W.G., “Hawking Radiation in an Electromagnetic Waveguide?”, Phys. Rev. Lett., 95, 031301-1-4, (2005). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/quant-ph/0408145.
348 Scully, M.O., and Zubairy, M.S., Quantum Optics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1997).
349 Shankaranarayanan, S., “Is there an imprint of Planck-scale physics on inflationary cosmology?”, Class. Quantum Grav., 20, 75-83, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0203060.
350 Shankaranarayanan, S., Padmanabhan, T., and Srinivasan, K., “Hawking radiation in different coordinate settings: complex paths approach”, Class. Quantum Grav., 19, 2671-2687, (2002). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0010042.
351 Siemieniec-Ozieblo, G., and Woszczyna, A., “Acoustic instabilities at the transition from the radiation-dominated to the matter-dominated universe”, Astron. Astrophys., 419, 801-810, (2004). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0106562.
352 Skrotskii, G.V., “The influence of gravitation on the propagation of light”, Sov. Phys. Dokl., 2, 226-229, (1957).
353 Skudrzyk, E., The Foundations of Acoustics, (Springer, New York, U.S.A., 1971).
354 Slatyer, T.R., and Savage, C.M., “Superradiant scattering from a hydrodynamic vortex”, Class. Quantum Grav., 22, 3833-3839, (2005). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/cond-mat/0501182.
355 Smolin, L., “Experimental signatures of quantum gravity”, (1995). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9503027.
356 Smolin, L., “How far are we from the quantum theory of gravity?”, (2003). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0303185.
357 Smolyaninov, I.I., “Linear and nonlinear optics of surface plasmon toy-models of black holes and wormholes”, (2003). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0311062.
358 Smolyaninov, I.I., and Davis, C.C., “Surface plasmon toy-models of black holes and wormholes”, (2003). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0306089.
359 Sorkin, R.D., “Causal sets: Discrete gravity (Notes for the Valdivia Summer School)”, (2003). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0309009.
360 Srinivasan, K., and Padmanabhan, T., “Particle production and complex path analysis”, Phys. Rev. D, 60, 24007-1-20, (1999). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9812028.
361 Sriramkumar, L., and Padmanabhan, T., “Initial state of matter fields and trans-Planckian physics: Can CMB observations disentangle the two?”, Phys. Rev. D, 71, 103512-1-11, (2005). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0408034.
362 Starobinsky, A.A., “Robustness of the inflationary perturbation spectrum to trans-Planckian physics”, J. Exp. Theor. Phys. Lett., 73, 415-418, (2001). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0104043.
363 Starobinsky, A.A., and Tkachev, I.I., “Trans-Planckian Particle Creation in Cosmology and Ultrahigh Energy Cosmic Rays”, J. Exp. Theor. Phys. Lett., 76, 235-239, (2002). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0207572.
364 Stephens, G.J., and Hu, B.L., “Notes on black hole phase transitions”, Int. J. Theor. Phys., 40, 2183-2200, (2001). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0102052.
365 Stone, M., “Magnus and other forces on vortices in superfluids and superconductors”, (1997). URL (cited on 31 May 2005):
External Linkhttp://arxiv.org/abs/cond-mat/9708017.
366 Stone, M., “Acoustic energy and momentum in a moving medium”, Phys. Rev. E, 62, 1341-1350, (2000). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/cond-mat/9909315.
367 Stone, M., “Iordanskii force and the gravitational Aharonov-Bohm effect for a moving vortex”, Phys. Rev. B, 61, 11780-11786, (2000). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/cond-mat/9909313.
368 Stone, M., “Phonons and Forces: Momentum versus Pseudomomentum in Moving Fluids”, (2000). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/cond-mat/0012316.
369 Synge, J.L., Relativity: The General Theory, (North-Holland, Amsterdam, Netherlands, 1960).
370 Tamaki, T., Harada, T., Miyamoto, U., and Torii, T., “Particle velocity in noncommutative space-time”, Phys. Rev. D, 66, 105003-1-6, (2002). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0208002.
371 Tanaka, T., “A comment on trans-Planckian physics in inflationary universe”, (2001). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0012431.
372 Thorne, K.S., Price, R.H., and Macdonald, D.A., eds., Black Holes: The Membrane Paradigm, (Yale University Press, New Haven, U.S.A.; London, U.K., 1986).
373 Trautman, A., “Comparison of Newtonian and relativistic theories of space-time”, in Hoffman, B., ed., Perspectives in Geometry and Relativity: Essays in honor of Václav Hlavatý, 413-425, (Indiana University Press, Bloomington, U.S.A., 1966).
374 Turukhin, A.V., Sudarshanam, V.S., Shahriar, M.S., Musser, J.A., Ham, B.S., and Hemmer, P.R., “Observation of Ultraslow and Stored Light Pulses in a Solid”, Phys. Rev. Lett., 88, 023602-1-4, (2002).
375 Unruh, W.G., “Notes on black-hole evaporation”, Phys. Rev. D, 14, 870-892, (1976).
376 Unruh, W.G., “Experimental Black-Hole Evaporation?”, Phys. Rev. Lett., 46, 1351-1353, (1981).
377 Unruh, W.G., “Sonic analogue of black holes and the effects of high frequencies on black hole evaporation”, Phys. Rev. D, 51, 2827-2838, (1994). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9409008.
378 Unruh, W.G., “Sonic analog of black holes and the effects of high frequencies on black hole evaporation”, Phys. Rev. D, 51, 2827-2838, (1995). preprinted as gr-qc/9409008.
379 Unruh, W.G., and Schützhold, R., “On slow light as a black hole analogue”, Phys. Rev. D, 68, 024008-1-14, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0303028.
380 Unruh, W.G., and Schützhold, R., “Universality of the Hawking effect”, Phys. Rev. D, 71, 024028-1-11, (2005). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0408009.
381 Vachaspati, T., “Propagating phase boundaries as sonic horizons”, (2003). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0312069.
382 Vachaspati, T., “Cosmic Problems for Condensed Matter Experiment”, (2004). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/cond-mat/0404480.
383 Vestergaard Hau, L., Harris, S.E., Dutton, Z., and Behroozi, C.H., “Light speed reduction to 17 metres per second in ultracold atomic gas”, Nature, 397, 594-598, (1999).
384 Vishveshwara, C.V., “Scattering of gravitational radiation by a Schwarzschild black-hole”, Nature, 227, 936-938, (1970).
385 Vishveshwara, C.V., “Stability of the Schwarzschild metric”, Phys. Rev. D, 1, 2870-2879, (1970).
386 Visser, M., “Dirty black holes: Thermodynamics and horizon structure”, Phys. Rev. D, 46, 2445-2451, (1992). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/9203057.
387 Visser, M., “Acoustic propagation in fluids: An unexpected example of Lorentzian geometry”, (1993). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9311028.
388 Visser, M., Lorentzian Wormholes: From Einstein to Hawking, AIP Series in Computational and Applied Mathematical Physics, (American Institute of Physics, Woodbury, U.S.A., 1995).
389 Visser, M., “Acoustic black holes: Horizons, ergospheres, and Hawking radiation”, Class. Quantum Grav., 15, 1767-1791, (1998). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9712010.
390 Visser, M., “Hawking radiation without black hole entropy”, Phys. Rev. Lett., 80, 3436-3439, (1998). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9712016.
391 Visser, M., “Acoustic black holes”, (1999). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9901047.
392 Visser, M., “Comment on “Relativistic Effects of Light in Moving Media with Extremely Low Group Velocity””, Phys. Rev. Lett., 85, 5252, (2000). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0002011.
393 Visser, M., “Sakharov’s induced gravity: A modern perspective”, Mod. Phys. Lett. A, 17, 977-992, (2002). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0204062.
394 Visser, M., “Essential and inessential features of Hawking radiation”, Int. J. Mod. Phys. D, 12, 649-661, (2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0106111.
395 Visser, M., “Heuristic approach to the Schwarzschild geometry”, (2003). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0309072.
396 Visser, M., “The quantum physics of chronology protection”, in Gibbons, G.W., Shellard, E.P.S., and Rankin, S.J., eds., The Future of Theoretical Physics and Cosmology: Celebrating Stephen Hawking’s 60th Birthday, 161-175, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 2003). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0204022.
397 Visser, M., Barceló, C., and Liberati, S., “Acoustics in Bose-Einstein condensates as an example of Lorentz symmetry breaking”, (2001). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/hep-th/0109033.
398 Visser, M., Barceló, C., and Liberati, S., “Analogue models of and for gravity”, Gen. Relativ. Gravit., 34, 1719-1734, (2002). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0111111.
399 Visser, M., Barceló, C., and Liberati, S., “Bi-refringence versus bi-metricity”, (2002). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0204017.
400 Visser, M., and Weinfurtner, S., “Massive phonon modes from a BEC-based analog model”, (2004). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/cond-mat/0409639.
401 Visser, M., and Weinfurtner, S.E.C., “Vortex analogue for the equatorial geometry of the Kerr black hole”, Class. Quantum Grav., 22, 2493-2510, (2004). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0409014.
402 Volovik, G.E., “Is there analogy between quantized vortex and black hole?”, (1995). URL (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9510001.
403 Volovik, G.E., “AB interface in superfluid 3He and Casimir effect”, J. Exp. Theor. Phys. Lett., 63, 483-489, (1996). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/cond-mat/9602129.
404 Volovik, G.E., “Cosmology, particle physics and superfluid 3He”, Czech. J. Phys., 46, 3048, (1996). Related online version (cited on 31 May 2005):
External Linkhttp://arXiv.org/abs/cond-mat/9607212.
405 Volovik, G.E., “Induced gravity in superfluid 3He”, J. Low Temp. Phys., 113, 667-680, (1997). Related online version (cited o