1 Alinhac, S., and Gérard, P., Opérateurs pseudo-différentiels et Théorème de Nash-Moser, Savoirs Actuels, (EDP Sciences, Les Ulis, France, 1991).
2 Anderson, M.T., “Scalar curvature and geometrization structures for 3-manifolds”, in Grove, K., and Peterson, P., eds., Comparison Geometry, vol. 30 of Mathematical Sciences Research Institute Publications, 49-82, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1997).
3 Anderson, M.T., “On stationary vacuum solutions to the Einstein equations”, Ann. Henri Poincare, 1, 977-994, (2000).
4 Anderson, M.T., “On the structure of solutions to the static vacuum Einstein equations”, Ann. Henri Poincare, 1, 995-1042, (2000).
5 Anderson, M.T., “Asymptotic behavior of future-complete cosmological space-times”, Class. Quantum Grav., 21, S11-S28, (2004).
6 Anderson, M.T., “Existence and stability of even dimensional asymptotically de Sitter spaces”, (August, 2004). URL (cited on 17 March 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0408072.
7 Anderson, M.T., and Chruściel, P.T., “Asymptotically simple solutions of the vacuum Einstein equations in even dimensions”, (December, 2004). URL (cited on 4 April 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0412020.
8 Andersson, L., “The global existence problem in general relativity”, in Chruściel, P.T., and Friedrich, H., eds., The Einstein Equations and the Large Scale Behavior of Gravitational Fields: 50 Years of the Cauchy Problem in General Relativity, 71-120, (Birkhäuser, Basel, Switzerland; Boston, U.S.A., 2004).
9 Andersson, L., Chruściel, P.T., and Friedrich, H., “On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einstein’s field equations”, Commun. Math. Phys., 149, 587-612, (1992).
10 Andersson, L., and Moncrief, V., “Elliptic-hyperbolic systems and the Einstein equations”, Ann. Henri Poincare, 4, 1-34, (2003).
11 Andersson, L., and Moncrief, V., “Future Complete Vacuum Spacetimes”, in Chruściel, P.T., and Friedrich, H., eds., The Einstein Equations and the Large Scale Behavior of Gravitational Fields: 50 Years of the Cauchy Problem in General Relativity, 299-330, (Birkhäuser, Basel, Switzerland; Boston, U.S.A., 2004).
12 Andersson, L., Moncrief, V., and Tromba, A., “On the global evolution problem in 2+1 gravity”, J. Geom. Phys., 23, 1991-205, (1997).
13 Andersson, L., and Rendall, A.D., “Quiescent Cosmological Singularities”, Commun. Math. Phys., 218, 479-511, (2001).
14 Andersson, L., van Elst, H., Lim, W.C., and Uggla, C., “Asymptotic silence of generic cosmological singularities”, Phys. Rev. Lett., 94, 051101, (2005).
15 Andréasson, H., “Regularity of the gain term and strong L1 convergence to equilibrium for the relativistic Boltzmann equation”, SIAM J. Math. Anal., 27, 1386-1405, (1996).
16 Andréasson, H., “Global Foliations of Matter Spacetimes with Gowdy Symmetry”, Commun. Math. Phys., 206, 337-365, (1999).
17 Andréasson, H., “The Einstein-Vlasov System/Kinetic Theory”, Living Rev. Relativity, 8, lrr-2005-2, (2005). URL (cited on 22 April 2005):
http://www.livingreviews.org/lrr-2005-2.
18 Andréasson, H., Calogero, S., and Rein, G., “Global classical solutions to the spherically symmetric Nordström-Vlasov system”, (August, 2003). URL (cited on 31 March 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0311027.
19 Andréasson, H., Rein, G., and Rendall, A.D., “On the Einstein-Vlasov system with hyperbolic symmetry”, Math. Proc. Camb. Phil. Soc., 134, 529-549, (2001). Related online version (cited on 28 January 2002):
External Linkhttp://arXiv.org/abs/gr-qc/0110089.
20 Andréasson, H., Rendall, A.D., and Weaver, M., “Existence of CMC and constant areal time foliations in T2 symmetric spacetimes with Vlasov matter”, Commun. Part. Diff. Eq., 29, 237-262, (2004).
21 Anguige, K., “A class of plane symmetric perfect-fluid cosmologies with a Kasner-like singularity”, Class. Quantum Grav., 17, 2117-2128, (2000).
22 Anguige, K., “A class of plane symmetric perfect-fluid cosmologies with a Kasner-like singularity”, Class. Quantum Grav., 17, 2117-2128, (2000). Related online version (cited on 29 January 2002):
External Linkhttp://arXiv.org/abs/gr-qc/0005086.
23 Anguige, K., “Isotropic Cosmological Singularities. III. The Cauchy Problem for the Inhomogeneous Conformal Einstein-Vlasov Equations”, Ann. Phys. (N.Y.), 282, 395-419, (2000).
24 Anguige, K., and Tod, K.P., “Isotropic cosmological singularities 1: Polytropic perfect fluid spacetimes”, Ann. Phys. (N.Y.), 276, 257-293, (1999).
25 Anguige, K., and Tod, K.P., “Isotropic cosmological singularities 2: The Einstein-Vlasov system”, Ann. Phys. (N.Y.), 276, 294-320, (1999).
26 Anninos, P., “Computational Cosmology: From the Early Universe to the Large Scale Structure”, Living Rev. Relativity, 4, lrr-2001-2, (2001). URL (cited on 24 January 2002):
http://www.livingreviews.org/lrr-2001-2.
27 Arkeryd, L., “On the strong L1 trend to equilibrium for the Boltzmann equation”, Stud. Appl. Math., 87, 283-288, (1992).
28 Armendariz-Picon, C., Mukhanov, V., and Steinhardt, P.J., “Essentials of k-essence”, Phys. Rev. D, 53, 10351, (2001).
29 Arnold, V.I., and Ilyashenko, Y.S., “Ordinary differential equations”, in Anosov, D.V., and Arnold, V.I., eds., Dynamical Systems I: Ordinary Differential Equations and Smooth Dynamical Systems, vol. 1 of Encyclopaedia of Mathematical Sciences, 1-148, (Springer, Berlin, Germany; New York, U.S.A., 1988).
30 Aubin, T., Nonlinear Analysis on Manifolds. Monge-Ampère equations, vol. 252 of Grundlehren der mathematischen Wissenschaften, (Springer, Berlin, Germany; New York, U.S.A., 1982).
31 Baouendi, M.S., and Goulaouic, C., “Remarks on the abstract form of nonlinear Cauchy-Kovalevsky theorems”, Commun. Part. Diff. Eq., 2, 1151-1162, (1977).
32 Barnes, A.P., LeFloch, P.G., Schmidt, B.G., and Stewart, J.M., “The Glimm scheme for perfect fluids on plane-symmetric Gowdy spacetimes”, Class. Quantum Grav., 21, 5043-5074, (2004).
33 Barrow, J.D., and Kodama, H., “All universes great and small”, Int. J. Mod. Phys. D, 10, 785-790, (2001).
34 Bartnik, R., “Remarks on cosmological spacetimes and constant mean curvature hypersurfaces”, Commun. Math. Phys., 117, 615-624, (1988).
35 Bartnik, R., “Quasi-spherical metrics and prescribed scalar curvature”, J. Differ. Geom., 37, 31-71, (1993).
36 Bartnik, R., and Fodor, G., “On the restricted validity of the thin sandwich conjecture”, Phys. Rev. D, 48, 3596-3599, (1993).
37 Bartnik, R., and McKinnon, J., “Particlelike Solutions of the Einstein-Yang-Mills Equations”, Phys. Rev. Lett., 61, 141-143, (1988).
38 Batt, J., Faltenbacher, W., and Horst, E., “Stationary Spherically Symmetric Models in Stellar Dynamics”, Arch. Ration. Mech. Anal., 93, 159-183, (1986).
39 Bauer, S., “Post-Newtonian approximation of the Vlasov-Nordström system”, (October, 2004). URL (cited on 13 April 2005):
External Linkhttp://arXiv.org/abs/math-ph/0410048.
40 Bauer, S., and Kunze, M., “The Darwin approximation of the relativistic Vlasov-Maxwell system”, (January, 2004). URL (cited on 13 April 2005):
External Linkhttp://arXiv.org/abs/math-ph/0401012.
41 Beale, J.T., Hou, T.Y., and Lowengrub, J.S., “Growth rates for the linearized motion of fluid interfaces away from equilibrium”, Commun. Pure Appl. Math., 46, 1269-1301, (1993).
42 Beig, R., and Schmidt, B.G., “Static, self-gravitating elastic bodies”, Proc. R. Soc. London, Ser. A, 459, 109-115, (2002). Related online version (cited on 8 February 2002):
External Linkhttp://arXiv.org/abs/gr-qc/0202024.
43 Beig, R., and Schmidt, B.G., “Relativistic elasticity”, Class. Quantum Grav., 20, 889-904, (2003).
44 Beig, R., and Schmidt, B.G., “Relativistic elastostatics I: bodies in rigid rotation”, (November, 2004). URL (cited on 4 April 2004):
External Linkhttp://arXiv.org/abs/gr-qc/0411145.
45 Belinskii, V.A., “Turbulence of a gravitational field near a cosmological singularity”, J. Exp. Theor. Phys. Lett., 56, 421-425, (1992).
46 Belinskii, V.A., Grishchuk, L.P., Zeldovich, Y.B., and Khalatnikov, I.M., “Inflationary stages in cosmological models with a scalar field”, Sov. Phys. JETP, 62, 195-203, (1986).
47 Belinskii, V.A., Khalatnikov, I.M., and Lifshitz, E.M., “Oscillatory approach to a singular point in the relativistic cosmology”, Adv. Phys., 19, 525-573, (1970).
48 Belinskii, V.A., Khalatnikov, I.M., and Lifshitz, E.M., “A general solution of the Einstein equations with a time singularity”, Adv. Phys., 31, 639-667, (1982).
49 Berger, B.K., “Numerical Approaches to Spacetime Singularities”, Living Rev. Relativity, 5, lrr-2002-1, (2002). URL (cited on 28 January 2002):
http://www.livingreviews.org/lrr-2002-1.
50 Berger, B.K., Chruściel, P.T., Isenberg, J.A., and Moncrief, V., “Global Foliations of Vacuum Spacetimes with T2 Isometry”, Ann. Phys. (N.Y.), 260, 117-148, (1997).
51 Berger, B.K., Chruściel, P.T., and Moncrief, V., “On “Asymptotically Flat” Space-Times with G2-Invariant Cauchy Surfaces”, Ann. Phys. (N.Y.), 237, 322-354, (1995).
52 Berger, B.K., Garfinkle, D., Isenberg, J., Moncrief, V., and Weaver, M., “The singularity in generic gravitational collapse is spacelike, local and oscillatory”, Mod. Phys. Lett. A, 13, 1565-1574, (1998).
53 Berger, B.K., and Moncrief, V., “Exact U(1) symmetric cosmologies with local Mixmaster dynamics”, Phys. Rev. D, 62, 023509-1-023509-8, (2000).
54 Beyer, H., “The spectrum of adiabatic stellar oscillations”, J. Math. Phys., 36, 4792-4814, (1995).
55 Beyer, H., “On the stability of the Kerr metric”, Commun. Math. Phys., 221, 659-676, (2001).
56 Bicak, J., Ledvinka, T., Schmidt, B.G., and Zofka, M., “Static fluid cylinders and their fields: global solutions”, Class. Quantum Grav., 21, 1583-1608, (2004).
57 Bieli, R., “Algebraic expansions for curvature coupled scalar field models”, (April, 2005). URL (cited on 28 April 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0504119.
58 Binney, J., and Tremaine, S., Galactic Dynamics, Princeton Series in Astrophysics, (Princeton University Press, Princeton, U.S.A., 1987).
59 Bizoń, P., “Equivariant self-similar wave maps from Minkowski spacetime into 3-sphere”, Commun. Math. Phys., 215, 45-56, (2000).
60 Bizoń, P., Chmaj, T., and Tabor, Z., “Formation of singularities for equivariant 2+1 dimensional wave maps into 2-sphere”, Nonlinearity, 14, 1041-1053, (2001).
61 Bizoń, P., and Tabor, Z., “On blowup of Yang-Mills fields”, Phys. Rev. D, 64, 121701-1-4, (2001).
62 Bizoń, P., and Wasserman, A.G., “On the existence of self-similar spherically symmetric wave maps coupled to gravity”, Class. Quantum Grav., 19, 3309-3322, (2002). Related online version (cited on 5 February 2002):
External Linkhttp://arXiv.org/abs/gr-qc/0201046.
63 Bojowald, M., “Loop quantum cosmology: recent progress”, (February, 2004). URL (cited on 21 April 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0402053.
64 Börner, G., The Early Universe: Facts and Fiction, Texts and Monographs in Physics, (Springer, Berlin, Germany; New York, U.S.A., 1993), 3rd edition.
65 Bourguignon, J.-P., “Stabilité par déformation non-linéaire de la métrique de Minkowski (d’après D. Christodoulou et S. Klainerman)”, Asterisque, 201-203, 321-358, (1991).
66 Brauer, U., Singularitäten in relativistischen Materiemodellen, Ph.D. Thesis, (Universität Potsdam, Potsdam, Germany, 1995).
67 Brauer, U., Rendall, A.D., and Reula, O.A., “The cosmic no-hair theorem and the nonlinear stability of homogeneous Newtonian cosmological models”, Class. Quantum Grav., 11, 2283-2296, (1994).
68 Bressan, A., “The Unique Limit of the Glimm Scheme”, Arch. Ration. Mech. Anal., 130, 205-230, (1995).
69 Bressan, A., Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem, vol. 20 of Oxford Lecture Series in Mathematics and Its Applications, (Oxford University Press, Oxford, U.K.; New York, U.S.A., 2000).
70 Bressan, A., and Colombo, R.M., “The Semigroup Generated by 2 × 2 Conservation Laws”, Arch. Ration. Mech. Anal., 133, 1-75, (1995).
71 Brodbeck, O., Heusler, M., Straumann, N., and Volkov, M., “Rotating solitons and non-rotating non-static black holes”, Phys. Rev. Lett., 79, 4310-4313, (1997).
72 Burnett, G.A., and Rendall, A.D., “Existence of maximal hypersurfaces in some spherically symmetric spacetimes”, Class. Quantum Grav., 13, 111-123, (1996).
73 Caciotta, G., and Nicolò, F., “Global characteristic problem for Einstein vacuum equations with small initial data: (I) The initial data constraints”, J. Hyperbol. Differ. Equations, 2, 201-277, (2005).
74 Caldwell, R.R., Kamionkowski, M., and Weinberg, N.N., “Phantom energy and cosmic doomsday”, Phys. Rev. Lett., 91, 071301, (2003).
75 Calogero, S., “The Newtonian limit of the relativistic Boltzmann equation”, J. Math. Phys., 45, 4042-4052, (2004).
76 Cantor, M., “A necessary and sufficient condition for York data to specify an asymptotically flat spacetime”, J. Math. Phys., 20, 1741-1744, (1979).
77 Carr, B.J., Coley, A.A., Goliath, M., Nilsson, U.S., and Uggla, C., “Critical phenomena and a new class of self-similar spherically symmetric perfect-fluid solutions”, Phys. Rev. D, 61, 081502-1-5, (2000).
78 Carr, B.J., Coley, A.A., Goliath, M., Nilsson, U.S., and Uggla, C., “The state space and physical interpretation of self-similar spherically symmetric perfect-fluid models”, Class. Quantum Grav., 18, 303-324, (2001).
79 Cercignani, C., The Boltzmann Equation and Its Applications, vol. 67 of Applied Mathematical Sciences, (Springer, Berlin, Germany; New York, U.S.A., 1994).
80 Cercignani, C., Illner, R., and Pulvirenti, M., The Mathematical Theory of Dilute Gases, vol. 106 of Applied Mathematical Sciences, (Springer, Berlin, Germany; New York, U.S.A., 1988).
81 Chae, D., “Global existence of spherically symmetric solutions to the coupled Einstein and nonlinear Klein-Gordon system.”, Class. Quantum Grav., 18, 4589-4605, (2001).
82 Chae, D., “Global existence of solutions to the coupled Einstein and Maxwell-Higgs systems in the spherical symmetry”, Ann. Henri Poincare, 4, 35-62, (2003).
83 Chemin, J.-Y., “Remarques sur l’apparition de singularités dans les écoulements Euleriens compressibles”, Commun. Math. Phys., 133, 323-339, (1990).
84 Chen, J., “Conservation laws for the relativistic p-system”, Commun. Part. Diff. Eq., 20, 1605-1646, (1995).
85 Chen, J., “Conservation Laws for Relativistic Fluid Dynamics”, Arch. Ration. Mech. Anal., 139, 377-398, (1997).
86 Choptuik, M.W., “Universality and Scaling in the Gravitational Collapse of a Massless Scalar Field”, Phys. Rev. Lett., 70, 9-12, (1993).
87 Choquet-Bruhat, Y., “Coo solutions of hyperbolic nonlinear equations applications to G. R. G.”, Gen. Relativ. Gravit., 2, 359-362, (1971).
88 Choquet-Bruhat, Y., “Future complete Einsteinian spacetimes with U(1) isometry group, the unpolarized case”, in Chruściel, P.T., and Friedrich, H., eds., The Einstein Equations and the Large Scale Behavior of Gravitational Fields: 50 Years of the Cauchy Problem in General Relativity, 251-298, (Birkhäuser, Basel, Switzerland; Boston, U.S.A., 2004).
89 Choquet-Bruhat, Y., “Future complete S1 symmetric solutions of the Einstein-Maxwell-Higgs system”, (January, 2005). URL (cited on 1 March 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0501052.
90 Choquet-Bruhat, Y., and Cotsakis, S., “Global hyperbolicity and completeness”, J. Geom. Phys., 43, 345-350, (2002). Related online version (cited on 20 February 2002):
External Linkhttp://arXiv.org/abs/gr-qc/0201057.
91 Choquet-Bruhat, Y., and Geroch, R., “Global aspects of the Cauchy problem in general relativity”, Commun. Math. Phys., 14, 329-335, (1969).
92 Choquet-Bruhat, Y., Isenberg, J.A., and Moncrief, V., “Topologically general U(1) symmetric Einstein spacetimes with AVTD behavior”, (February, 2005). URL (cited on 13 April 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0502104.
93 Choquet-Bruhat, Y., Isenberg, J.A., and York, J.W., “Einstein constraints on asymptotically Euclidean manifolds”, Phys. Rev. D, 61, 084034-1-20, (2000).
94 Choquet-Bruhat, Y., and Moncrief, V., “Future global in time Einsteinian spacetimes with U(1) isometry group”, Ann. Henri Poincare, 2, 1007-1064, (2001).
95 Choquet-Bruhat, Y., and York, J.W., “The Cauchy problem”, in Held, A., ed., General Relativity and Gravitation : One Hundred Years After the Birth of Albert Einstein, vol. 1, 99-172, (Plenum, New York, U.S.A., 1980).
96 Christodoulou, D., “Global existence of generalised solutions of the spherically symmetric Einstein-scalar equations in the large”, Commun. Math. Phys., 106, 587-621, (1986).
97 Christodoulou, D., “The problem of a self-gravitating scalar field”, Commun. Math. Phys., 105, 337-361, (1986).
98 Christodoulou, D., “A mathematical theory of gravitational collapse”, Commun. Math. Phys., 109, 613-647, (1987).
99 Christodoulou, D., “The structure and uniqueness of generalised solutions of the spherically symmetric Einstein-scalar equations”, Commun. Math. Phys., 109, 591-611, (1987).
100 Christodoulou, D., “The formation of black holes and singularities in spherically symmetric gravitational collapse”, Commun. Pure Appl. Math., 44, 339-373, (1991).
101 Christodoulou, D., “Bounded variation solutions of the spherically symmetric Einstein-scalar field equations”, Commun. Pure Appl. Math., 46, 1131-1220, (1993).
102 Christodoulou, D., “Examples of naked singularity formation in the gravitational collapse of a scalar field”, Ann. Math., 140, 607-653, (1994).
103 Christodoulou, D., “Self-Gravitating Fluids: A Two-Phase Model”, Arch. Ration. Mech. Anal., 130, 343-400, (1995).
104 Christodoulou, D., “Self-Gravitating Fluids: The Continuation and Termination of a Free Phase Boundary”, Arch. Ration. Mech. Anal., 133, 333-398, (1996).
105 Christodoulou, D., “Self-Gravitating Fluids: The Formation of a Free Phase Boundary in the Phase Transition from Soft to Hard”, Arch. Ration. Mech. Anal., 134, 97-154, (1996).
106 Christodoulou, D., “The instability of naked singularities in the gravitational collapse of a scalar field”, Ann. Math. (2), 149, 183-217, (1999).
107 Christodoulou, D., and Klainerman, S., “Asymptotic properties of linear field equations in Minkowski space”, Commun. Pure Appl. Math., 43, 137-199, (1990).
108 Christodoulou, D., and Klainerman, S., The global nonlinear stability of the Minkowski space, vol. 41 of Princeton Mathematical Series, (Princeton University Press, Princeton, U.S.A., 1993).
109 Christodoulou, D., and Lindblad, H., “On the motion of the free surface of a liquid”, Commun. Pure Appl. Math., 53, 1536-1602, (2000).
110 Christodoulou, D., and Ó Murchadha, N., “The boost problem in general relativity”, Commun. Math. Phys., 80, 271-300, (1981).
111 Christodoulou, D., and Tahvildar-Zadeh, A.S., “On the asymptotic behaviour of spherically symmetric wave maps”, Duke Math. J., 71, 31-69, (1993).
112 Christodoulou, D., and Tahvildar-Zadeh, A.S., “On the regularity of spherically symmetric wave maps”, Commun. Pure Appl. Math., 46, 1041-1091, (1993).
113 Chruściel, P.T., “On Space-Time with U(1) × U(1) Symmetric Compact Cauchy Surfaces”, Ann. Phys. (N.Y.), 202, 100-150, (1990).
114 Chruściel, P.T., On Uniqueness in the Large of Solutions of Einstein’s Equations (Strong Cosmic Censorship), vol. 27 of Proceedings of the Centre for Mathematics and its Applications, (Australian National University Press, Canberra, Australia, 1991).
115 Chruściel, P.T., “Semi-global existence and convergence of solutions of the Robinson-Trautman (2-dimensional Calabi) equation”, Commun. Math. Phys., 137, 289-313, (1991).
116 Chruściel, P.T., Isenberg, J.A., and Moncrief, V., “Strong cosmic censorship in polarised Gowdy spacetimes”, Class. Quantum Grav., 7, 1671-1680, (1990).
117 Chruściel, P.T., Isenberg, J.A., and Pollack, D., “Gluing initial data sets for general relativity”, Phys. Rev. Lett., 93, 081101, (2004).
118 Claudel, C.M., and Newman, K.P., “The Cauchy problem for quasi-linear hyperbolic evolution problems with a singularity in the time”, Proc. R. Soc. London, Ser. A, 454, 1073-1107, (1998).
119 Coley, A.A., and van den Hoogen, R.J., “The dynamics of multi-scalar field cosmological models and assisted inflation”, Phys. Rev. D, 62, 023517, (2000).
120 Coley, A.A., and Wainwright, J., “Qualitative analysis of two-fluid Bianchi cosmologies”, Class. Quantum Grav., 9, 651-665, (1992).
121 Corvino, J., “Scalar curvature deformation and a gluing construction for the Einstein constraint equations”, Commun. Math. Phys., 214, 137-189, (2000).
122 Dafermos, M., “Stability and instability of the Cauchy horizon for the spherically symmetric Einstein-Maxwell-scalar field equations”, Ann. Math., 158, 875-928, (2003).
123 Dafermos, M., “On naked singularities and the collapse of self-gravitating Higgs fields”, (March, 2004). URL (cited on 4 April 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0403033.
124 Dafermos, M., “Spherically symmetric spacetimes with a trapped surface”, (March, 2004). URL (cited on 31 March 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0403032.
125 Dafermos, M., and Rendall, A.D., “An extension principle for the Einstein-Vlasov system in spherical symmetry”, (November, 2004). URL (cited on 1 April 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0411075.
126 Dafermos, M., and Rodnianski, I., “A proof of Price’s law for the collapse of a self-gravitating scalar field”, (September, 2003). URL (cited on 31 March 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0309115.
127 Dain, S., “Trapped surfaces as boundaries for the constraint equations”, Class. Quantum Grav., 21, 555-574, (2004).
128 Dain, S., and Nagy, G., “Initial data for fluid bodies in general relativity”, Phys. Rev. D, 65, 084020-1-15, (2002). Related online version (cited on 30 January 2002):
External Linkhttp://arXiv.org/abs/gr-qc/0201091.
129 Damour, T., “Cosmological singularities, Einstein billiards and Lorentzian Kac-Moody algebras”, (January, 2005). URL (cited on 28 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0501064.
130 Damour, T., Henneaux, M., Rendall, A.D., and Weaver, M., “Kasner-like behaviour for subcritical Einstein-matter systems”, Ann. Henri Poincare, 3, 1049-1111, (2002). URL (cited on 20 February 2002):
External Linkhttp://arXiv.org/abs/gr-qc/0202069.
131 de Oliveira, H.P., Ozorio de Almeida, A.M., Damião Soares, I., and Tonini, E.V., “Homoclinic chaos in the dynamics of a general Bianchi type-IX model”, Phys. Rev. D, 65, 083511-1-9, (2002). Related online version (cited on 17 February 2002):
External Linkhttp://arXiv.org/abs/gr-qc/0202047.
132 DiPerna, R.J., and Lions, P.-L., “On the Cauchy problem for Boltzmann equations: Global existence and weak stability”, Ann. Math., 130, 321-366, (1989).
133 Dossa, M., “Espaces de Sobolev non isotropes, à poids et problèmes de Cauchy quasi-linéaires sur un conoïde caractéristique”, Ann. Inst. Henri Poincare A, 66, 37-107, (1997).
134 Dudyński, M., and Ekiel-Jezewska, M.L., “Global existence proof for the relativistic Boltzmann equation”, J. Stat. Phys., 66, 991-1001, (1992).
135 Eardley, D.M., and Moncrief, V., “The global existence of Yang-Mills fields in M3+1”, Commun. Math. Phys., 83, 171-212, (1982).
136 Ehlers, J., “The Newtonian limit of general relativity”, in Ferrarese, G., ed., Classical Mechanics and Relativity: Relationship and Consistency, International Conference in Memory of Carlo Cattaneo, Elba 9-13 July 1989, Monographs and Textbooks in Physical Science, (Bibliopolis, Naples, Italy, 1991).
137 Evans, L.C., Partial Differential Equations, vol. 19 of Graduate Studies in Mathematics, (American Mathematical Society, Providence, U.S.A., 1998).
138 Felder, G., Kofman, L., and Starobinsky, A.A., “Caustics in tachyon matter and other Born-Infeld scalars”, J. High Energy Phys., 0209, 026, (2001).
139 Fischer, A., and Moncrief, V., “The Einstein flow, the s-constant and the geometriztion of 3-manifolds”, Class. Quantum Grav., 16, L79-L87, (1999).
140 Fjällborg, M., “On the cylindrically symmetric Einstein-Vlasov system”, (March, 2005). URL (cited on 31 March 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0503098.
141 Friedrich, H., “Existence and structure of past asymptotically simple solutions of Einstein’s field equations with positive cosmological constant”, J. Geom. Phys., 3, 101-117, (1986).
142 Friedrich, H., “On the global existence and asymptotic behaviour of solutions to the Einstein-Yang-Mills equations”, J. Differ. Geom., 34, 275-345, (1991).
143 Friedrich, H., “Einstein equations and conformal structure: Existence of anti-de Sitter-type spacetimes”, J. Geom. Phys., 17, 125-184, (1995).
144 Friedrich, H., “Hyperbolic reductions of Einstein’s field equations”, Class. Quantum Grav., 13, 1451-1469, (1996).
145 Friedrich, H., “Evolution equations for gravitating ideal fluid bodies in general relativity”, Phys. Rev. D, 57, 2317-2322, (1998).
146 Friedrich, H., “Gravitational fields near spacelike and null infinity”, J. Geom. Phys., 24, 83-172, (1998).
147 Friedrich, H., and Nagy, G., “The initial boundary value problem for Einstein’s vacuum field equations”, Commun. Math. Phys., 201, 619-655, (1999).
148 Friedrich, H., and Rendall, A.D., “The Cauchy problem for the Einstein equations”, in Schmidt, B.G., ed., Einstein’s Field Equations and Their Physical Implications: Selected Essays in Honour of Jürgen Ehlers, vol. 540 of Lecture Notes in Physics, (Springer, Berlin, Germany; New York, U.S.A., 2000).
149 Fritelli, S., and Reula, O.A., “On the Newtonian limit of general relativity”, Commun. Math. Phys., 166, 221-235, (1994).
150 Garfinkle, D., “Numerical simulations of generic singuarities”, Phys. Rev. Lett., 93, 124017, (2004).
151 Gibbons, G.W., “Phantom matter and the cosmological constant”, (February, 2003). URL (cited on 21 April 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0302199.
152 Gibbons, G.W., “Thoughts on tachyon cosmology”, Class. Quantum Grav., 20, S321-S346, (2003).
153 Glassey, R.T., and Schaeffer, J., “The ‘two and one half dimensional’ relativistic Vlasov-Maxwell system”, Commun. Math. Phys., 185, 257-284, (1997).
154 Glassey, R.T., and Schaeffer, J., “The Relativistic Vlasov-Maxwell System in Two Space Dimensions: Part I”, Arch. Ration. Mech. Anal., 141, 331-354, (1998).
155 Glassey, R.T., and Schaeffer, J., “The Relativistic Vlasov-Maxwell System in Two Space Dimensions: Part II”, Arch. Ration. Mech. Anal., 141, 355-374, (1998).
156 Glassey, R.T., and Strauss, W., “Asymptotic stability of the relativistic Maxwellian”, Publ. Res. Inst. Math. Sci., 29, 301-347, (1993).
157 Glimm, J., “Solutions in the large for nonlinear hyperbolic systems of equations”, Commun. Pure Appl. Math., 18, 697-715, (1965).
158 Goliath, M., Nilsson, U.S., and Uggla, C., “Spatially self-similar spherically symmetric perfect-fluid models”, Class. Quantum Grav., 15, 167-186, (1998).
159 Goliath, M., Nilsson, U.S., and Uggla, C., “Timelike self-similar spherically symmetric perfect-fluid models”, Class. Quantum Grav., 15, 2841-2863, (1998).
160 Goode, S.W., and Wainwright, J., “Isotropic singularities in cosmological models”, Class. Quantum Grav., 2, 99-115, (1985).
161 Grassin, M., “Global smooth solutions to Euler equations for a perfect gas”, Indiana Univ. Math. J., 47, 1397-1432, (1998).
162 Gundlach, C., “Critical phenomena in gravitational collapse”, Adv. Theor. Math. Phys., 2, 1-49, (1998).
163 Gundlach, C., “Critical Phenomena in Gravitational Collapse”, Living Rev. Relativity, 2, lrr-1999-4, (1999). URL (cited on 22 December 1999):
http://www.livingreviews.org/lrr-1999-4.
164 Guo, Y., “Smooth irrotational flows in the large to the Euler-Poisson system”, Commun. Math. Phys., 195, 249-265, (1998).
165 Guo, Y., and Rein, G., “Isotropic steady states in stellar dynamics”, Commun. Math. Phys., 219, 607-629, (2001).
166 Guo, Y., and Strauss, W., “Nonlinear instability of double-humped equilibria”, Ann. Inst. Henri Poincare C, 12, 339-352, (1995).
167 Guo, Y., and Tahvildar-Zadeh, A.S., “Formation of singularities in relativistic fluid dynamics and in spherically symmetric plasma dynamics”, in Chen, G.-Q., and DiBenedetto, E., eds., Nonlinear Partial Differential Equations, International Conference on Nonlinear Partial Differential Equations and Applications, March 21-24, 1998, Northwestern University, vol. 238 of Contemporary Mathematics, (American Mathematical Society, Providence, U.S.A., 1999).
168 Halliwell, J.J., “Scalar fields in cosmology with an exponential potential”, Phys. Lett. B, 185, 341-344, (1987).
169 Hamilton, R., “Three manifolds of positive Ricci curvature”, J. Differ. Geom., 17, 255-306, (1982).
170 Hartman, P., Ordinary Differential Equations, (Birkhäuser, Boston, U.S.A., 1982), 2nd edition.
171 Hauser, I., and Ernst, F.J., “Proof of a generalized Geroch conjecture for the hyperbolic Ernst equation”, Gen. Relativ. Gravit., 33, 195-293, (2001).
172 Heilig, U., “On the existence of rotating stars in general relativity”, Commun. Math. Phys., 166, 457-493, (1995).
173 Heinzle, M., Rendall, A.D., and Uggla, C., “Theory of Newtonian self-gravitating stationary spherically symmetric systems”, (August, 2004). URL (cited on 30 March 2005):
External Linkhttp://arXiv.org/abs/math-ph/0408045.
174 Heinzle, M., Röhr, N., and Uggla, C., “Spherically symmetric relativistic stellar structures”, Class. Quantum Grav., 20, 4567-4586, (2003).
175 Heinzle, M., Röhr, N., and Uggla, C., “Matter and dynamics in closed cosmologies”, (June, 2004). URL (cited on 1 April 2005):
External Linkhttp://arXiv.org/abs/math-ph/0406072.
176 Henkel, O., “Global prescribed mean curvature foliations in cosmological space-times. II”, J. Math. Phys., 43, 2466-2485, (2001). Related online version (cited on 28 January 2002):
External Linkhttp://arXiv.org/abs/gr-qc/0110082.
177 Henkel, O., “Global prescribed mean curvature foliations in cosmological space-times. I”, J. Math. Phys., 43, 2439-2465, (2002). Related online version (cited on 28 January 2002):
External Linkhttp://arXiv.org/abs/gr-qc/0110081.
178 Henkel, O., “Local prescribed mean curvature foliations in cosmological spacetimes”, Math. Proc. Camb. Phil. Soc., 134, 551-571, (2003). Related online version (cited on 28 January 2002):
External Linkhttp://arXiv.org/abs/gr-qc/0108003.
179 Hertog, T., Horowitz, G.T., and Maeda, K., “Generic cosmic censorship violation in anti de Sitter space.”, Phys. Rev. Lett., 92, 131101, (2004).
180 Hervik, S., van den Hoogen, R., and Coley, A.A., “Future asymptotic behaviour of tilted Bianchi models of type IV and VIIh”, Class. Quantum Grav., 22, 607-634, (2005).
181 Heusler, M., Black Hole Uniqueness Theorems, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1996).
182 Heusler, M., “Stationary black holes: Uniqueness and beyond”, Living Rev. Relativity, 1, lrr-1998-6, (1998). URL (cited on 12 December 1999):
http://www.livingreviews.org/lrr-1998-6.
183 Hewitt, C., Horwood, J.T., and Wainwright, J., “Asymptotic dynamics of the exceptional Bianchi cosmologies”, Class. Quantum Grav., 20, 1743-1756, (2003).
184 Hewitt, C., and Wainwright, J., “The asymptotic regimes of tilted Bianchi II cosmologies”, Gen. Relativ. Gravit., 33, 65-94, (2001).
185 Hod, S., and Piran, T., “Mass inflation in dynamical collapse of a charged scalar field”, Phys. Rev. Lett., 81, 1554-1557, (1998).
186 Hubbard, J.H., and West, B.H., Differential Equations: A Dynamical Systems Approach. Ordinary Differential Equations, vol. 5 of Texts in Applied Mathematics, (Springer, Berlin, 1991), 3rd edition.
187 Isenberg, J.A., “Constant mean curvature solutions of the Einstein constraint equations on closed manifolds”, Class. Quantum Grav., 12, 2249-2274, (1995).
188 Isenberg, J.A., and Kichenassamy, S., “Asymptotic behaviour in polarized T2-symmetric vacuum space-times”, J. Math. Phys., 40, 340-352, (1999).
189 Isenberg, J.A., Mazzeo, R., and Pollack, D., “On the topology of vacuum spacetimes”, Ann. Henri Poincare, 3, 369-383, (2003).
190 Isenberg, J.A., and Moncrief, V., “Asymptotic Behaviour of the Gravitational Field and the Nature of Singularities in Gowdy Spacetimes”, Ann. Phys. (N.Y.), 199, 84-122, (1990).
191 Isenberg, J.A., and Moncrief, V., “A set of nonconstant mean curvature solutions of the Einstein constraint equations on closed manifolds”, Class. Quantum Grav., 13, 1819-1847, (1996).
192 Isenberg, J.A., and Moncrief, V., “Asymptotic behavior of polarized and half-polarized U(1) symmetric vacuum spacetimes”, Class. Quantum Grav., 19, 5361-5386, (2002).
193 Isenberg, J.A., and Ó Murchadha, N., “Non CMC conformal data sets which do not produce solutions of the Einstein constraint equations”, Class. Quantum Grav., 21, S233-S241, (2004).
194 Isenberg, J.A., and Rendall, A.D., “Cosmological spacetimes not covered by a constant mean curvature slicing”, Class. Quantum Grav., 15, 3679-3688, (1998).
195 Isenberg, J.A., and Weaver, M., “On the area of the symmetry orbits in T2 symmetric spacetimes”, Class. Quantum Grav., 20, 3783-3796, (2003).
196 Jensen, L.G., and Stein-Schabes, J.A., “Is inflation natural?”, Phys. Rev. D, 35, 1146-1150, (1987).
197 John, F., Partial Differential Equations, vol. 1 of Applied Mathematical Sciences, (Springer, Berlin, Germany; New York, U.S.A., 1982), 4th edition.
198 John, F., Nonlinear Wave Equations, Formation of Singularities, vol. 2 of University Lecture Series, (American Mathematical Society, Providence, U.S.A., 1990).
199 Jurke, T., “On future asymptotics of polarized Gowdy T3-models”, Class. Quantum Grav., 20, 173-192, (2003).
200 Kichenassamy, S., “The blow-up problem for exponential nonlinearities”, Commun. Part. Diff. Eq., 21, 125-162, (1996).
201 Kichenassamy, S., “Fuchsian equations in Sobolev spaces and blow-up”, J. Differ. Equations, 125, 299-327, (1996).
202 Kichenassamy, S., Nonlinear Wave Equations, vol. 194 of Monographs and Textbooks in Pure and Applied Mathematics, (Marcel Dekker, New York, U.S.A., 1996).
203 Kichenassamy, S., and Littman, W., “Blow-up surfaces for nonlinear wave equations, I”, Commun. Part. Diff. Eq., 18, 431-452, (1993).
204 Kichenassamy, S., and Littman, W., “Blow-up surfaces for nonlinear wave equations, II”, Commun. Part. Diff. Eq., 18, 1869-1899, (1993).
205 Kichenassamy, S., and Rendall, A.D., “Analytic description of singularities in Gowdy spacetimes”, Class. Quantum Grav., 15, 1339-1355, (1998).
206 Kind, S., and Ehlers, J., “Initial boundary value problem for the spherically symmetric Einstein equations for a perfect fluid”, Class. Quantum Grav., 18, 2123-2136, (1993).
207 Kitada, Y., and Maeda, K., “Cosmic no-hair theorem in power-law inflation”, Phys. Rev. D, 45, 1416-1419, (1992).
208 Kitada, Y., and Maeda, K., “Cosmic no-hair theorem in homogeneous cosmological models. I. Bianchi models.”, Class. Quantum Grav., 10, 703-734, (1993).
209 Klainerman, S., “A commuting vector fields approach to Strichartz-type inequalities and applications to quasi-linear wave equations”, Int. Math. Res. Notices, 2001(5), 221-274, (2001).
210 Klainerman, S., and Machedon, M., “Finite energy solutions of the Yang-Mills equations in R3+1”, Ann. Math., 142, 39-119, (1995).
211 Klainerman, S., and Nicolò, F., “On local and global aspects of the Cauchy problem in general relativity”, Class. Quantum Grav., 16, R73-R157, (1999).
212 Klainerman, S., and Nicolò, F., The evolution problem in general relativity, (Birkhäuser, Boston, U.S.A., 2003).
213 Klainerman, S., and Nicolò, F., “Peeling properties of asymptotically flat solutions to the Einstein vacuum equations”, Class. Quantum Grav., 20, 3215-3257, (2003).
214 Klainerman, S., and Rodnianski, I., “Rough solution for the Einstein vacuum equations”, (September, 2001). URL (cited on 1 March 2002):
External Linkhttp://arXiv.org/abs/math.AP/0109173.
215 Klainerman, S., and Rodnianski, I., “Causal geometry of Einstein-vacuum spacetimes with finite curvature flux”, (September, 2003). URL (cited on 30 March 2005):
External Linkhttp://arXiv.org/abs/math.AP/0309459.
216 Klainerman, S., and Rodnianski, I., “A geometric approach to the Littlewood-Paley theory”, (September, 2003). URL (cited on 30 March 2005):
External Linkhttp://arXiv.org/abs/math.AP/0309463.
217 Kleihaus, B., and Kunz, J., “Static axially symmetric Einstein-Yang-Mills-dilaton solutions: I. Regular solutions”, Phys. Rev. D, 57, 834-856, (1998).
218 Krieger, J., “Stability of spherically symmetric wave maps”, (March, 2005). URL (cited on 30 April 2005):
External Linkhttp://arXiv.org/abs/math.AP/0503048.
219 Kunze, M., and Rendall, A.D., “Simplified models of electromagnetic and gravitational radiation damping.”, Class. Quantum Grav., 18, 3573-3587, (2001).
220 Kunze, M., and Rendall, A.D., “The Vlasov-Poisson system with radiation damping.”, Ann. Henri Poincare, 2, 857-886, (2001).
221 LeBlanc, V.G., “Asymptotic states of magnetic Bianchi I cosmologies”, Class. Quantum Grav., 14, 2281-2301, (1997).
222 LeBlanc, V.G., “Bianchi II magnetic cosmologies”, Class. Quantum Grav., 15, 1607-1626, (1998).
223 LeBlanc, V.G., Kerr, D., and Wainwright, J., “Asymptotic states of magnetic Bianchi VI0 cosmologies”, Class. Quantum Grav., 12, 513-541, (1995).
224 Lee, H., “Asymptotic behaviour of the Einstein-Vlasov system with a positive cosmological constant”, Math. Proc. Camb. Phil. Soc., 137, 495-509, (2004).
225 Lee, H., “The Einstein-Vlasov system with a scalar field”, (April, 2004). URL (cited on 30 March 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0404007.
226 Lifshitz, E.M., and Khalatnikov, I.M., “Investigations in relativistic cosmology”, Adv. Phys., 12, 185-249, (1963).
227 Lim, W.C., van Elst, H., Uggla, C., and Wainwright, J., “Asymptotic isotropization in inhomogeneous cosmology”, Phys. Rev. D, 69, 103507, (2004).
228 Lin, S.S., “Stability of gaseous stars in spherically symmetric motions”, SIAM J. Math. Anal., 28, 539-569, (1997).
229 Lin, X.F., and Wald, R.M., “Proof of the closed universe recollapse conjecture for general Bianchi type IX cosmologies”, Phys. Rev. D, 41, 2444-2448, (1990).
230 Lindblad, H., “Well-posedness for the linearized motion of a compressible fluid with free surface boundary”, Commun. Math. Phys., 236, 281-310, (2003).
231 Lindblad, H., “Well-posedness for the motion of an incompressible liquid with free surface boundary”, (February, 2004). URL (cited on 29 March 2005):
External Linkhttp://arXiv.org/abs/math.AP/0402327.
232 Lindblad, H., and Rodnianski, I., “The weak null condition for Einstein’s equations.”, C. R. Acad. Sci., 336, 901-906, (2003).
233 Lindblad, H., and Rodnianski, I., “The global stability of the Minkowski space-time in harmonic gauge”, (November, 2004). URL (cited on 29 March 2005):
External Linkhttp://arXiv.org/abs/math.AP/0411109.
234 Lindblom, L., and Masood-ul Alam, A.K.M., “On the spherical symmetry of static stellar models”, Commun. Math. Phys., 162, 123-145, (1994).
235 Lions, P.-L., “Compactness in Boltzmann’s equation via Fourier integral operators and applications”, J. Math. Kyoto Univ., 34, 391-427, (1994).
236 Lions, P.-L., and Perthame, B., “Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system”, Invent. Math., 105, 415-430, (1991).
237 Longair, M.S., Galaxy Formation, Astronomy and Astrophysics Library, (Springer, Berlin, Germany; New York, U.S.A., 1998).
238 Maartens, R., “Brane-World Gravity”, Living Rev. Relativity, 7, lrr-2004-7, (2004). URL (cited on 22 April 2005):
http://www.livingreviews.org/lrr-2004-7.
239 Majda, A., Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, vol. 53 of Applied Mathematical Sciences, (Springer, Berlin, Germany; New York, U.S.A., 1984).
240 Makino, T., “On spherically symmetric stellar models in general relativity”, J. Math. Kyoto Univ., 38, 55-69, (1998).
241 Makino, T., “On the spiral structure of the (R,M) diagram for a stellar model of the Tolman-Oppenheimer-Volkoff equation”, Funkcialaj Ekvacioj, 43, 471-489, (2000).
242 Martín-García, J.M., and Gundlach, C., “Self-similar spherically symmetric solutions of the massless Einstein-Vlasov system”, Phys. Rev. D, 65, 084026-1-18, (2002). Related online version (cited on 17 January 2002):
External Linkhttp://arXiv.org/abs/gr-qc/0112009.
243 Maxwell, D., “Rough solution of the Einstein constraint equations”, (May, 2004). URL (cited on 15 February 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0405088.
244 Maxwell, D., “Solutions of the Einstein constraint equations with apparent horizon boundaries”, Commun. Math. Phys., 253, 561-583, (2004).
245 Misner, C.W., “Mixmaster Universe”, Phys. Rev. Lett., 22, 1071-1074, (1967).
246 Moncrief, V., “Global Properties of Gowdy Spacetimes with T3 × R Topology”, Ann. Phys. (N.Y.), 132, 87-107, (1981).
247 Moncrief, V., “Neighbourhoods of Cauchy horizons in cosmological spacetimes with one Killing field”, Ann. Phys. (N.Y.), 141, 83-103, (1982).
248 Moncrief, V., and Eardley, D.M., “The global existence problem and cosmic censorship in general relativity”, Gen. Relativ. Gravit., 13, 887-892, (1981).
249 Moss, I., and Sahni, V., “Anisotropy in the chaotic inflationary universe”, Phys. Lett. B, 178, 159-162, (1986).
250 Mucha, P.B., “Global existence for the Einstein-Boltzmann equation in flat Robertson-Walker spacetime”, Commun. Math. Phys., 203, 107-118, (1999).
251 Müller, V., Schmidt, H.-J., and Starobinsky, A.A., “Power-law inflation as an attractor solution for inhomogeneous cosmological models.”, Class. Quantum Grav., 7, 1163-1168, (1990).
252 Narita, M., “On the existence of global solutions for T3-Gowdy spacetimes with stringy matter”, Class. Quantum Grav., 19, 6279-6288, (2002).
253 Narita, M., “Global existence problem in T3-Gowdy symmetric IIB superstring cosmology”, Class. Quantum Grav., 20, 4983-4994, (2003).
254 Narita, M., “Global properties of higher-dimensional cosmological spacetimes”, Class. Quantum Grav., 21, 2071-2088, (2004).
255 Narita, M., “On initial conditions and global existence for accelerating cosmologies from string theory”, (February, 2005). URL (cited on 18 March 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0502116.
256 Narita, M., Torii, T., and Maeda, K., “Asymptotic singular behavior of Gowdy spacetimes in string theory”, Class. Quantum Grav., 17, 4597-4613, (2000).
257 Newman, R.P.A.C., “On the structure of conformal singularities in classical general relativity”, Proc. R. Soc. London, Ser. A, 443, 473-492, (1993).
258 Newman, R.P.A.C., “On the structure of conformal singularities in classical general relativity. II Evolution equations and a conjecture of K. P. Tod”, Proc. R. Soc. London, Ser. A, 443, 493-515, (1993).
259 Nilsson, U.S., Hancock, M.J., and Wainwright, J., “Non-tilted Bianchi VII0 models - the radiation fluid.”, Class. Quantum Grav., 17, 3119-3134, (2000).
260 Noundjeu, P., and Noutchegueme, N., “Local existence and continuation criterion for solutions of the spherically symmetric Einstein-Vlasov-Maxwell system”, Gen. Relativ. Gravit., 36, 1373-1398, (2004).
261 Noundjeu, P., Noutchegueme, N., and Rendall, A.D., “Existence of initial data satisfying the constraints for the spherically symmetric Einstein-Vlasov-Maxwell system”, J. Math. Phys., 45, 668-676, (2004).
262 Noutchegueme, N., Dongo, D., and Takou, E., “Global existence of solutions for the relativistic Boltzmann equation with arbitrarily large initial data on a Bianchi type I space-time”, (March, 2005). URL (cited on 13 April 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0503048.
263 Noutchegueme, N., and Tetsadjio, M.E., “Global solutions for the relativistic Boltzmann equation in the homogeneous case on the Minkowski space-time”, (July, 2003). URL (cited on 13 April 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0307065.
264 Olabarrieta, I., and Choptuik, M.W., “Critical phenomena at the threshold of black hole formation for collisionless matter in spherical symmetry”, Phys. Rev. D, 65, 024007-1-10, (2002).
265 Park, J., “Static solutions of the Einstein equations for spherically symmetric elastic bodies”, Gen. Relativ. Gravit., 32, 235-252, (2000).
266 Pfaffelmoser, K., “Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data”, J. Differ. Equations, 95, 281-303, (1992).
267 Poisson, E., and Israel, W., “Internal structure of black holes”, Phys. Rev. D, 41, 1796-1809, (1990).
268 Price, R., “Nonspherical perturbations of relativistic gravitational collapse. I. Scalar and gravitational perturbations.”, Phys. Rev. D, 5, 2419-2438, (1972).
269 Racke, R., Lectures on Nonlinear Evolution Equations: Initial Value Problems, vol. 19 of Aspects of Mathematics, (Vieweg, Wiesbaden, Germany, 1992).
270 Rein, G., “Generic global solutions of the relativistic Vlasov-Maxwell system of plasma physics”, Commun. Math. Phys., 135, 41-78, (1990).
271 Rein, G., “Static solutions of the spherically symmetric Vlasov-Einstein system”, Math. Proc. Camb. Phil. Soc., 115, 559-570, (1994).
272 Rein, G., “Cosmological solutions of the Vlasov-Einstein system with spherical, plane and hyperbolic symmetry”, Math. Proc. Camb. Phil. Soc., 119, 739-762, (1996).
273 Rein, G., “Nonlinear Stability of Homogeneous Models in Newtonian Cosmology”, Arch. Ration. Mech. Anal., 140, 335-351, (1997).
274 Rein, G., “Static shells for the Vlasov-Poisson and Vlasov-Einstein systems”, Indiana Univ. Math. J., 48, 335-346, (1999).
275 Rein, G., “Stationary and static stellar dynamical models with axial symmetry”, Nonlinear Anal., 41, 313-344, (2000).
276 Rein, G., “Non-linear stability of gaseous stars,”, Arch. Ration. Mech. Anal., 168, 115-130, (2003).
277 Rein, G., “On future geodesic completeness for the Einstein-Vlasov system with hyperbolic symmetry”, Math. Proc. Camb. Phil. Soc., 137, 237-244, (2004).
278 Rein, G., and Rendall, A.D., “Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data”, Commun. Math. Phys., 150, 561-583, (1992).
279 Rein, G., and Rendall, A.D., “Smooth static solutions of the spherically symmetric Vlasov-Einstein system”, Ann. Inst. Henri Poincare A, 59, 383-397, (1993).
280 Rein, G., and Rendall, A.D., “Global Existence of Classical Solutions to the Vlasov-Poisson System in a Three Dimensional, Cosmological Setting”, Arch. Ration. Mech. Anal., 126, 183-201, (1994).
281 Rein, G., and Rendall, A.D., “Compact support of spherically symmetric equilibria in relativistic and non-relativistic galactic dynamics”, Math. Proc. Camb. Phil. Soc., 128, 363-380, (2000).
282 Rein, G., Rendall, A.D., and Schaeffer, J., “A regularity theorem for solutions of the spherically symmetric Vlasov-Einstein system”, Commun. Math. Phys., 168, 467-478, (1995).
283 Rein, G., Rendall, A.D., and Schaeffer, J., “Critical collapse of collisionless matter: A numerical investigation”, Phys. Rev. D, 58, 044007-1-8, (1998).
284 Rendall, A.D., “Reduction of the characteristic initial value problem to the Cauchy problem and its applications to the Einstein equations”, Proc. R. Soc. London, Ser. A, 427, 221-239, (1990).
285 Rendall, A.D., “The initial value problem for a class of general relativistic fluid bodies”, J. Math. Phys., 33, 1047-1053, (1992).
286 Rendall, A.D., “On the definition of post-Newtonian approximations”, Proc. R. Soc. London, Ser. A, 438, 341-360, (1992).
287 Rendall, A.D., “Cosmic censorship for some spatially homogeneous cosmological models”, Ann. Phys. (N.Y.), 233, 82-96, (1994).
288 Rendall, A.D., “The Newtonian limit for asymptotically flat solutions of the Vlasov-Einstein system”, Commun. Math. Phys., 163, 89-112, (1994).
289 Rendall, A.D., “Crushing singularities in spacetimes with spherical, plane and hyperbolic symmetry”, Class. Quantum Grav., 12, 1517-1533, (1995).
290 Rendall, A.D., “Global properties of locally homogeneous cosmological models with matter.”, Math. Proc. Camb. Phil. Soc., 118, 511-526, (1995).
291 Rendall, A.D., “On the nature of singularities in plane symmetric scalar field cosmologies.”, Gen. Relativ. Gravit., 27, 213-221, (1995).
292 Rendall, A.D., “Constant mean curvature foliations in cosmological spacetimes”, Helv. Phys. Acta, 69, 490-500, (1996).
293 Rendall, A.D., “The initial singularity in solutions of the Einstein-Vlasov system of Bianchi type I”, J. Math. Phys., 37, 438-451, (1996).
294 Rendall, A.D., “Existence and non-existence results for global constant mean curvature foliations”, Nonlinear Anal., 30, 3589-3598, (1997).
295 Rendall, A.D., “Existence of Constant Mean Curvature Foliations in Spacetimes with Two-Dimensional Local Symmetry”, Commun. Math. Phys., 189, 145-164, (1997).
296 Rendall, A.D., “Global dynamics of the mixmaster model”, Class. Quantum Grav., 14, 2341-2356, (1997).
297 Rendall, A.D., “An introduction to the Einstein-Vlasov system”, in Chruściel, P.T., ed., Mathematics of Gravitation, Part I: Lorentzian Geometry and Einstein Equations, Proceedings of the Workshop on Mathematical Aspects of Theories of Gravitation, held in Warsaw, February 29 - March 30, 1996, vol. 41 of Banach Center Publications, 35-68, (Polish Academy of Sciences, Institute of Mathematics, Warsaw, Poland, 1997).
298 Rendall, A.D., “Solutions of the Einstein equations with matter”, in Francaviglia, M., Longhi, G., Lusanna, L., and Sorace, E., eds., General Relativity and Gravitation, Proceedings of the 14th International Conference on General Relativity and Gravitation, Florence, Italy, 6-12 August 1995, 313-335, (World Scientific, Singapore; River Edge, U.S.A., 1997).
299 Rendall, A.D., “Blow-up for solutions of hyperbolic PDE and spacetime singularities”, in Depauw, N., Robert, D., and Saint-Raymond, X., eds., Proceedings of Journées Equations aux Dérivées Partielles, La Chapelle sur Erdre, Nantes, France, 5-9 June 2000, XIV-1-12, (University of Nantes, Nantes, France, 2000). Related online version (cited on 1 March 2002):
External Linkhttp://www.numdam.org/item?id=JEDP_2000____A14_0.
300 Rendall, A.D., “Fuchsian analysis of singularities in Gowdy spacetimes beyond analyticity”, Class. Quantum Grav., 17, 3305-3316, (2000).
301 Rendall, A.D., “Collection of equations”, personal homepage, Max Planck Institute for Gravitational Physics, (2002). URL (cited on 30 March 2005):
External Linkhttp://www.aei.mpg.de/~rendall/3+1.ps.
302 Rendall, A.D., “Cosmological Models and Centre Manifold Theory”, Gen. Relativ. Gravit., 34, 1277-1294, (2002). Related online version (cited on 21 January 2002):
External Linkhttp://arXiv.org/abs/gr-qc/0112040.
303 Rendall, A.D., “Accelerated cosmological expansion due to a scalar field whose potential has a positive lower bound”, Class. Quantum Grav., 21, 2445-2454, (2004).
304 Rendall, A.D., “Asymptotics of solutions of the Einstein equations with positive cosmological constant.”, Ann. Henri Poincare, 5, 1041-1064, (2004).
305 Rendall, A.D., “Mathematical properties of cosmological models with accelerated expansion”, (August, 2004). URL (cited on 30 March 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0408053.
306 Rendall, A.D., “Intermediate inflation and the slow-roll approximation”, Class. Quantum Grav., 22, 1655-1666, (2005).
307 Rendall, A.D., and Schmidt, B.G., “Existence and properties of spherically symmetric static fluid bodies with given equation of state”, Class. Quantum Grav., 8, 985-1000, (1991).
308 Rendall, A.D., and Tod, K.P., “Dynamics of spatially homogeneous solutions of the Einstein-Vlasov equations which are locally rotationally symmetric”, Class. Quantum Grav., 16, 1705-1726, (1999).
309 Rendall, A.D., and Uggla, C., “Dynamics of spatially homogeneous locally rotationally symmetric solutions of the Einstein-Vlasov equations”, Class. Quantum Grav., 17, 4697-4713, (2000).
310 Rendall, A.D., and Weaver, M., “Manufacture of Gowdy spacetimes with spikes”, Class. Quantum Grav., 18, 2959-2975, (2001).
311 Ringström, H., “The Bianchi IX attractor”, Ann. Henri Poincare, 2, 405-500, (2000).
312 Ringström, H., “Curvature blow up in Bianchi VIII and IX vacuum spacetimes”, Class. Quantum Grav., 17, 713-731, (2000).
313 Ringström, H., “The future asymptotics of Bianchi VIII vacuum solutions”, Class. Quantum Grav., 18, 3791-3824, (2001).
314 Ringström, H., “Future asymptotic expansions of Bianchi VIII vacuum metrics”, Class. Quantum Grav., 20, 1943-1990, (2003).
315 Ringström, H., “Asymptotic expansions close to the singularity in Gowdy spacetimes”, Class. Quantum Grav., 21, S305-S322, (2004).
316 Ringström, H., “On a wave map equation arising in general relativity”, Commun. Pure Appl. Math., 57, 657-703, (2004).
317 Ringström, H., “On Gowdy vacuum spacetimes”, Math. Proc. Camb. Phil. Soc., 136, 485-512, (2004).
318 Schaeffer, J., “A class of counterexamples to Jeans’ theorem for the Vlasov-Einstein system”, Commun. Math. Phys., 204, 313-327, (1999).
319 Secchi, P., “On the equations of viscous gaseous stars”, Ann. Scuola Norm. Sup. Pisa, 18, 295-318, (1991).
320 Shapiro, S.L., and Teukolsky, S.A., “Relativistic stellar dynamics on the computer. II. Physical applications”, Astrophys. J., 298, 58-79, (1985).
321 Shapiro, S.L., and Teukolsky, S.A., “Scalar gravitation - a laboratory for numerical relativity”, Phys. Rev. D, 47, 1529-1540, (1993).
322 Sideris, T., “Formation of singularities in three-dimensional compressible fluids”, Commun. Math. Phys., 101, 475-485, (1979).
323 Smoller, J.A., and Temple, B., “Global solutions of the relativistic Euler equations”, Commun. Math. Phys., 156, 65-100, (1993).
324 Smoller, J.A., Wasserman, A.G., Yau, S.-T., and McLeod, J.B., “Smooth static solutions of the Einstein-Yang-Mills equations”, Commun. Math. Phys., 143, 115-147, (1991).
325 Ståhl, F., “Fuchsian analysis of S2 × S1 and S3 Gowdy models”, Class. Quantum Grav., 19, 4483-4504, (2002). Related online version (cited on 31 January 2002):
External Linkhttp://arXiv.org/abs/gr-qc/0109011.
326 Starobinsky, A.A., “Isotropization of arbitrary cosmological expansion given an effective cosmological constant”, J. Exp. Theor. Phys. Lett., 37, 66-69, (1983).
327 Strauss, W., Nonlinear Wave Equations, vol. 73 of Regional Conference Series in Mathematics, (American Mathematical Society, Providence, U.S.A., 1989).
328 Struwe, M., “Equivariant wave maps in two space dimensions.”, Commun. Pure Appl. Math., 56, 815-823, (2003).
329 Stuart, D.M.A., “Geodesics and the Einstein nonlinear wave system”, J. Math. Pures Appl., 83, 541-587, (2004).
330 Tanimoto, M., “Linear perturbations of spatially locally homogeneous spacetimes”, in Duggal, K.L., and Sharma, R., eds., Recent Advances in Riemannian and Lorentzian Geometries, vol. 337 of Contemporary Mathematics, 171-185, (American Mathematical Society, Providence, U.S.A., 2003).
331 Tanimoto, M., “Harmonic analysis of linear fields on the nilgeometric cosmological model”, J. Math. Phys., 45, 4896-4919, (2004).
332 Tanimoto, M., “Scalar fields on SL(2,R) and H2 × R geometric spacetimes and linear perturbations”, Class. Quantum Grav., 21, 5355-5374, (2004).
333 Tao, T., “Geometric renormalization of large energy wave maps”, (November, 2004). URL (cited on 30 March 2005):
External Linkhttp://arXiv.org/abs/math.AP/0411354.
334 Taylor, M.E., Pseudodifferential Operators and Nonlinear PDE, vol. 100 of Progress in Mathematics, (Birkhäuser, Boston, U.S.A., 1991).
335 Taylor, M.E., Partial Differential Equations, 3 vols., Applied Mathematical Sciences, (Springer, Berlin, Germany; New York, U.S.A., 1996).
336 Tchapnda, S.B., “Structure of solutions near the initial singularity for the surface-symmetric Einstein-Vlasov system”, Class. Quantum Grav., 21, 5333-5346, (2004).
337 Tchapnda, S.B., and Noutchegueme, N., “The surface-symmetric Einstein-Vlasov system with cosmological constant.”, (April, 2003). URL (cited on 17 April 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0304098.
338 Tchapnda, S.B., and Rendall, A.D., “Global existence and asymptotic behaviour in the future for the Einstein-Vlasov system with positive cosmological constant”, Class. Quantum Grav., 20, 3037-3049, (2003).
339 Tegankong, D., “Global existence and future asymptotic behaviour for solutions of the Einstein-Vlasov-scalar field system with surface symmetry”, (January, 2005). URL (cited on 17 March 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0501062.
340 Tegankong, D., Noutchegueme, N., and Rendall, A.D., “Local existence and continuation criteria for solutions of the Einstein-Vlasov-scalar field system with surface symmetry”, J. Hyperbol. Differ. Equations, 1, 691-724, (2004).
341 Thurston, W., Three-dimensional geometry and topology, Vol. 1, vol. 35 of Princeton Mathematical Series, (Princeton University Press, Princeton, U.S.A., 1997).
342 Tod, K.P., “Isotropic cosmological singularities: other matter models”, Class. Quantum Grav., 20, 521-534, (2003).
343 van der Bij, J.J., and Radu, E., “On rotating regular nonabelian solitons”, Int. J. Mod. Phys. A, 17, 1477-1490, (2002).
344 Wainwright, J., and Ellis, G.F.R., Dynamical Systems in Cosmology, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1997).
345 Wainwright, J., Hancock, M.J., and Uggla, C., “Asymptotic self-similarity breaking at late times in cosmology”, Class. Quantum Grav., 16, 2577-2598, (1999).
346 Wald, R.M., “Asymptotic behaviour of homogeneous cosmological models with cosmological constant”, Phys. Rev. D, 28, 2118-2120, (1983).
347 Weaver, M., “Dynamics of magnetic Bianchi VI0 cosmologies.”, Class. Quantum Grav., 17, 421-434, (2000).
348 Weaver, M., “On the area of the symmetry orbits in T2 symmetric spacetimes with Vlasov matter”, Class. Quantum Grav., 21, 1079-1098, (2004).
349 Witt, D., “Vacuum spacetimes that admit no maximal slice”, Phys. Rev. Lett., 57, 1386-1389, (1986).
350 Wolansky, G., “Static Solutions of the Vlasov-Einstein System”, Arch. Ration. Mech. Anal., 156, 205-230, (2001).
351 Woodhouse, N.M.J., “Integrability and Einstein’s equations”, in Chruściel, P.T., ed., Mathematics of Gravitation, Part I: Lorentzian Geometry and Einstein Equations, Proceedings of the Workshop on Mathematical Aspects of Theories of Gravitation, held in Warsaw, Poland, February 29 - March 30, 1996, vol. 41 of Banach Center Publications, 221-232, (Polish Academy of Sciences, Institute of Mathematics, Warsaw, Poland, 1997).
352 Wu, S., “Well-posedness in Sobolev spaces of the full water wave problem in 3-D”, J. Amer. Math. Soc., 12, 445-495, (1999).
353 York Jr, J.W., “Conformal “Thin-Sandwich” Data for the Initial-Value Problem of General Relativity”, Phys. Rev. Lett., 82, 1350-1353, (1999).
354 Zipser, N., The global nonlinear stability of the trivial solution of the Einstein-Maxwell equations, Ph.D. Thesis, (Harvard University, Cambrige, U.S.A., 2000).