1 Abramovici, A., Althouse, W.E., Drever, R.W.P., Gürsel, Y., Kawamura, S., Raab, F.J., Shoemaker, D.H., Sievers, L., Spero, R.E., Thorne, K.S., Vogt, R.E., Weiss, R., Whitcomb, S.E., and Zucker, M.E., “LIGO: The Laser Interferometer Gravitational-Wave Observatory”, Science, 256, 325–333, (1992).
2 Adelberger, E.G., “New tests of Einstein’s equivalence principle and Newton’s inverse-square law”, Class. Quantum Grav., 18, 2397–2405, (2001).
3 Adelberger, E.G., Heckel, B.R., and Nelson, A.E., “Tests of the gravitational inverse-square law”, Annu. Rev. Nucl. Sci., 53, 77–121, (2003). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/hep-ph/0307284.
4 Adelberger, E.G., Heckel, B.R., Stubbs, C.W., and Rogers, W.F., “Searches for new macroscopic forces”, Annu. Rev. Nucl. Sci., 41, 269–320, (1991).
5 Alväger, T., Farley, F.J.M., Kjellman, J., and Wallin, I., “Test of the second postulate of special relativity in the GeV region”, Phys. Lett., 12, 260–262, (1977).
6 Alvarez, C., and Mann, R.B., “The equivalence principle and anomalous magnetic moment experiments”, Phys. Rev. D, 54, 7097–7107, (1996). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/9511028.
7 Alvarez, C., and Mann, R.B., “Testing the equivalence principle by Lamb shift energies”, Phys. Rev. D, 54, 5954–5974, (1996). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/9507040.
8 Alvarez, C., and Mann, R.B., “The equivalence principle and g-2 experiments”, Phys. Lett. B, 409, 83–87, (1997). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/9510070.
9 Alvarez, C., and Mann, R.B., “The equivalence principle in the non-baryonic regime”, Phys. Rev. D, 55, 1732–1740, (1997). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/9609039.
10 Alvarez, C., and Mann, R.B., “Testing the equivalence principle using atomic vacuum energy shifts”, Mod. Phys. Lett. A, 11, 1757–1763, (1997). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/9612031.
11 Antoniadis, I., Arkani-Hamed, N., Dimopoulos, S., and Dvali, G., “New dimensions at a millimeter to a fermi and superstrings at a TeV”, Phys. Lett. B, 436, 257–263, (1998). Related online version (cited on 15 February 2006):
External Linkhttp://arXiv.org/abs/hep-ph/9804398.
12 Antonini, P., Okhapkin, M., Göklü, E., and Schiller, S., “Test of constancy of speed of light with rotating cryogenic optical resonators”, Phys. Rev. A, 71, 050101, 1–4, (2005). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0504109.
13 Arkani-Hamed, N., Dimopoulos, S., and Dvali, G., “The hierarchy problem and new dimensions at a millimeter”, Phys. Lett. B, 429, 263–272, (1998). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/hep-ph/9803315.
14 Asada, H., “The light cone effect on the Shapiro time delay”, Astrophys. J. Lett., 574, L69–L70, (2002). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0206266.
15 Ashby, N., “Relativistic effects in the Global Positioning System”, in Dadhich, N., and Narlikar, J.V., eds., Gravitation and Relativity: At the Turn of the Millenium, Proceedings of the 15th International Conference on General Relativity and Gravitation (GR-15), held at IUCAA, Pune, India, December 16–21, 1997, pp. 231–258, (Inter-University Center for Astronomy and Astrophysics, Pune, India, 1998).
16 Ashby, N., “Relativity in the Global Positioning System”, Living Rev. Relativity, 6(1), lrr-2003-1, (2003). URL (cited on 15 July 2005):
http://www.livingreviews.org/lrr-2003-1.
17 Ashby, N., Bender, P.L., and Wahr, J.M., “Gravitational physics tests from ranging to a Mercury orbiter”, unknown status, (2005).
18 ATNF/CSIRO, “ATNF Pulsar Catalogue”, web interface to database. URL (cited on 15 July 2005):
External Linkhttp://www.atnf.csiro.au/research/pulsar/psrcat/.
19 Baessler, S., Heckel, B.R., Adelberger, E.G., Gundlach, J.H., Schmidt, U., and Swanson, H.E., “Improved test of the equivalence principle for gravitational self-energy”, Phys. Rev. Lett., 83, 3585–3588, (1999).
20 Bailes, M., Ord, S.M., Knight, H.S., and Hotan, A.W., “Self-consistency of relativistic observables with general relativity in the white dwarf-neutron star binary PSR J1141-6545”, Astrophys. J. Lett., 595, L49–L52, (2003). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0307468.
21 Bambi, C., Giannotti, M., and Villante, F.L., “Response of primordial abundances to a general modification of GN and/or of the early universe expansion rate”, Phys. Rev. D, 71, 123524, (2005). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0503502.
22 Bartlett, D.F., and Van Buren, D., “Equivalence of Active and Passive Gravitational Mass Using the Moon”, Phys. Rev. Lett., 57, 21–24, (1986).
23 Bauch, A., and Weyers, S., “New experimental limit on the validity of local position invariance”, Phys. Rev. D, 65, 081101, (2002).
24 Baumgarte, T.W., and Shapiro, S.L., “Numerical relativity and compact binaries”, Phys. Rep., 376, 41–131, (2003). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0211028.
25 Bell, J.F., Camilo, F., and Damour, T., “A tighter test of local Lorentz invariance using PSR J2317+1439”, Astrophys. J., 464, 857–858, (1996). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/astro-ph/9512100.
26 Bell, J.F., and Damour, T., “A new test of conservation laws and Lorentz invariance in relativistic gravity”, Class. Quantum Grav., 13, 3121–3127, (1996). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/9606062.
27 Berti, E., Buonanno, A., and Will, C.M., “Estimating spinning binary parameters and testing alternative theories of gravity with LISA”, Phys. Rev. D, 71, 084025, 1–24, (2005). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0411129.
28 Berti, E., Buonanno, A., and Will, C.M., “Testing general relativity and probing the merger history of massive black holes with LISA”, Class. Quantum Grav., 22, S943–S954, (2005). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0504017.
29 Bertotti, B., Iess, L., and Tortora, P., “A test of general relativity using radio links with the Cassini spacecraft”, Nature, 425, 374–376, (2003).
ADS: External Linkhttp://adsabs.harvard.edu/abs/2003Natur.425..374B.
30 Biller, S.D., Breslin, A.C., Buckley, J., Catanese, M., Carson, M., Carter-Lewis, D.A., Cawley, M.F., Fegan, D.J., Finley, J.P., Gaidos, J.A., Hillas, A.M., Krennrich, F., Lamb, R.C., Lessard, R., Masterson, C., McEnery, J.E., McKernan, B., Moriarty, P., Quinn, J., Rose, H.J., Samuelson, F., Sembroski, G., Skelton, P., and Weekes, T.C., “Limits to quantum gravity effects on energy dependence of the speed of light from observations of TeV flares in active galaxies”, Phys. Rev. Lett., 82, 2108–2111, (1999). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9810044.
31 Bize, S., Diddams, S.A., Tanaka, U., Tanner, C.E., Oskay, W.H., Drullinger, R.E., Parker, T.E., Heavner, T.P., Jefferts, S.R., Hollberg, L., Itano, W.M., and Bergquist, J.C., “Testing the stability of Fundamental Constants with the Hg+ single-ion optical clock”, Phys. Rev. Lett., 90, 150802, 1–4, (2003). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/physics/0212109.
32 Blair, D.G., Heng, I.S., Ivanov, E.N., and Tobar, M.E., “Present status of the resonant-mass gravitational-wave antenna NIOBE”, in Coccia, E., Veneziano, G., and Pizzella, G., eds., Second Edoardo Amaldi Conference on Gravitational Waves, Proceedings of the conference, held at CERN, Switzerland, 1–4 July, 1997, Edoardo Amaldi Foundation Series, pp. 127–147, (World Scientific, Singapore; River Edge, U.S.A., 1998).
33 Blanchet, L., “Second-post-Newtonian generation of gravitational radiation”, Phys. Rev. D, 51, 2559–2583, (1995). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/9501030.
34 Blanchet, L., “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries”, Living Rev. Relativity, 5, lrr-2002-3, (2002). URL (cited on 15 July 2005):
http://www.livingreviews.org/lrr-2002-3.
35 Blanchet, L., and Damour, T., “Radiative gravitational fields in general relativity. I. General structure of the field outside the source”, Philos. Trans. R. Soc. London, Ser. A, 320, 379–430, (1986).
36 Blanchet, L., and Damour, T., “Tail-transported temporal correlations in the dynamics of a gravitating system”, Phys. Rev. D, 37, 1410–1435, (1988).
37 Blanchet, L., and Damour, T., “Post-Newtonian generation of gravitational waves”, Ann. Inst. Henri Poincare A, 50, 377–408, (1989).
38 Blanchet, L., and Damour, T., “Hereditary effects in gravitational radiation”, Phys. Rev. D, 46, 4304–4319, (1992).
39 Blanchet, L., Damour, T., and Iyer, B.R., “Gravitational waves from inspiralling compact binaries: Energy loss and waveform to second-post-Newtonian order”, Phys. Rev. D, 51, 5360–5386, (1995). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/9501029. Erratum: Phys. Rev. D 54 (1996) 1860.
40 Blanchet, L., Damour, T., Iyer, B.R., Will, C.M., and Wiseman, A.G., “Gravitational-Radiation Damping of Compact Binary Systems to Second Post-Newtonian Order”, Phys. Rev. Lett., 74, 3515–3518, (1995). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/9501027.
41 Blanchet, L., and Sathyaprakash, B.S., “Signal analysis of gravitational wave tails”, Class. Quantum Grav., 11, 2807–2831, (1994).
42 Blanchet, L., and Sathyaprakash, B.S., “Detecting a tail effect in gravitational-wave experiments”, Phys. Rev. Lett., 74, 1067–1070, (1995).
43 Braginsky, V.B., and Panov, V.I., “Verification of the equivalence of inertial and gravitational mass”, Sov. Phys. JETP, 34, 463–466, (1972).
44 Brecher, K., “Is the speed of light independent of the velocity of the source?”, Phys. Rev. Lett., 39, 1051–1054, (1977).
45 Brillet, A., “VIRGO – Status Report, November 1997”, in Coccia, E., Veneziano, G., and Pizzella, G., eds., Second Edoardo Amaldi Conference on Gravitational Waves, Proceedings of the conference, held at CERN, Switzerland, 1–4 July, 1997, Edoardo Amaldi Foundation Series, vol. 4, pp. 86–96, (World Scientific, Singapore; River Edge, U.S.A., 1998).
46 Brillet, A., and Hall, J.L., “Improved laser test of the isotropy of space”, Phys. Rev. Lett., 42, 549–552, (1979).
47 Brunetti, M., Coccia, E., Fafone, V., and Fucito, F., “Gravitational-wave radiation from compact binary systems in the Jordan–Brans–Dicke theory”, Phys. Rev. D, 59, 044027, 1–9, (1999). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/9805056.
48 Burgay, M., D’Amico, N., Possenti, A., Manchester, R.N., Lyne, A.G., Joshi, B.C., McLaughlin, M.A., Kramer, M., Sarkissian, J.M., Camilo, F., Kalogera, V., Kim, C., and Lorimer, D.R., “An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system”, Nature, 426, 531–533, (2003). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0312071.
49 Carlip, S., “Model-dependence of Shapiro time delay and the “speed of gravity/speed of light” controversy”, Class. Quantum Grav., 21, 3803–3812, (2004). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0403060.
50 Champeney, D.C., Isaak, G.R., and Khan, A.M., “An “aether drift” experiment based on the Mössbauer effect”, Phys. Lett., 7, 241–243, (1963).
51 Chand, H., Petitjean, P., Srianand, R., and Aracil, B., “Probing the time-variation of the fine-structure constant: Results based on Si IV doublets from a UVES sample”, Astron. Astrophys., 430, 47–58, (2005). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0408200.
52 Chiaverini, J., Smullin, S.J., Geraci, A.A., Weld, D.M., and Kapitulnik, A., “New experimental constraints on non-Newtonian forces below 100 μm”, Phys. Rev. Lett., 90, 151101, (2003). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/hep-ph/0209325.
53 Chupp, T.E., Hoare, R.J., Loveman, R.A., Oteiza, E.R., Richardson, J.M., Wagshul, M.E., and Thompson, A.K., “Results of a new test of local Lorentz invariance: A search for mass anisotropy in 21Ne”, Phys. Rev. Lett., 63, 1541–1545, (1989).
54 Ciufolini, I., “The 1995–99 measurements of the Lense–Thirring effect using laser-ranged satellites”, Class. Quantum Grav., 17, 2369–2380, (2000).
55 Ciufolini, I., Chieppa, F., Lucchesi, D., and Vespe, F., “Test of Lense - Thirring orbital shift due to spin”, Class. Quantum Grav., 14, 2701–2726, (1997).
56 Ciufolini, I., and Pavlis, E.C., “A confirmation of the general relativistic prediction of the Lense–Thirring effect”, Nature, 431, 958–960, (October 2004).
57 Ciufolini, I., Pavlis, E.C., Chieppa, F., Fernandes-Vieira, E., and Pérez-Mercader, J., “Test of general relativity and measurement of the Lense–Thirring effect with two Earth satellites”, Science, 279, 2100–2103, (1998).
58 Clifton, T., Barrow, J.D., and Scherrer, R.J., “Constraints on the variation of G from primordial nucleosynthesis”, Phys. Rev. D, 71, 123526, 1–11, (2005). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0504418.
59 CNES, “MICROSCOPE (MICRO-Satellite à Traînée Compensée pour l’Observation du Principe d’Equivalence)”, project homepage. URL (cited on 15 July 2005):
External Linkhttp://smsc.cnes.fr/MICROSCOPE/.
60 Coc, A., Olive, K.A., Uzan, J.-P., and Vangioni, E., “Big bang nucleosynthesis constraints on scalar-tensor theories of gravity”, (January 2006). URL (cited on 15 February 2006):
External Linkhttp://arXiv.org/abs/astro-ph/0601299.
61 Coccia, E., “Resonant-mass detectors of gravitational waves in the short- and medium-term future”, Class. Quantum Grav., 20, 135, (2003).
62 Coley, A., “Schiff’s Conjecture on Gravitation”, Phys. Rev. Lett., 49, 853–855, (1982).
63 Colladay, D., and Kostelecký, V.A., “CPT violation and the standard model”, Phys. Rev. D, 55, 6760–6774, (1997). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/hep-ph/9703464.
64 Colladay, D., and Kostelecký, V.A., “Lorentz-violating extension of the standard model”, Phys. Rev. D, 58, 116002, 1–23, (1998). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/hep-ph/9809521.
65 Copi, C.J., Davis, A.N., and Krauss, L.M., “New nucleosynthesis constraint on the variation of G”, Phys. Rev. Lett., 92(17), 171301, (2004). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0311334.
66 Creminelli, P., Nicolis, A., Papucci, M., and Trincherini, E., “Ghosts in massive gravity”, J. High Energy Phys., 2005(09), 003, (2005). Related online version (cited on 15 February 2006):
External Linkhttp://arXiv.org/abs/hep-th/0505147.
67 Cutler, C., Apostolatos, T.A., Bildsten, L., Finn, L.S., Flanagan, É.É., Kennefick, D., Marković, D.M., Ori, A., Poisson, E., and Sussman, G.J., “The Last Three Minutes: Issues in Gravitational-Wave Measurements of Coalescing Compact Binaries”, Phys. Rev. Lett., 70, 2984–2987, (1993). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/astro-ph/9208005.
68 Cutler, C., and Flanagan, É.É., “Gravitational waves from merging compact binaries: How accurately can one extract the binary’s parameters from the inspiral waveform?”, Phys. Rev. D, 49, 2658–2697, (1994). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/9402014.
69 Cutler, C., Hiscock, W.A., and Larson, S.L., “LISA, binary stars, and the mass of the graviton”, Phys. Rev. D, 67, 024015, (2003). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0209101.
70 Damour, T., “The problem of motion in Newtonian and Einsteinian gravity”, in Hawking, S.W., and Israel, W., eds., Three Hundred Years of Gravitation, pp. 128–198, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1987).
71 Damour, T., “Gravitation, experiment and cosmology”, in Gazis, E.N., Koutsoumbas, G., Tracas, N.D., and Zoupanos, G., eds., Proceedings of the 5th Hellenic School and Workshops on Elementary Particle Physics, Proceedings of the workshops, held at Corfu, Greece, 3–24 September 1995, pp. 332–368. Corfu Summer Institute, (1995). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/9606079.
72 Damour, T., and Dyson, F., “The Oklo bound on the time variation of the fine-structure constant revisited”, Nucl. Phys. B, 480, 37–54, (1996). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/hep-ph/9606486.
73 Damour, T., and Esposito-Farèse, G., “Tensor-multi-scalar theories of gravitation”, Class. Quantum Grav., 9, 2093–2176, (1992).
74 Damour, T., and Esposito-Farèse, G., “Gravitational-wave versus binary-pulsar tests of strong-field gravity”, Phys. Rev. D, 58, 042001, 1–12, (1998). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/9803031.
75 Damour, T., Gopakumar, A., and Iyer, B.R., “Phasing of gravitational waves from inspiralling eccentric binaries”, Phys. Rev. D, 70, 064028, (2004). Related online version (cited on 15 February 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0404128.
76 Damour, T., and Iyer, B.R., “Post-Newtonian generation of gravitational waves. II. The spin moments”, Ann. Inst. Henri Poincare A, 54, 115–164, (1991).
77 Damour, T., Jaranowski, P., and Schäfer, G., “Poincaré invariance in the ADM Hamiltonian approach to the general relativistic two-body problem”, Phys. Rev. D, 62, 021501, 1–5, (2000). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/0003051. Erratum: Phys.Rev. D 63 (2001) 029903.
78 Damour, T., Jaranowski, P., and Schäfer, G., “Dimensional regularization of the gravitational interaction of point masses”, Phys. Lett. B, 513, 147–155, (2001). Related online version (cited on 15 February 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0105038.
79 Damour, T., Jaranowski, P., and Schäfer, G., “Equivalence between the ADM-Hamiltonian and the harmonic-coordinates approaches to the third post-Newtonian dynamics of compact binaries”, Phys. Rev. D, 63, 044021, 1–11, (2001). Related online version (cited on 15 February 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0010040. Erratum Phys. Rev. D 66 (2002) 029901(E).
80 Damour, T., and Nordtvedt, K., “General Relativity as a Cosmological Attractor of Tensor-Scalar Theories”, Phys. Rev. Lett., 70, 2217–2219, (1993).
81 Damour, T., and Nordtvedt, K., “Tensor-scalar cosmological models and their relaxation toward general relativity”, Phys. Rev. D, 48, 3436–3450, (1993).
82 Damour, T., Piazza, F., and Veneziano, G., “Runaway dilaton and equivalence principle violations”, Phys. Rev. Lett., 89, 081601, 1–4, (2002). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0204094.
83 Damour, T., Piazza, F., and Veneziano, G., “Violations of the equivalence principle in a dilaton-runaway scenario”, Phys. Rev. D, 66, 046007, (2002). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/hep-th/0205111.
84 Damour, T., and Pichon, B., “Big bang nucleosynthesis and tensor-scalar gravity”, Phys. Rev. D, 59, 123502, 1–13, (1999). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/astro-ph/9807176.
85 Damour, T., and Polyakov, A.M., “The string dilaton and a least coupling principle”, Nucl. Phys. B, 423, 532–558, (1994). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/hep-th/9401069.
86 Damour, T., and Schäfer, G., “New tests of the strong equivalence principle using binary-pulsar data”, Phys. Rev. Lett., 66, 2549–2552, (1991).
87 Damour, T., and Taylor, J.H., “On the orbital period change of the binary pulsar PSR 1913+16”, Astrophys. J., 366, 501–511, (1991).
88 Damour, T., and Taylor, J.H., “Strong-field tests of relativistic gravity and binary pulsars”, Phys. Rev. D, 45, 1840–1868, (1992).
89 Damour, T., and Vokrouhlický, D., “Equivalence principle and the Moon”, Phys. Rev. D, 53, 4177–4201, (1996). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/9507016.
90 Danzmann, K., “LISA – an ESA cornerstone mission for a gravitational-wave observatory”, Class. Quantum Grav., 14, 1399–1404, (1997).
91 Deffayet, C., Dvali, G., Gabadadze, G., and Vainshtein, A., “Nonperturbative continuity in graviton mass versus perturbative discontinuity”, Phys. Rev. D, 65, 044026, 1–10, (2002). Related online version (cited on 15 February 2006):
External Linkhttp://arxiv.org/abs/hep-th/0106001.
92 Dick, R., “Inequivalence of Jordan and Einstein frame: What is the low energy gravity in string theory?”, Gen. Relativ. Gravit., 30, 435–444, (1998).
93 Dicke, R.H., “Experimental relativity”, in DeWitt, C.M., and DeWitt, B.S., eds., Relativity, Groups and Topology. Relativité, Groupes et Topologie, Lectures delivered at Les Houches during the 1963 session of the Summer School of Theoretical Physics, University of Grenoble, pp. 165–313, (Gordon and Breach, New York, U.S.A., 1964).
94 Dicke, R.H., Gravitation and the Universe, Memoirs of the American Philosophical Society. Jayne Lecture for 1969, vol. 78, (American Philosophical Society, Philadelphia, U.S.A., 1970).
95 Dickey, J.O., Bender, P.L., Faller, J.E., Newhall, X.X., Ricklefs, R.L., Ries, J.G., Shelus, P.J., Veillet, C., Whipple, A.L., Wiant, J.R., Williams, J.G., and Yoder, C.F., “Lunar laser ranging: A continuing legacy of the Apollo program”, Science, 265, 482–490, (1994).
96 Drever, R.W.P., “A search for anisotropy of inertial mass using a free precession technique”, Philos. Mag., 6, 683–687, (1961).
97 Dyson, F.J., “The fundamental constants and their time variation”, in Salam, A., and Wigner, E.P., eds., Aspects of Quantum Theory, pp. 213–236, (Cambridge University Press, Cambridge, U.K., New York, U.S.A., 1972).
98 Eidelman, S. et al. (Particle Data Group), “Review of Particle Physics”, Phys. Lett. B, 592, 1–1109, (2004). Related online version (cited on 23 February 2006):
External Linkhttp://pdg.lbl.gov.
99 Eling, C., and Jacobson, T., “Static post-Newtonian equivalence of general relativity and gravity with a dynamical preferred frame”, Phys. Rev. D, 69, 064005, (2004). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0310044.
100 Eötvös, R.V., Pekár, V., and Fekete, E., “Beitrage zum Gesetze der Proportionalität von Trägheit und Gravität”, Ann. Phys. (Leipzig), 68, 11–66, (1922).
101 ESA, “Gaia - Taking The Galactic Census”, project homepage. URL (cited on 23 February 2006):
External Linkhttp://www.rssd.esa.int/gaia/.
102 Esposito-Farèse, G., “Binary-pulsar tests of strong-field gravity and gravitational radiation damping”, in Novello, M., Perez Bergliaffa, S.E., and Ruffini, R., eds., The Tenth Marcel Grossmann Meeting: On recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories, Proceedings of the meeting held in Rio de Janeiro, Brazil, 20–26 July 2003, (World Scientific, Singapore, 2006). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0402007. in press.
103 Farley, F.J.M., Bailey, J., Brown, R.C.A., Giesch, M., Jöstlein, H., van der Meer, S., Picasso, E., and Tannenbaum, M., “The Anomalous Magnetic Moment of the Negative Muon”, Nuovo Cimento, 45, 281–286, (1966).
104 Faulkner, A.J., Kramer, M., Lyne, A.G., Manchester, R.N., McLaughlin, M.A., Stairs, I.H., Hobbs, G., Possenti, A., Lorimer, D.R., D’Amico, N., Camilo, F., and Burgay, M., “PSR J1756–2251: A New Relativistic Double Neutron Star System”, Astrophys. J. Lett., 618, L119–L122, (2005). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0411796.
105 Finn, L.S., and Chernoff, D.F., “Observing binary inspiral in gravitational radiation: One interferometer”, Phys. Rev. D, 47, 2198–2219, (1993). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/9301003.
106 Finn, L.S., and Sutton, P.J., “Bounding the mass of the graviton using binary pulsar observations”, Phys. Rev. D, 65, 044022, 1–7, (2002). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0109049.
107 Fischbach, E., Gillies, G.T., Krause, D.E., Schwan, J.G., and Talmadge, C.L., “Non-Newtonian gravity and new weak forces: An index of measurements and theory”, Metrologia, 29, 213–260, (1992).
108 Fischbach, E., Sudarsky, D., Szafer, A., Talmadge, C.L., and Aronson, S.H., “Reanalysis of the Eötvös experiment”, Phys. Rev. Lett., 56, 3–6, (1986). Erratum: Phys. Rev. Lett. 56 (1986) 1427.
109 Fischbach, E., and Talmadge, C.L., “Six years of the fifth force”, Nature, 356, 207–215, (1992).
110 Fischbach, E., and Talmadge, C.L., The Search for Non-Newtonian Gravity, (Springer, New York, U.S.A., 1998).
111 Fischer, M., Kolachevsky, N., Zimmermann, M., Holzwarth, R., Udem, T., Hänsch, T.W., Abgrall, M., Grunert, J., Maksimovic, I., Bize, S., Marion, H., Pereira Dos Santos, F., Lemonde, P., Santarelli, G., Laurent, P., Clairon, A., Salomon, C., Haas, M., Jentschura, U.D., and Keitel, C.H., “New limits on the drift of fundamental constants from laboratory measurements”, Phys. Rev. Lett., 92, 230802, 1–4, (2004). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/physics/0312086.
112 Fomalont, E.B., and Kopeikin, S.M., “The measurement of the light deflection from Jupiter: experimental results”, Astrophys. J., 598, 704–711, (2003). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0302294.
113 Foster, B.Z., and Jacobson, T.A., “Post-Newtonian parameters and constraints on Einstein-aether theory”, (2005). URL (cited on 15 September 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0509083.
114 Fritschel, P., “The LIGO project: Progress and plans”, in Coccia, E., Veneziano, G., and Pizzella, G., eds., Second Edoardo Amaldi Conference on Gravitational Waves, Proceedings of the conference, held at CERN, Switzerland, 1–4 July, 1997, Edoardo Amaldi Foundation Series, pp. 74–85, (World Scientific, Singapore; River Edge, U.S.A., 1998).
115 Froeschlé, M., Mignard, F., and Arenou, F., “Determination of the PPN parameter γ with the Hipparcos data”, in Proceedings from the Hipparcos Venice ’97 Symposium, Proceedings of the symposium held on 13–16 May 1997, (ESA, Noordwijk, Netherlands, 1997). URL (cited on 15 January 2001):
External Linkhttp://astro.estec.esa.nl/Hipparcos/venice.html.
116 Fujii, Y., “Oklo Constraint on the Time-Variability of the Fine-Structure Constant”, in Karshenboim, S.G., and Peik, E., eds., Astrophysics, Clocks and Fundamental Constants, 302nd WE-Heraeus-Seminar, June 2003, Bad Honnef, Germany, Lecture Notes in Physics, vol. 648, pp. 167–185, (Springer, Berlin, Germany; New York, U.S.A., 2004). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/hep-ph/0311026.
117 Gasperini, M., “On the response of gravitational antennas to dilatonic waves”, Phys. Lett. B, 470, 67–72, (1999). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/9910019.
118 Gérard, J.-M., and Wiaux, Y., “Gravitational dipole radiations from binary systems”, Phys. Rev. D, 66, 024040, 1–9, (2002).
ADS: External Linkhttp://adsabs.harvard.edu/abs/2002PhRvD..66b4040G.
119 Gleiser, R.J., and Kozameh, C.N., “Astrophysical limits on quantum gravity motivated birefringence”, Phys. Rev. D, 64, 083007, (2001). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0102093.
120 Godone, A., Novero, C., and Tavella, P., “Null gravitational redshift experiment with nonidentical atomic clocks”, Phys. Rev. D, 51, 319–323, (1995).
121 Gopakumar, A., and Iyer, B.R., “Gravitational waves from inspiraling compact binaries: Angular momentum flux, evolution of the orbital elements and the waveform to the second post-Newtonian order”, Phys. Rev. D, 56, 7708–7731, (1997). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/9710075.
122 Guenther, D.B., Krauss, L.M., and Demarque, P., “Testing the constancy of the gravitational constant using helioseismology”, Astrophys. J., 498, 871–876, (1998).
123 Hamilton, W.O., “The ALLEGRO detector and the future of resonant detectors in the USA”, in Coccia, E., Veneziano, G., and Pizzella, G., eds., Second Edoardo Amaldi Conference on Gravitational Waves, Proceedings of the conference, held at CERN, Switzerland, 1–4 July, 1997, Edoardo Amaldi Foundation Series, pp. 115–126, (World Scientific, Singapore; River Edge, U.S.A., 1998).
124 Haugan, M.P., “Energy conservation and the principle of equivalence”, Ann. Phys. (N.Y.), 118, 156–186, (1979).
125 Haugan, M.P., and Lämmerzahl, C., “On the interpretation of Michelson–Morley experiments”, Phys. Lett. A, 282, 223–229, (2001). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0103052.
126 Haugan, M.P., and Lämmerzahl, C., “Principles of equivalence: Their role in gravitation physics and experiments that test them”, in Lämmerzahl, C., Everitt, C.W.F., and Hehl, F.W., eds., Gyros, Clocks, and Interferometers...: Testing Relativistic Gravity in Space, Proceedings of a meeting held at Bad Honnef, Germany, 21–27 August 1999, Lecture Notes in Physics, vol. 562, pp. 195–212, (Springer, Berlin, Germany; New York, U.S.A., 2001). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0103067.
127 Haugan, M.P., and Will, C.M., “Modern tests of special relativity”, Phys. Today, 40, 69–76, (1987).
128 Hellings, R.W., and Nordtvedt, K., “Vector-Metric Theory of Gravity”, Phys. Rev. D, 7, 3593–3602, (1973).
129 Hoyle, C.D., Kapner, D.J., Heckel, B.R., Adelberger, E.G., Gundlach, J.H., Schmidt, U., and Swanson, H.E., “Submillimeter tests of the gravitational inverse-square law”, Phys. Rev. D, 70(4), 042004, (2004). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/hep-ph/0405262.
130 Hoyle, C.D., Schmidt, U., Heckel, B.R., Adelberger, E.G., Gundlach, J.H., Kapner, D.J., and Swanson, H.E., “Submillimeter Test of the Gravitational Inverse-Square Law: A Search for “Large” Extra Dimensions”, Phys. Rev. Lett., 86, 1418–1421, (2001). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/hep-ph/0011014.
131 Hughes, V.W., Robinson, H.G., and Beltran-Lopez, V., “Upper limit for the anisotropy of inertial mass from nuclear resonance experiments”, Phys. Rev. Lett., 4, 342–344, (1960).
132 Hulse, R.A., “Nobel Lecture: The discovery of the binary pulsar”, Rev. Mod. Phys., 66, 699–710, (1994).
133 Iorio, L., “On the reliability of the so-far performed tests for measuring the Lense–Thirring effect with the LAGEOS satellites”, New Astronomy, 10, 603–615, (2005). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0411024.
134 Itoh, Y., and Futamase, T., “New derivation of a third post-Newtonian equation of motion for relativistic compact binaries without ambiguity”, Phys. Rev. D, 68, 121501(R), (2003).
135 Ivanchik, A., Petitjean, P., Varshalovich, D., Aracil, B., Srianand, R., Chand, H., Ledoux, C., and Boisse, P., “A new constraint on the time dependence of the proton-to-electron mass ratio: Analysis of the Q 0347-383 and Q 0405-443 spectra”, Astron. Astrophys., 440, 45–52, (2005). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0507174.
136 Ives, H.E., and Stilwell, G.R., “An experimental study of the rate of a moving atomic clock”, J. Opt. Soc. Am., 28, 215–226, (1938).
137 Jacobson, T.A., and Mattingly, D., “Gravity with a dynamical preferred frame”, Phys. Rev. D, 64, 024028, 1–9, (2001). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0007031.
138 Jacobson, T.A., and Mattingly, D., “Einstein-aether waves”, Phys. Rev. D, 70, 024003, 1–5, (2004). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0402005.
139 Jaranowski, P., and Schäfer, G., “3rd post-Newtonian higher order Hamilton dynamics for two-body point-mass systems”, Phys. Rev. D, 57, 7274–7291, (1998). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/9712075. Erratum: Phys. Rev. D 63 (2001) 029902.
140 Jaranowski, P., and Schäfer, G., “The binary black-hole problem at the third post-Newtonian approximation in the orbital motion: Static part”, Phys. Rev. D, 60, 124003, 1–7, (1999). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/9906092.
141 Jaseja, T.S., Javan, A., Murray, J., and Townes, C.H., “Test of special relativity or of the isotropy of space by use of infrared masers”, Phys. Rev., 133, A1221–A1225, (1964).
142 Jones, D.I., “Bounding the mass of the graviton using eccentric binaries”, Astrophys. J. Lett., 618, L115–L118, (2005). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0411123.
143 Kaspi, V.M., Taylor, J.H., and Ryba, M.F., “High-precision timing of millisecond pulsars. III. Long-term monitoring of PSRs B1855+09 and B1937+21”, Astrophys. J., 428, 713–728, (1994).
144 Kidder, L.E., “Coalescing binary systems of compact objects to (post)52-Newtonian order. V. Spin effects”, Phys. Rev. D, 52, 821–847, (1995).
ADS: External Linkhttp://adsabs.harvard.edu/abs/1995PhRvD..52..821K.
145 Kidder, L.E., Will, C.M., and Wiseman, A.G., “Spin effects in the inspiral of coalescing compact binaries”, Phys. Rev. D, 47, R4183–R4187, (1993). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/9211025.
146 Kokkotas, K.D., and Schmidt, B.G., “Quasi-Normal Modes of Stars and Black Holes”, Living Rev. Relativity, 2, lrr-1999-2, (1999). URL (cited on 15 July 2005):
http://www.livingreviews.org/lrr-1999-2.
147 Kopeikin, S.M., “Testing the relativistic effect of the propagation of gravity by very long baseline interferometry”, Astrophys. J. Lett., 556, L1–L5, (2001). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0105060.
148 Kopeikin, S.M., “The post-Newtonian treatment of the VLBI experiment on September 8, 2002”, Phys. Lett. A, 312, 147–157, (2003). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0212121.
149 Kopeikin, S.M., “The speed of gravity in general relativity and theoretical interpretation of the Jovian deflection experiment”, Class. Quantum Grav., 21, 3251–3286, (2004). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0310059.
150 Kopeikin, S.M., “Comment on ‘Model-dependence of Shapiro time delay and the “speed of gravity/speed of light” controversy”’, Class. Quantum Grav., 22, 5181, (2005). URL (cited on 15 February 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0501048.
151 Kopeikin, S.M., “Comments on the paper by S. Samuel “On the speed of gravity and the Jupiter/Quasar measurement””, (January 2005). URL (cited on 15 February 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0501001.
152 Kopeikin, S.M., “Note on the relationship between the speed of light and gravity in the bi-metric theory of gravity”, (2005). URL (cited on 15 February 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0512168.
153 Kopeikin, S.M., and Fomalont, E.B., “General relativistic model for experimental measurement of the speed of propagation of gravity by VLBI”, in Ros, E., Porcas, R.W., Lobanov, A.P., and Zensus, J.A., eds., Proceedings of the 6th European VLBI Network Symposium, June 25–28 2002, Bonn, Germany, pp. 49–52, (Max-Planck-Institut für Radioastronomie, Bonn, Germany, 2002). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0206022.
154 Kostelecký, V.A., and Lane, C.D., “Constraints on Lorentz violation from clock-comparison experiments”, Phys. Rev. D, 60, 116010, 1–17, (1999). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/hep-ph/9908504.
155 Kostelecký, V.A., and Mewes, M., “Signals for Lorentz violation in electrodynamics”, Phys. Rev. D, 66, 056005, 1–24, (2002). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/hep-ph/0205211.
156 Kostelecký, V.A., and Samuel, S., “Gravitational phenomenology in higher-dimensional theories and strings”, Phys. Rev. D, 40, 1886–1903, (1989).
157 Kramer, M., “Determination of the geometry of the PSR B1913+16 system by geodetic precession”, Astrophys. J., 509, 856–860, (1998). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/astro-ph/9808127.
158 Krisher, T.P., Anderson, J.D., and Campbell, J.K., “Test of the gravitational redshift effect at Saturn”, Phys. Rev. Lett., 64, 1322–1325, (1990).
159 Krisher, T.P., Maleki, L., Lutes, G.F., Primas, L.E., Logan, R.T., Anderson, J.D., and Will, C.M., “Test of the isotropy of the one-way speed of light using hydrogen-maser frequency standards”, Phys. Rev. D, 42, 731–734, (1990).
160 Krisher, T.P., Morabito, D.D., and Anderson, J.D., “The Galileo solar redshift experiment”, Phys. Rev. Lett., 70, 2213–2216, (1993).
161 Królak, A., Kokkotas, K.D., and Schäfer, G., “Estimation of the post-Newtonian parameters in the gravitational-wave emission of a coalescing binary”, Phys. Rev. D, 52, 2089–2111, (1995). Related online version (cited on 15 February 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9503013.
162 Lämmerzahl, C., “The Einstein equivalence principle and the search for new physics”, in Giulini, D.J.W., Kiefer, C., and Lämmerzahl, C., eds., Quantum Gravity: From Theory to Experimental Search, Lecture Notes in Physics, vol. 631, pp. 367–394, (Springer, Berlin, Germany; New York, U.S.A., 2003).
163 Lamoreaux, S.K., Jacobs, J.P., Heckel, B.R., Raab, F.J., and Fortson, E.N., “New limits on spatial anisotropy from optically-pumped 201Hg and 199Hg”, Phys. Rev. Lett., 57, 3125–3128, (1986).
164 Lebach, D.E., Corey, B.E., Shapiro, I.I., Ratner, M.I., Webber, J.C., Rogers, A.E.E., Davis, J.L., and Herring, T.A., “Measurement of the Solar Gravitational Deflection of Radio Waves Using Very-Long-Baseline Interferometry”, Phys. Rev. Lett., 75, 1439–1442, (1995).
165 Lehner, L., “Numerical relativity: a review”, Class. Quantum Grav., 18, R25–R86, (2001). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0106072.
166 Lightman, A.P., and Lee, D.L., “Restricted proof that the weak equivalence principle implies the Einstein equivalence principle”, Phys. Rev. D, 8, 364–376, (1973).
167 Lineweaver, C.H., Tenorio, L., Smoot, G.F., Keegstra, P., Banday, A.J., and Lubin, P., “The dipole observed in the COBE DMR 4 year data”, Astrophys. J., 470, 38–42, (1996).
168 Lipa, J.A., Nissen, J.A., Wang, S., Stricker, D.A., and Avaloff, D., “New limit on signals of Lorentz violation in electrodynamics”, Phys. Rev. Lett., 90, 060403, 1–4, (2003). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/physics/0302093.
169 Lobo, J.A., “Spherical GW detectors and geometry”, in Coccia, E., Veneziano, G., and Pizzella, G., eds., Second Edoardo Amaldi Conference on Gravitational Waves, Proceedings of the conference, held at CERN, Switzerland, 1–4 July, 1997, Edoardo Amaldi Foundation Series, pp. 168–179, (World Scientific, Singapore, 1998).
170 Long, J.C., Chan, H.W., Churnside, A.B., Gulbis, E.A., Varney, M.C.M., and Price, J.C., “Upper limits to submillimetre-range forces from extra space-time dimensions”, Nature, 421, 922–925, (February 2003).
171 Long, J.C., Chan, H.W., and Price, J.C., “Experimental status of gravitational-strength forces in the sub-centimeter regime”, Nucl. Phys. B, 539, 23–34, (1999). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/hep-ph/9805217.
172 LoPresto, J.C., Schrader, C., and Pierce, A.K., “Solar gravitational redshift from the infrared oxygen triplet”, Astrophys. J., 376, 757–760, (1991).
173 Lorimer, D.R., “Binary and Millisecond Pulsars”, Living Rev. Relativity, 8, lrr-2005-7, (2005). URL (cited on 3 February 2006):
http://www.livingreviews.org/lrr-2005-7.
174 Lorimer, D.R., Stairs, I.H., Freire, P.C.C., Cordes, J.M., Camilo, F., Faulkner, A.J., Lyne, A.G., Nice, D.J., Ransom, S.M., Arzoumanian, Z., Manchester, R.N., Champion, D.J., van Leeuwen, J., McLaughlin, M.A., Ramachandran, R., Hessels, J.W.T., Vlemmings, W., Deshpande, A.A., Bhat, N.D.R., Chatterjee, S., Han, J.L., Gaensler, B.M., Kasian, L., Deneva, J.S., Reid, B., Lazio, T.J.W., Kaspi, V.M., Crawford, F., Lommen, A.N., Backer, D.C., Kramer, M., Stappers, B.W., Hobbs, G.B., Possenti, A., D’Amico, N., and Burgay, M., “The young, highly relativistic binary pulsar J1906+0746”, Astrophys. J., accepted, (2005). URL (cited on 15 February 2006):
External Linkhttp://arXiv.org/abs/astro-ph/0511523.
175 Lyne, A.G., Burgay, M., Kramer, M., Possenti, A., Manchester, R.N., Camilo, F., McLaughlin, M.A., Lorimer, D.R., D’Amico, N., Joshi, B.C., Reynolds, J., and Freire, P.C.C., “A Double-Pulsar System: A Rare Laboratory for Relativistic Gravity and Plasma Physics”, Science, 303, 1153–1157, (2004). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0401086.
176 Maeda, K.-I., “On time variation of fundamental constants in superstring theories”, Mod. Phys. Lett. A, 3, 243–249, (1988).
177 Maggiore, M., and Nicolis, A., “Detection strategies for scalar gravitational waves with interferometers and resonant spheres”, Phys. Rev. D, 62, 024004, 1–15, (1999). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/9907055.
178 Magueijo, J., “New varying speed of light theories”, Rep. Prog. Phys., 66, 2025–2068, (2003).
179 Malaney, R.A., and Mathews, G.J., “Probing the early universe: A review of primordial nucleosynthesis beyond the standard big bang”, Phys. Rep., 229, 147–219, (1993).
180 Maleki, L., and Prestage, J.D., “SpaceTime Mission: Clock test of relativity at four solar radii”, in Lämmerzahl, C., Everitt, C.W.F., and Hehl, F.W., eds., Gyros, Clocks, and Interferometers...: Testing Relativistic Gravity in Space, Proceedings of a meeting held in Bad Honnef, Germany, August 21–27, 1999, Lecture Notes in Physics, vol. 562, p. 369, (Springer, Berlin, Germany; New York, U.S.A., 2001).
181 Marion, H., Pereira Dos Santos, F., Abgrall, M., Zhang, S., Sortais, Y., Bize, S., Maksimovic, I., Calonico, D., Grunert, J., Mandache, C., Lemonde, P., Santarelli, G., Laurent, P., Clairon, A., and Salomon, C., “Search for variations of fundamental constants using atomic fountain clocks”, Phys. Rev. Lett., 90, 150801, 1–4, (2003). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/physics/0212112.
182 Mattingly, D., “Modern Tests of Lorentz Invariance”, Living Rev. Relativity, 8, lrr-2005-5, (2005). URL (cited on 15 July 2005):
http://www.livingreviews.org/lrr-2005-5.
183 Mattingly, D., and Jacobson, T.A., “Relativistic Gravity with a Dynamical Preferred Frame”, in Kostelecký, V.A., ed., CPT and Lorentz Symmetry II, Proceedings of the Second Meeting, held at Indiana University, Bloomington, August 15–18, 2001, pp. 331–335, (World Scientific, Singapore; River Edge, U.S.A., 2002). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0112012.
184 Mecheri, R., Abdelatif, T., Irbah, A., Provost, J., and Berthomieu, G., “New values of gravitational moments J2 and J4 deduced from helioseismology”, Solar Phys., 222, 191–197, (2004).
185 Menou, K., Quataert, E., and Narayan, R., “Astrophysical evidence for black-hole event horizons”, in Piran, T., ed., The Eighth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, Proceedings of the meeting held at the Hebrew University of Jerusalem, June 22–27, 1997, pp. 204–224, (World Scientific, Singapore, 1999). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/astro-ph/9712015.
186 Michelson, A.A., and Morley, E.W., “On the Relative Motion of the Earth and the Luminiferous Ether”, Am. J. Sci., 34, 333–345, (1887). Related online version (cited on 22 February 2006):
External Linkhttp://www.aip.org/history/gap/Michelson/Michelson.html.
187 Milani, A., Vokrouhlický, D., Villani, D., Bonanno, C., and Rossi, A., “Testing general relativity with the BepiColombo radio science experiment”, Phys. Rev. D, 66, 082001, 1–21, (2002).
188 Mino, Y., Sasaki, M., Shibata, M., Tagoshi, H., and Tanaka, T., “Black Hole Perturbation”, Prog. Theor. Phys. Suppl., 128, 1–121, (1997). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/9712057.
189 Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, U.S.A., 1973).
190 Müller, H., Herrmann, S., Braxmaier, C., Schiller, S., and Peters, A., “Modern Michelson–Morley experiment using cryogenic optical resonators”, Phys. Rev. Lett., 91, 020401, 1–4, (2003). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/physics/0305117.
191 Müller, J., Nordtvedt, K., and Vokrouhlický, D., “Improved constraint on the α1 PPN parameter from lunar motion”, Phys. Rev. D, 54, R5927–R5930, (1996).
192 Müller, J., Schneider, M., Nordtvedt, K., and Vokrouhlický, D., “What can LLR provide to relativity?”, in Piran, T., ed., The Eighth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, Proceedings of the meeting held at the Hebrew University of Jerusalem, June 22–27, 1997, pp. 1151–1153, (World Scientific, Singapore, 1999).
193 Murphy, M.T., Webb, J.K., Flambaum, V.V., Dzuba, V.A., Churchill, C.W., Prochaska, J.X., Barrow, J.D., and Wolfe, A.M., “Possible evidence for a variable fine structure constant from QSO absorption lines: motivations, analysis and results”, Mon. Not. R. Astron. Soc., 327, 1208–1222, (2001). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0012419.
194 Ni, W.-T., “Equivalence principles and electromagnetism”, Phys. Rev. Lett., 38, 301–304, (1977).
195 Nordström, G., “Zur Theorie der Gravitation vom Standpunkt des Relativitätsprinzips”, Ann. Phys. (Leipzig), 42, 533–554, (1913).
196 Nordtvedt, K., “Equivalence principle for massive bodies. I. Phenomenology”, Phys. Rev., 169, 1014–1016, (1968).
197 Nordtvedt, K., “Equivalence principle for massive bodies. II. Theory”, Phys. Rev., 169, 1017–1025, (1968).
198 Nordtvedt, K., “Existence of the gravitomagnetic interaction”, Int. J. Theor. Phys., 27, 1395–1404, (1988).
199 Nordtvedt, K., “Gravitomagnetic interaction and laser ranging to Earth satellites”, Phys. Rev. Lett., 61, 2647–2649, (1988).
200 Nordtvedt, K., “Ġ∕G and a cosmological acceleration of gravitationally compact bodies”, Phys. Rev. Lett., 65, 953–956, (1990).
201 Nordtvedt, K., “The relativistic orbit observables in lunar laser ranging”, Icarus, 114, 51–62, (1995).
202 Nordtvedt, K., “Improving gravity theory tests with solar system ‘grand fits”’, Phys. Rev. D, 61, 122001, (2000).
203 Nordtvedt, K., “Testing Newton’s third law using lunar laser ranging”, Class. Quantum Grav., 18, L133–L137, (2001).
204 Ohanian, H.C., “Comment on the Schiff Conjecture”, Phys. Rev. D, 10, 2041–2042, (1974).
205 Olive, K.A., Pospelov, M., Qian, Y.-Z., Manhes, G., Vangioni-Flam, E., Coc, A., and Casse, M., “Reexamination of the 187Re bound on the variation of fundamental couplings”, Phys. Rev. D, 69, 027701, 1–4, (2004). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0309252.
206 Pallottino, G.V., “The Resonant Mass Detectors of the Rome Group”, in Coccia, E., Veneziano, G., and Pizzella, G., eds., Second Edoardo Amaldi Conference on Gravitational Waves, Proceedings of the conference, held at CERN, Switzerland, 1–4 July, 1997, Edoardo Amaldi Foundation Series, vol. 4, pp. 105–114, (World Scientific, Singapore; River Edge, U.S.A., 1998).
207 Paterno, L., Sofia, S., and di Mauro, M.P., “The rotation of the Sun’s core”, Astron. Astrophys., 314, 940–946, (1996).
208 Pati, M.E., and Will, C.M., “Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations: Foundations”, Phys. Rev. D, 62, 124015, 1–28, (2000). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/0007087.
209 Peik, E., Lipphardt, B., Schnatz, H., Schneider, T., Tamm, C., and Karshenboim, S.G., “Limit on the present temporal variation of the fine structure constant”, Phys. Rev. Lett., 93, 170801, 1–4, (2004). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/physics/0402132.
210 Petrov, Y.V., Nazarov, A.I., Onegin, M.S., Petrov, V.Y., and Sakhnovsky, E.G., “Natural nuclear reactor Oklo and variation of fundamental constants. Part 1: Computation of neutronics of fresh core”, (2005). URL (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/hep-ph/0506186.
211 Pijpers, F.P., “Helioseismic determination of the solar gravitational quadrupole moment”, Mon. Not. R. Astron. Soc., 297, L76–L80, (1998). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/astro-ph/9804258.
212 Pitjeva, E.V., “Relativistic effects and solar oblateness from radar observations of planets and spacecraft”, Astron. Lett., 31, 340–349, (2005).
213 Poisson, E., “Measuring black-hole parameters and testing general relativity using gravitational-wave data from space-based interferometers”, Phys. Rev. D, 54, 5939–5953, (1996). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/9606024.
214 Poisson, E., and Will, C.M., “Gravitational waves from inspiralling compact binaries: Parameter estimation using second-post-Newtonian waveforms”, Phys. Rev. D, 52, 848–855, (1995). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/9502040.
215 Prestage, J.D., Bollinger, J.J., Itano, W.M., and Wineland, D.J., “Limits for Spatial Anisotropy by Use of Nuclear-Sspin-Polarized 9Be+ Ions”, Phys. Rev. Lett., 54, 2387–2390, (1985).
216 Prestage, J.D., Tjoelker, R.L., and Maleki, L., “Atomic clocks and variations of the fine structure constant”, Phys. Rev. Lett., 74, 3511–3514, (1995).
217 Prodi, G.A., Conti, L., Mezzena, R., Vitale, S., Taffarello, L., Zendri, J.P., Baggio, L., Cerdonio, M., Colombo, A., Crivelli Visconti, V., Macchietto, R., Falferi, P., Bonaldi, M., Ortolan, A., Vedovato, G., Cavallini, E., and Fortini, P., “Initial Operation of the Gravitational Wave Detector AURIGA”, in Coccia, E., Veneziano, G., and Pizzella, G., eds., Second Edoardo Amaldi Conference on Gravitational Waves, Proceedings of the conference, held at CERN, Switzerland, 1–4 July, 1997, Edoardo Amaldi Foundation Series, vol. 4, pp. 148–158, (World Scientific, Singapore; River Edge, U.S.A., 1998).
218 Psaltis, D., “Measurements of black hole spins and tests of strong-field general relativity”, in Kaaret, P., Lamb, F.K., and Swank, J.H., eds., X-Ray Timing 2003: Rossi and Beyond, Proceedings of the conference held 3–5 November 2003 in Cambridge, MA, AIP Conference Proceedings, vol. 714, pp. 29–35, (American Institute of Physics, Melville, U.S.A., 2004). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0402213.
219 Quast, R., Reimers, D., and Levshakov, S.A., “Probing the variability of the fine-structure constant with the VLT/UVES”, Astron. Astrophys., 415, L7–L11, (2004). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0311280.
220 Randall, L., and Sundrum, R., “An Alternative to Compactification”, Phys. Rev. Lett., 83, 4690–4693, (1999). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/hep-ph/9906064.
221 Randall, L., and Sundrum, R., “Large Mass Hierarchy from a Small Extra Dimension”, Phys. Rev. Lett., 83, 3370–3373, (1999). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/hep-ph/9905021.
222 Reasenberg, R.D., Shapiro, I.I., MacNeil, P.E., Goldstein, R.B., Breidenthal, J.C., Brenkle, J.P., Cain, D.L., Kaufman, T.M., Komarek, T.A., and Zygielbaum, A.I., “Viking relativity experiment: Verification of signal retardation by solar gravity”, Astrophys. J. Lett., 234, L219–L221, (1979).
223 Reeves, H., “On the origin of the light elements (Z < 6)”, Rev. Mod. Phys., 66, 193–216, (1994).
224 Reynolds, C.S., Brenneman, L.W., and Garofalo, D., “Black Hole Spin in AGN and GBHCs”, Astrophys. Space Sci., 300, 71–79, (2005). Related online version (cited on 15 February 2006):
External Linkhttp://arxiv.org/abs/astro-ph/0410116.
225 Reynolds, C.S., Brenneman, L.W., Wilms, J., and Kaiser, M.E., “Iron line spectroscopy of NGC 4593 with XMM-Newton: where is the black hole accretion disc?”, Mon. Not. R. Astron. Soc., 352, 205–210, (2004). Related online version (cited on 15 February 2006):
External Linkhttp://arxiv.org/abs/astro-ph/0404187.
226 Ries, J.C., Eanes, R.J., Tapley, B.D., and Peterson, G.E., “Prospects for an Improved Lense–Thirring Test with SLR and the GRACE Gravity Mission”, in Noomen, R., Klosko, S., Noll, C., and Pearlman, M., eds., Proceedings of the 13th International Workshop on Laser Ranging: Science Session and Full Proceedings CD-ROM, “Toward Millimeter Accuracy” Workshop held in Washington, DC, October 07–11, 2002, NASA Conference Proceedings, pp. 211–248. NASA, (2003). URL (cited on 22 February 2006):
External Linkhttp://cddis.gsfc.nasa.gov/lw13/lw_proceedings.html.
227 Riis, E., Anderson, L.-U.A., Bjerre, N., Poulson, O., Lee, S.A., and Hall, J.L., “Test of the Isotropy of the Speed of Light Using Fast-Beam Laser Spectroscopy”, Phys. Rev. Lett., 60, 81–84, (1988).
228 Roll, P.G., Krotkov, R., and Dicke, R.H., “The equivalence of inertial and passive gravitational mass”, Ann. Phys. (N.Y.), 26, 442–517, (1964).
229 Rossi, B., and Hall, D.B., “Variation of the rate of decay of mesotrons with momentum”, Phys. Rev., 59, 223–228, (1941).
230 Roxburgh, I.W., “Gravitational multipole moments of the Sun determined from helioseismic estimates of the internal structure and rotation”, Astron. Astrophys., 377, 688–690, (2001).
231 Ryan, F.D., “Gravitational waves from the inspiral of a compact object into a massive, axisymmetric body with arbitrary multipole moments”, Phys. Rev. D, 52, 5707–5718, (1995).
232 Samuel, S., “On the speed of gravity and the v/c corrections to the Shapiro time delay”, Phys. Rev. Lett., 90, 231101, (2003). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0304006.
233 Samuel, S., “On the Speed of Gravity and the Jupiter/quasar Measurement”, Int. J. Mod. Phys. D, 13, 1753–1770, (2004). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0412401.
234 Santiago, D.I., Kalligas, D., and Wagoner, R.V., “Nucleosynthesis constraints on scalar-tensor theories of gravity”, Phys. Rev. D, 56, 7627–7637, (1997).
235 Sasaki, M., and Tagoshi, H., “Analytic Black Hole Perturbation Approach to Gravitational Radiation”, Living Rev. Relativity, 6, lrr-2003-6, (2003). URL (cited on 15 July 2005):
http://www.livingreviews.org/lrr-2003-6.
236 Scharre, P.D., and Will, C.M., “Testing scalar-tensor gravity using space gravitational-wave interferometers”, Phys. Rev. D, 65, 042002, (2002). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0109044.
237 Shankland, R.S., McCuskey, S.W., Leone, F.C., and Kuerti, G., “New analysis of the interferometer observations of Dayton C. Miller”, Rev. Mod. Phys., 27, 167–178, (1955).
238 Shapiro, I.I., “Solar system tests of general relativity: Recent results and present plans”, in Ashby, N., Bartlett, D.F., and Wyss, W., eds., General Relativity and Gravitation, Proceedings of the 12th International Conference on General Relativity and Gravitation, University of Colorado at Boulder, July 2–8, 1989, pp. 313–330, (Cambridge University Press, Cambridge, U.K., New York, U.S.A., 1990).
239 Shapiro, I.I., “A century of relativity”, Rev. Mod. Phys., 71, S41–S53, (1999).
240 Shapiro, S.S., Davis, J.L., Lebach, D.E., and Gregory, J.S., “Measurement of the solar gravitational deflection of radio waves using geodetic very-long-baseline interferometry data, 1979–1999”, Phys. Rev. Lett., 92, 121101, (2004).
241 Shlyakter, A.I., “Direct test of the constancy of fundamental nuclear constants”, Nature, 264, 340, (1976).
242 Srianand, R., Chand, H., Petitjean, P., and Aracil, B., “Limits on the time variation of the electromagnetic fine-structure constant in the low energy limit from absorption lines in the spectra of distant quasars”, Phys. Rev. Lett., 92, 121302, 1–4, (2004). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0402177.
243 Stairs, I.H., “Testing General Relativity with Pulsar Timing”, Living Rev. Relativity, 6, lrr-2003-5, (2003). URL (cited on 15 July 2005):
http://www.livingreviews.org/lrr-2003-5.
244 Stairs, I.H., Faulkner, A.J., Lyne, A.G., Kramer, M., Lorimer, D.R., McLaughlin, M.A., Manchester, R.N., Hobbs, G.B., Camilo, F., Possenti, A., Burgay, M., D’Amico, N., Freire, P.C.C., and Gregory, P.C., “Discovery of three wide-orbit binary pulsars: Implications for binary evolution and equivalence principles”, Astrophys. J., 632, 1060–1068, (2005). Related online version (cited on 15 February 2006):
External Linkhttp://arXiv.org/abs/astro-ph/0506188.
245 Stairs, I.H., Nice, D.J., Thorsett, S.E., and Taylor, J.H., “Recent Arecibo timing of the relativistic binary PSR B1534+12”, in Trân Than Vân, J., Dumarchez, J., Raynoud, S., Salomon, C., Thorsett, S., and Vinet, J.Y., eds., Gravitational Waves and Experimental Gravity, Proceedings of the XXXIVth Rencontres de Moriond, Les Arcs, France, January 23–30, 1999, pp. 309–317, (World Publishers, Hanoi, Vietnam, 2000). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/astro-ph/9903289.
246 Stanford University, “Gravity Probe B: Testing Einstein’s Universe”, project homepage. URL (cited on 15 July 2005):
External Linkhttp://einstein.stanford.edu/.
247 Stanford University, “STEP: Satellite Test of the Equivalence Principle”, project homepage, (2005). URL (cited on 15 July 2005):
External Linkhttp://einstein.stanford.edu/STEP/.
248 Stanwix, P.L., Tobar, M.E., Wolf, P., Susli, M., Locke, C.R., Ivanov, E.N., Winterflood, J., and van Kann, F., “Test of Lorentz Invariance in Electrodynamics Using Rotating Cryogenic Sapphire Microwave Oscillators”, Phys. Rev. Lett., 95, 040404, (2005). Related online version (cited on 15 February 2006):
External Linkhttp://arXiv.org/abs/hep-ph/0506074.
249 Su, Y., Heckel, B.R., Adelberger, E.G., Gundlach, J.H., Harris, M., Smith, G.L., and Swanson, H.E., “New tests of the universality of free fall”, Phys. Rev. D, 50, 3614–3636, (1994).
250 Talmadge, C.L., Berthias, J.-P., Hellings, R.W., and Standish, E.M., “Model-Independent Constraints on Possible Modifications of Newtonian Gravity”, Phys. Rev. Lett., 61, 1159–1162, (1988).
251 Taylor, J.H., “Astronomical and Space Experiments to Test Relativity”, in MacCallum, M.A.H., ed., General Relativity and Gravitation, p. 209, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1987).
252 Taylor, J.H., “Nobel Lecture: Binary pulsars and relativistic gravity”, Rev. Mod. Phys., 66, 711–719, (1994).
253 Taylor, J.H., Wolszczan, A., Damour, T., and Weisberg, J.M., “Experimental constraints on strong-field relativistic gravity”, Nature, 355, 132–136, (1992).
254 Taylor, T.R., and Veneziano, G., “Dilaton coupling at large distance”, Phys. Lett. B, 213, 450–454, (1988).
255 Thorne, K.S., “Gravitational radiation”, in Hawking, S.W., and Israel, W., eds., Three Hundred Years of Gravitation, pp. 330–458, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1987).
256 Thorne, K.S., “Gravitational waves”, in Kolb, E.W., and Peccei, R., eds., Particle and Nuclear Astrophysics and Cosmology in the Next Millennium, Proceedings of the 1994 Snowmass Summer Study, Snowmass, Colorado, June 29 – July 14, 1994, pp. 160–184, (World Scientific, Singapore; River Edge, U.S.A., 1995). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/9506086.
257 Treuhaft, R.N., and Lowe, S.T., “A measurement of planetary relativistic deflection”, Astron. J., 102, 1879–1888, (1991).
258 Turneaure, J.P., Will, C.M., Farrell, B.F., Mattison, E.M., and Vessot, R.F.C., “Test of the principle of equivalence by a null gravitational redshift experiment”, Phys. Rev. D, 27, 1705–1714, (1983).
259 Turyshev, S.G., Shao, M., and Nordtvedt, K., “Experimental design for the LATOR mission”, Int. J. Mod. Phys. D, 13, 2035–2063, (2004). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0410044.
260 Turyshev, S.G., Shao, M., and Nordtvedt, K., “The laser astrometric test of relativity mission”, Class. Quantum Grav., 21, 2773–2799, (2004). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0311020.
261 Università di Pisa, “GG Small Mission Project”, project homepage, (2005). URL (cited on 15 July 2005):
External Linkhttp://tycho.dm.unipi.it/~nobili/ggproject.html.
262 Uzan, J.-P., “The fundamental constants and their variation: observational and theoretical status”, Rev. Mod. Phys., 75, 403, (2003). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/hep-ph/0205340.
263 van Dam, H., and Veltman, M.J.G., “Massive and mass-less Yang–Mills and gravitational fields”, Nucl. Phys. B, 22, 397–411, (1970).
264 Vessot, R.F.C., Levine, M.W., Mattison, E.M., Blomberg, E.L., Hoffman, T.E., Nystrom, G.U., Farrell, B.F., Decher, R., Eby, P.B., Baugher, C.R., Watts, J.W., Teuber, D.L., and Wills, F.D., “Test of Relativistic Gravitation with a Space-Borne Hydrogen Maser”, Phys. Rev. Lett., 45, 2081–2084, (1980).
ADS: External Linkhttp://adsabs.harvard.edu/abs/1980PhRvL..45.2081V.
265 Visser, M., “Mass for the graviton”, Gen. Relativ. Gravit., 30, 1717–1728, (1998). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/9705051.
266 Wagoner, R.V., “Resonant-mass detection of tensor and scalar waves”, in Marck, J.A., and Lasota, J.P., eds., Relativistic Gravitation and Gravitational Radiation, Proceedings of the Les Houches School of Physics, held in Les Houches, Haute Savoie, 26 September – 6 October, 1995, pp. 419–432, (Cambridge University Press, Cambridge, U.K., 1997).
267 Wagoner, R.V., and Kalligas, D., “Scalar-tensor theories and gravitational radiation”, in Marck, J.A., and Lasota, J.P., eds., Relativistic Gravitation and Gravitational Radiation, Proceedings of the Les Houches School of Physics, held in Les Houches, Haute Savoie, 26 September – 6 October, 1995, pp. 433–446, (Cambridge University Press, Cambridge, U.K., 1997).
268 Wagoner, R.V., and Will, C.M., “Post-Newtonian gravitational radiation from orbiting point masses”, Astrophys. J., 210, 764–775, (1976).
269 Webb, J.K., Flambaum, V.V., Churchill, C.W., Drinkwater, M.J., and Barrow, J.D., “Search for time variation of the fine structure constant”, Phys. Rev. Lett., 82, 884–887, (1999). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/astro-ph/9803165.
270 Weinberg, S., Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, (Wiley, New York, U.S.A., 1972).
271 Weisberg, J.M., and Taylor, J.H., “General Relativistic Geodetic Spin Precession in Binary Pulsar B1913+16: Mapping the Emission Beam in Two Dimensions”, Astrophys. J., 576, 942–949, (2002). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0205280.
272 Weisberg, J.M., and Taylor, J.H., “The relativistic binary pulsar B1913+16: Thirty years of observations and analysis”, in Rasio, F.A., and Stairs, I.H., eds., Binary Radio Pulsars, Proceedings of the 2004 Aspen Winter Conference, held 11–17 January, 2004 at Aspen Center for Physics, Aspen, Colorado, USA, ASP Conference Series, vol. 328, pp. 25–32, (Astronomical Society of the Pacific, San Francisco, U.S.A., 2005). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0407149.
273 Wen, L., and Schutz, B.F., “Coherent network detection of gravitational waves: the redundancy veto”, Class. Quantum Grav., 22, S1321–S1336, (2005). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0508042. Proceedings of the 9th Gravitational Wave Data Analysis Workshop, Annecy, France, 15–18 December 2004.
274 Will, C.M., “Theoretical frameworks for testing relativistic gravity. II. Parametrized post-Newtonian hydrodynamics and the Nordtvedt effect”, Astrophys. J., 163, 611–628, (1971).
275 Will, C.M., “Active mass in relativistic gravity: Theoretical interpretation of the Kreuzer experiment”, Astrophys. J., 204, 224–234, (1976).
276 Will, C.M., “Experimental gravitation from Newton’s Principia to Einstein’s general relativity”, in Hawking, S.W., and Israel, W., eds., Three Hundred Years of Gravitation, pp. 80–127, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1987).
277 Will, C.M., “Henry Cavendish, Johann von Soldner, and the deflection of light”, Am. J. Phys., 56, 413–415, (1988).
278 Will, C.M., “Twilight time for the fifth force?”, Sky and Telescope, 80, 472–479, (1990).
279 Will, C.M., “Clock synchronization and isotropy of the one-way speed of light”, Phys. Rev. D, 45, 403–411, (1992).
280 Will, C.M., “Is momentum conserved? A test in the binary system PSR 1913+16”, Astrophys. J. Lett., 393, L59–L61, (1992).
281 Will, C.M., Theory and experiment in gravitational physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1993), 2nd edition.
282 Will, C.M., Was Einstein Right?: Putting General Relativity to the Test, (Basic Books, New York, U.S.A., 1993), 2nd edition.
283 Will, C.M., “Testing scalar-tensor gravity with gravitational-wave observations of inspiralling compact binaries”, Phys. Rev. D, 50, 6058–6067, (1994). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/9406022.
284 Will, C.M., “The confrontation between general relativity and experiment: A 1995 update”, in Hall, G.S., and Pulham, J.R., eds., General Relativity, Proceedings of the Forty Sixth Scottish Universities Summer School in Physics, Aberdeen, July 1995, Scottish Graduate Series, vol. 46, pp. 239–282, (Institute of Physics Publishing, Bristol, U.K., 1996).
285 Will, C.M., “Bounding the mass of the graviton using gravitional-wave observations of inspiralling compact binaries”, Phys. Rev. D, 57, 2061–2068, (1998). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/9709011.
286 Will, C.M., “The confrontation between general relativity and experiment: A 1998 update”, in Dixon, L.J., ed., Gravity: From the Hubble Length to the Planck Length, Proceedings of the 26th SLAC Summer Institute on Particle Physics (SSI 98), Stanford, USA, 3–14 August 1998, vol. 538, (SLAC, Springfield, U.S.A., 1998). URL (cited on 15 January 2001):
External Linkhttp://www.slac.stanford.edu/pubs/confproc/ssi98/ssi98-002.html. also at http://arXiv.org/abs/gr-qc/9811036.
287 Will, C.M., “Einstein’s relativity and everyday life”, online resource, Americal Physical Society, (2000). URL (cited on 15 January 2001):
External Linkhttp://www.physicscentral.com/writers/writers-00-2.html.
288 Will, C.M., “Propagation speed of gravity and the relativistic time delay”, Astrophys. J., 590, 683–690, (2003). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0301145.
289 Will, C.M., “Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. III. Radiation reaction for binary systems with spinning bodies”, Phys. Rev. D, 71, 084027, 1–15, (2005). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0502039.
290 Will, C.M., and Nordtvedt Jr, K.L., “Conservation laws and preferred frames in relativistic gravity. I. Preferred-frame theories and an extended PPN formalism”, Astrophys. J., 177, 757–774, (1972).
ADS: External Linkhttp://adsabs.harvard.edu/abs/1972ApJ...177..757W.
291 Will, C.M., and Wiseman, A.G., “Gravitational radiation from compact binary systems: Gravitational waveforms and energy loss to second post-Newtonian order”, Phys. Rev. D, 54, 4813–4848, (1996). Related online version (cited on 15 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/9608012.
292 Will, C.M., and Yunes, N., “Testing alternative theories of gravity using LISA”, Class. Quantum Grav., 21, 4367–4381, (2004). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0403100.
293 Will, C.M., and Zaglauer, H.W., “Gravitational radiation, close binary systems and the Brans–Dicke theory of gravity”, Astrophys. J., 346, 366–377, (1989).
294 Williams, J.G., Newhall, X.X., and Dickey, J.O., “Relativity parameters determined from lunar laser ranging”, Phys. Rev. D, 53, 6730–6739, (1996).
295 Williams, J.G., Turyshev, S.G., and Boggs, D.H., “Progress in lunar laser ranging tests of relativistic gravity”, Phys. Rev. Lett., 93, 261101, 1–4, (2004). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0411113.
296 Williams, J.G., Turyshev, S.G., and Murphy Jr, T.W., “Improving LLR tests of gravitational theory”, Int. J. Mod. Phys. D, 13, 567–582, (2004). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0311021.
297 Wolf, P., Bize, S., Clairon, A., Luiten, A.N., Santarelli, G., and Tobar, M.E., “Tests of Lorentz invariance using a microwave resonator”, Phys. Rev. Lett., 90, 060402, 1–4, (2003). Related online version (cited on 15 July 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0210049.
298 Wolfe, A.M., Brown, R.L., and Roberts, M.S., “Limits on the Variation of Fundamental Atomic Quantities over Cosmic Time Scales”, Phys. Rev. Lett., 37, 179–181, (1976).
299 Zakharov, V.I., “Linearized gravitation theory and the graviton mass”, J. Exp. Theor. Phys. Lett., 12, 312, (1970).