1 Ajith, P., Iyer, B.R., Robinson, C.A.K., and Sathyaprakash, B.S., “New class of post-Newtonian approximants to the waveform templates of inspiralling compact binaries: Test mass in the Schwarzschild spacetime”, Phys. Rev. D, 71, 044029-1-21, (2005). Related online version (cited on 26 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0412033.
2 Anderson, J.L., and DeCanio, T.C., “Equations of hydrodynamics in general relativity in the slow motion approximation”, Gen. Relativ. Gravit., 6, 197-238, (1975).
3 Apostolatos, T.A., Cutler, C., Sussman, G.J., and Thorne, K.S., “Spin-induced orbital precession and its modulation of the gravitational waveforms from merging binaries”, Phys. Rev. D, 49, 6274-6297, (1994).
4 Arun, K.G., Blanchet, L., Iyer, B.R., and Qusailah, M.S., “The 2.5PN gravitational wave polarisations from inspiralling compact binaries in circular orbits”, Class. Quantum Grav., 21, 3771, (2004). Related online version (cited on 26 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0404185. Erratum Class. Quantum Grav., 22, 3115, (2005).
5 Arun, K.G., Iyer, B.R., Qusailah, M.S., and Sathyaprakash, B.S., “Probing the non-linear structure of general relativity with black hole mergers”, (2006). URL (cited on 26 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0604067.
6 Arun, K.G., Iyer, B.R., Sathyaprakash, B.S., and Sundararajan, P.A., “Parameter estimation of inspiralling compact binaries using 3.5 post-Newtonian gravitational wave phasing: The nonspinning case”, Phys. Rev. D, 71, 084008-1-16, (2005). Related online version (cited on 26 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0411146.
7 Barker, B.M., and O’Connell, R.F., “Gravitational two-body problem with arbitrary masses, spins, and quadrupole moments”, Phys. Rev. D, 12, 329-335, (1975).
8 Barker, B.M., and O’Connell, R.F., “The gravitational interaction: Spin, rotation, and quantum effects - A review”, Gen. Relativ. Gravit., 11, 149-175, (1979).
9 Baumgarte, T.W., “Innermost stable circular orbit of binary black holes”, Phys. Rev. D, 62, 024018-1-8, (2000).
10 Bekenstein, J.D., “Gravitational Radiation Recoil and Runaway Black Holes”, Astrophys. J., 183, 657-664, (1973).
11 Bel, L., Damour, T., Deruelle, N., Ibañez, J., and Martin, J., “Poincaré-invariant gravitational-field and equations of motion of 2 point-like objects - The post-linear approximtion of general-relativity”, Gen. Relativ. Gravit., 13, 963-1004, (1981).
12 Blanchet, L., “Radiative gravitational fields in general-relativity. II. Asymptotic-behaviour at future null infinity”, Proc. R. Soc. London, Ser. A, 409, 383-399, (1987).
13 Blanchet, L., Contribution à l’étude du rayonnement gravitationnel émis par un système isolé, Habilitation, (Université Paris VI, Paris, France, 1990).
14 Blanchet, L., “Time-asymmetric structure of gravitational radiation”, Phys. Rev. D, 47, 4392-4420, (1993).
15 Blanchet, L., “Second-post-Newtonian generation of gravitational radiation”, Phys. Rev. D, 51, 2559-2583, (1995). Related online version (cited on 24 January 1995):
External Linkhttp://arXiv.org/abs/gr-qc/9501030.
16 Blanchet, L., “Energy losses by gravitational radiation in inspiralling compact binaries to 5/2 post-Newtonian order”, Phys. Rev. D, 54, 1417-1438, (1996).
17 Blanchet, L., “Gravitational Radiation from Relativistic Sources”, in Marck, J.A., and Lasota, J.P., eds., Relativistic Gravitation and Gravitational Radiation, Proceedings of the Les Houches School of Physics, held in Les Houches, Haute Savoie, 26 September - 6 October, 1995, 33-66, (Cambridge University Press, Cambridge, U.K., 1997). Related online version (cited on 11 July 1996):
External Linkhttp://arXiv.org/abs/gr-qc/9607025.
18 Blanchet, L., “Gravitational radiation reaction and balance equations to post-Newtonian order”, Phys. Rev. D, 55, 714-732, (1997). Related online version (cited on 20 September 1996):
External Linkhttp://arXiv.org/abs/gr-qc/9609049.
19 Blanchet, L., “Gravitational-wave tails of tails”, Class. Quantum Grav., 15, 113-141, (1998). Related online version (cited on 7 October 1997):
External Linkhttp://arXiv.org/abs/gr-qc/9710038.
20 Blanchet, L., “On the multipole expansion of the gravitational field”, Class. Quantum Grav., 15, 1971-1999, (1998). Related online version (cited on 29 January 1998):
External Linkhttp://arXiv.org/abs/gr-qc/9710038.
21 Blanchet, L., “Quadrupole-quadrupole gravitational waves”, Class. Quantum Grav., 15, 89-111, (1998). Related online version (cited on 7 October 1997):
External Linkhttp://arXiv.org/abs/gr-qc/9710037.
22 Blanchet, L., “Post-Newtonian Gravitational Radiation”, in Schmidt, B.G., ed., Einstein’s Field Equations and Their Physical Implications: Selected Essays in Honour of Jürgen Ehlers, vol. 540 of Lecture Notes in Physics, 225-271, (Springer, Berlin, Germany; New York, U.S.A., 2000).
23 Blanchet, L., “Innermost circular orbit of binary black holes at the third post-Newtonian approximation”, Phys. Rev. D, 65, 124009, (2002). Related online version (cited on 26 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0112056.
24 Blanchet, L., “On the accuracy of the post-Newtonian approximation”, in Ciufolini, I., Dominici, D., and Lusanna, L., eds., 2001: A Relativistic Spacetime Odyssey, Proceedings of the Johns Hopkins Workshop on Current Problems in Particle Theory 25, Firenze, 2001 (September 3-5), 411, (World Scientific, River Edge, U.S.A., 2003). Related online version (cited on 26 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0207037.
25 Blanchet, L., Buonanno, A., and Faye, G., “Higher-order spin effects in the dynamics of compact binaries II. Radiation field”, in preparation, (2006).
26 Blanchet, L., and Damour, T., “Radiative gravitational fields in general relativity. I. General structure of the field outside the source”, Philos. Trans. R. Soc. London, Ser. A, 320, 379-430, (1986).
27 Blanchet, L., and Damour, T., “Tail-transported temporal correlations in the dynamics of a gravitating system”, Phys. Rev. D, 37, 1410-1435, (1988).
28 Blanchet, L., and Damour, T., “Post-Newtonian generation of gravitational waves”, Ann. Inst. Henri Poincare A, 50, 377-408, (1989).
29 Blanchet, L., and Damour, T., “Hereditary effects in gravitational radiation”, Phys. Rev. D, 46, 4304-4319, (1992).
30 Blanchet, L., Damour, T., and Esposito-Farèse, G., “Dimensional regularization of the third post-Newtonian dynamics of point particles in harmonic coordinates”, Phys. Rev. D, 69, 124007, (2004). Related online version (cited on 26 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0311052.
31 Blanchet, L., Damour, T., Esposito-Farèse, G., and Iyer, B.R., “Gravitational radiation from inspiralling compact binaries completed at the third post-Newtonian order”, Phys. Rev. Lett., 93, 091101, (2004). Related online version (cited on 26 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0406012.
32 Blanchet, L., Damour, T., Esposito-Farèse, G., and Iyer, B.R., “Dimensional regularization of the third post-Newtonian gravitational wave generation of two point masses”, Phys. Rev. D, 71, 124004-1-36, (2005).
33 Blanchet, L., Damour, T., and Iyer, B.R., “Gravitational waves from inspiralling compact binaries: Energy loss and waveform to second-post-Newtonian order”, Phys. Rev. D, 51, 5360-5386, (1995). Related online version (cited on 24 January 1995):
External Linkhttp://arXiv.org/abs/gr-qc/9501029. Erratum Phys. Rev. D, 54, 1860, (1996).
34 Blanchet, L., Damour, T., and Iyer, B.R., “Surface-integral expressions for the multipole moments of post-Newtonian sources and the boosted Schwarzschild solution”, Class. Quantum Grav., 22, 155, (2005). Related online version (cited on 26 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0410021.
35 Blanchet, L., Damour, T., Iyer, B.R., Will, C.M., and Wiseman, A.G., “Gravitational-Radiation Damping of Compact Binary Systems to Second Post-Newtonian Order”, Phys. Rev. Lett., 74, 3515-3518, (1995). Related online version (cited on 23 January 1995):
External Linkhttp://arXiv.org/abs/gr-qc/9501027.
36 Blanchet, L., and Faye, G., “Hadamard regularization”, J. Math. Phys., 41, 7675-7714, (2000). Related online version (cited on 28 July 2000):
External Linkhttp://arXiv.org/abs/gr-qc/0004008.
37 Blanchet, L., and Faye, G., “On the equations of motion of point-particle binaries at the third post-Newtonian order”, Phys. Lett. A, 271, 58-64, (2000). Related online version (cited on 22 May 2000):
External Linkhttp://arXiv.org/abs/gr-qc/0004009.
38 Blanchet, L., and Faye, G., “General relativistic dynamics of compact binaries at the third post-Newtonian order”, Phys. Rev. D, 63, 062005-1-43, (2001). Related online version (cited on 18 November 2000):
External Linkhttp://arXiv.org/abs/gr-qc/0007051.
39 Blanchet, L., and Faye, G., “Lorentzian regularization and the problem of point-like particles in general relativity”, J. Math. Phys., 42, 4391-4418, (2001). Related online version (cited on 4 April 2001):
External Linkhttp://arXiv.org/abs/gr-qc/0006100.
40 Blanchet, L., Faye, G., Iyer, B.R., and Joguet, B., “Gravitational-wave inspiral of compact binary systems to 7/2 post-Newtonian order”, Phys. Rev. D, 65, 061501-1-5, (2002). Related online version (cited on 26 May 2001):
External Linkhttp://arXiv.org/abs/gr-qc/0105099.
41 Blanchet, L., Faye, G., and Nissanke, S., “Structure of the post-Newtonian expansion in general relativity”, Phys. Rev. D, 72, 044024, (2005).
42 Blanchet, L., Faye, G., and Ponsot, B., “Gravitational field and equations of motion of compact binaries to 5/2 post-Newtonian order”, Phys. Rev. D, 58, 124002-1-20, (1998). Related online version (cited on 11 August 1998):
External Linkhttp://arXiv.org/abs/gr-qc/9804079.
43 Blanchet, L., and Iyer, B.R., “Third post-Newtonian dynamics of compact binaries: Equations of motion in the center-of-mass frame”, Class. Quantum Grav., 20, 755, (2003). Related online version (cited on 26 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0209089.
44 Blanchet, L., and Iyer, B.R., “Hadamard regularization of the third post-Newtonian gravitational wave generation of two point masses”, Phys. Rev. D, 71, 024004, (2004). Related online version (cited on 26 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0409094.
45 Blanchet, L., Iyer, B.R., and Joguet, B., “Gravitational waves from inspiralling compact binaries: Energy flux to third post-Newtonian order”, Phys. Rev. D, 65, 064005-1-41, (2002). Related online version (cited on 26 May 2001):
External Linkhttp://arXiv.org/abs/gr-qc/0105098.
46 Blanchet, L., Iyer, B.R., Will, C.M., and Wiseman, A.G., “Gravitational waveforms from inspiralling compact binaries to second-post-Newtonian order”, Class. Quantum Grav., 13, 575-584, (1996). Related online version (cited on 13 February 1996):
External Linkhttp://arXiv.org/abs/gr-qc/9602024.
47 Blanchet, L., and Sathyaprakash, B.S., “Signal analysis of gravitational wave tails”, Class. Quantum Grav., 11, 2807-2831, (1994).
48 Blanchet, L., and Sathyaprakash, B.S., “Detecting a tail effect in gravitational-wave experiments”, Phys. Rev. Lett., 74, 1067-1070, (1995).
49 Blanchet, L., and Schäfer, G., “Higher-order gravitational-radiation losses in binary systems”, Mon. Not. R. Astron. Soc., 239, 845-867, (1989).
50 Blanchet, L., and Schäfer, G., “Gravitational wave tails and binary star systems”, Class. Quantum Grav., 10, 2699-2721, (1993).
51 Bollini, C.G., and Giambiagi, J.J., “Lowest order “divergent” graphs in v-dimensional space”, Phys. Lett. B, 40, 566-568, (1972).
52 Bonazzola, S., Gourgoulhon, E., and Marck, J.-A., “Numerical models of irrotational binary neutron stars in general relativity”, Phys. Rev. Lett., 82, 892, (1999). Related online version (cited on 26 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9810072.
53 Bondi, H., van der Burg, M.G.J., and Metzner, A.W.K., “Gravitational waves in general relativity VII. Waves from axi-symmetric isolated systems”, Proc. R. Soc. London, Ser. A, 269, 21-52, (1962).
54 Bonnor, W.B., “Spherical gravitational waves”, Philos. Trans. R. Soc. London, Ser. A, 251, 233-271, (1959).
55 Bonnor, W.B., and Rotenberg, M.A., “Transport of momentum by gravitational waves - Linear approximation”, Proc. R. Soc. London, Ser. A, 265, 109, (1961).
56 Bonnor, W.B., and Rotenberg, M.A., “Gravitational waves from isolated sources”, Proc. R. Soc. London, Ser. A, 289, 247-274, (1966).
57 Breitenlohner, P., and Maison, D., “Dimensional renormalization and the action principle”, Commun. Math. Phys., 52, 11-38, (1977).
58 Buonanno, A., Chen, Y., and Vallisneri, M., “Detecting gravitational waves from precessing binaries of spinning compact objects: Adiabatic limit”, Phys. Rev. D, 67, 104025-1-31, (2003). Related online version (cited on 26 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0211087.
59 Buonanno, A., Chen, Y., and Vallisneri, M., “Detection template families for gravitational waves from the final stages of binary black-holes binaries: Nonspinning case”, Phys. Rev. D, 67, 024016, (2003). Related online version (cited on 26 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0205122.
60 Buonanno, A., and Damour, T., “Effective one-body approach to general relativistic two-body dynamics, ADM formalism”, Phys. Rev. D, 59, 084006, (1999). Related online version (cited on 26 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9811091.
61 Buonanno, A., and Damour, T., “Transition from inspiral to plunge in binary black hole coalescences”, Phys. Rev. D, 62, 064015, (2000). Related online version (cited on 26 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0001013.
62 Burke, W.L., “Gravitational radiation damping of slowly moving systems calculated using matched asymptotic expansions”, J. Math. Phys., 12(3), 401-418, (1971).
63 Burke, W.L., and Thorne, K.S., “Gravitational Radiation Damping”, in Carmeli, M., Fickler, S.I., and Witten, L., eds., Relativity, Proceedings of the Relativity Conference in the Midwest, held at Cincinnati, Ohio, June 2-6, 1969, 209-228, (Plenum Press, New York, U.S.A.; London, U.K., 1970).
64 Campbell, W.B., Macek, J., and Morgan, T.A., “Relativistic time-dependent multipole analysis for scalar, electromagnetic, and gravitational fields”, Phys. Rev. D, 15, 2156-2164, (1977).
65 Campbell, W.B., and Morgan, T.A., “Debye Potentials For Gravitational Field”, Physica, 53(2), 264, (1971).
66 Chandrasekhar, S., “The Post-Newtonian Equations of Hydrodynamics in General Relativity”, Astrophys. J., 142, 1488-1540, (1965).
67 Chandrasekhar, S., and Esposito, F.P., “The 5/2-Post-Newtonian Equations of Hydrodynamics and Radiation Reaction in General Relativity”, Astrophys. J., 160, 153-179, (1970).
68 Chandrasekhar, S., and Nutku, Y., “The Second Post-Newtonian Equations of Hydrodynamics in General Relativity”, Astrophys. J., 158, 55-79, (1969).
69 Chicone, C., Kopeikin, S.M., Mashhoon, B., and Retzloff, D.G., “Delay equations and radiation damping”, Phys. Lett. A, 285, 17-26, (2001). Related online version (cited on 2 May 2001):
External Linkhttp://arXiv.org/abs/gr-qc/0101122.
70 Cho, H.T., “Post-Newtonian approximation for spinning particles”, Class. Quantum Grav., 15, 2465, (1998). Related online version (cited on 26 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9703071.
71 Christodoulou, D., “Nonlinear Nature of Gravitation and Gravitational-Wave Experiments”, Phys. Rev. Lett., 67, 1486-1489, (1991).
72 Christodoulou, D., and Schmidt, B.G., “Convergent and asymptotic iteration methods in general-relativity”, Commun. Math. Phys., 68, 275-289, (1979).
73 Collins, J.C., Renormalization: An introduction to renormalization, the renormalization group, and the operator-product expansion, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1984).
74 Cook, G.B., and Pfeiffer, H.P., “Excision boundary conditions for black-hole initial data”, Phys. Rev. D, 70, 104016-1-24, (2004).
75 Cooperstock, F.I., and Booth, D.J., “Angular-Momentum Flux For Gravitational Radiation To Octupole Order”, Nuovo Cimento, 62(1), 163, (1969).
76 Crowley, R.J., and Thorne, K.S., “Generation of gravitational waves. II. Post-linear formalism revisited”, Astrophys. J., 215, 624-635, (1977).
77 Cutler, C., Apostolatos, T.A., Bildsten, L., Finn, L.S., Flanagan, É.É., Kennefick, D., Marković, D.M., Ori, A., Poisson, E., Sussman, G.J., and Thorne, K.S., “The last three minutes: Issues in gravitational wave measurements of coalescing compact binaries”, Phys. Rev. Lett., 70, 2984-2987, (1993).
78 Cutler, C., Finn, L.S., Poisson, E., and Sussman, G.J., “Gravitational radiation from a particle in circular orbit around a black hole. II. Numerical results for the nonrotating case”, Phys. Rev. D, 47, 1511-1518, (1993).
79 Cutler, C., and Flanagan, É.É., “Gravitational waves from merging compact binaries: How accurately can one extract the binary’s parameters from the inspiral waveform?”, Phys. Rev. D, 49, 2658-2697, (1994).
80 Damour, T., “The two-body problem and radiation damping in general-relativity”, C. R. Acad. Sci. Ser. II, 294, 1355-1357, (1982).
81 Damour, T., “Gravitational radiation and the motion of compact bodies”, in Deruelle, N., and Piran, T., eds., Gravitational Radiation, NATO Advanced Study Institute, Centre de physique des Houches, 2-21 June 1982, 59-144, (North-Holland; Elsevier, Amsterdam, Netherlands; New York, U.S.A., 1983).
82 Damour, T., “Gravitational Radiation Reaction in the Binary Pulsar and the Quadrupole-Formula Controversy”, Phys. Rev. Lett., 51, 1019-1021, (1983).
83 Damour, T., “An Introduction to the Theory of Gravitational Radiation”, in Carter, B., and Hartle, J.B., eds., Gravitation in Astrophysics: Cargèse 1986, Proceedings of a NATO Advanced Study Institute on Gravitation in Astrophysics, held July 15-31, 1986 in Cargése, France, vol. 156 of NATO ASI Series B, 3-62, (Plenum Press, New York, U.S.A., 1987).
84 Damour, T., “The problem of motion in Newtonian and Einsteinian gravity”, in Hawking, S.W., and Israel, W., eds., Three Hundred Years of Gravitation, 128-198, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1987).
85 Damour, T., and Deruelle, N., “Generalized lagrangian of two point masses in the post-post-Newtonian approximation of general-relativity”, C. R. Acad. Sci. Ser. II, 293, 537-540, (1981).
86 Damour, T., and Deruelle, N., “Radiation reaction and angular momentum loss in small angle gravitational scattering”, Phys. Lett. A, 87, 81-84, (1981).
87 Damour, T., and Esposito-Farèse, G., “Testing gravity to second post-Newtonian order: A Field theory approach”, Phys. Rev. D, 53, 5541-5578, (1996). Related online version (cited on 26 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9506063.
88 Damour, T., Gourgoulhon, E., and Grandclément, P., “Circular orbits of corotating binary black holes: Comparison between analytical and numerical results”, Phys. Rev. D, 66, 024007-1-15, (2002). Related online version (cited on 26 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0204011.
89 Damour, T., and Iyer, B.R., “Multipole analysis for electromagnetism and linearized gravity with irreducible Cartesian tensors”, Phys. Rev. D, 43, 3259-3272, (1991).
90 Damour, T., and Iyer, B.R., “Post-Newtonian generation of gravitational waves. II. The spin moments”, Ann. Inst. Henri Poincare A, 54, 115-164, (1991).
91 Damour, T., Iyer, B.R., Jaranowski, P., and Sathyaprakash, B.S., “Gravitational waves from black hole binary inspiral and merger: The span of third post-Newtonian effective-one-body templates”, Phys. Rev. D, 67, 064028, (2003). Related online version (cited on 26 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0211041.
92 Damour, T., Iyer, B.R., and Sathyaprakash, B.S., “Improved filters for gravitational waves from inspiraling compact binaries”, Phys. Rev. D, 57, 885-907, (1998). Related online version (cited on 18 August 1997):
External Linkhttp://arXiv.org/abs/gr-qc/9708034.
93 Damour, T., Iyer, B.R., and Sathyaprakash, B.S., “Frequency-domain P-approximant filters for time-truncated inspiral gravitational wave signals from compact binaries”, Phys. Rev. D, 62, 084036, (2000). Related online version (cited on 26 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0001023.
94 Damour, T., Jaranowski, P., and Schäfer, G., “On the determination of the last stable orbit for circular general relativistic binaries at the third post-Newtonian approximation”, Phys. Rev. D, 62, 084011-1-21, (2000). Related online version (cited on 26 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0005034.
95 Damour, T., Jaranowski, P., and Schäfer, G., “Poincaré invariance in the ADM Hamiltonian approach to the general relativistic two-body problem”, Phys. Rev. D, 62, 021501-1-5, (2000). Related online version (cited on 21 October 2000):
External Linkhttp://arXiv.org/abs/gr-qc/0003051. Erratum Phys. Rev. D, 63, 029903, (2001).
96 Damour, T., Jaranowski, P., and Schäfer, G., “Dimensional regularization of the gravitational interaction of point masses”, Phys. Lett. B, 513, 147-155, (2001). Related online version (cited on 11 May 2001):
External Linkhttp://arXiv.org/abs/gr-qc/0105038.
97 Damour, T., Jaranowski, P., and Schäfer, G., “Equivalence between the ADM-Hamiltonian and the harmonic-coordinates approaches to the third post-Newtonian dynamics of compact binaries”, Phys. Rev. D, 63, 044021, (2001). Related online version (cited on 10 November 2000):
External Linkhttp://arXiv.org/abs/gr-qc/0010040. Erratum Phys. Rev. D, 66, 029901, (2002).
98 Damour, T., and Schäfer, G., “Lagrangians for n point masses at the second post-Newtonian approximation of general-relativity”, Gen. Relativ. Gravit., 17, 879-905, (1985).
99 Damour, T., and Schäfer, G., “Higher order relativistic periastron advances in binary pulsars”, Nuovo Cimento B, 101, 127, (1988).
100 Damour, T., and Schmidt, B., “Reliability of perturbation theory in general relativity”, J. Math. Phys., 31, 2441-2458, (1990).
101 Damour, T., Soffel, M., and Xu, C., “General-relativistic celestial mechanics. I. Method and definition of reference systems”, Phys. Rev. D, 43, 3273-3307, (1991).
102 Damour, T., and Taylor, J.H., “On the orbital period change of the Binary Pulsar PSR 1913+16”, Astrophys. J., 366, 501-511, (1991).
103 de Andrade, V.C., Blanchet, L., and Faye, G., “Third post-Newtonian dynamics of compact binaries: Noetherian conserved quantities and equivalence between the harmonic-coordinate and ADM-Hamiltonian formalisms”, Class. Quantum Grav., 18, 753-778, (2001). Related online version (cited on 19 December 2000):
External Linkhttp://arXiv.org/abs/gr-qc/0011063.
104 Deruelle, N., Sur les équations du mouvement et le rayonnement gravitationnel d’un système binaire en Relativité Générale, Ph.D. Thesis, (Université Pierre et Marie Curie, Paris, 1982).
105 Einstein, A., “Über Gravitationswellen”, Sitzungsber. K. Preuss. Akad. Wiss., 1918, 154-167, (1918).
106 Einstein, A., Infeld, L., and Hoffmann, B., “The Gravitational Equations and the Problem of Motion”, Ann. Math., 39, 65-100, (1938).
107 Epstein, R., and Wagoner, R.V., “Post-Newtonian generation of gravitational waves”, Astrophys. J., 197, 717-723, (1975).
108 Esposito, L.W., and Harrison, E.R., “Properties of the Hulse-Taylor binary pulsar system”, Astrophys. J. Lett., 196, L1-L2, (1975).
109 Faye, G., Equations du mouvement d’un système binaire d’objets compact à l’approximation post-newtonienne, Ph.D. Thesis, (Université Paris VI, Paris, France, 1999).
110 Faye, G., Blanchet, L., and Buonanno, A., “Higher-order spin effects in the dynamics of compact binaries I. Equations of motion”, in preparation, (2006).
111 Finn, L.S., and Chernoff, D.F., “Observing binary inspiral in gravitational radiation: One interferometer”, Phys. Rev. D, 47, 2198-2219, (1993).
112 Fock, V.A., “On motion of finite masses in general relativity”, J. Phys. (Moscow), 1(2), 81-116, (1939).
113 Fock, V.A., Theory of space, time and gravitation, (Pergamon, London, U.K., 1959).
114 Friedman, J.L., Uryū, K., and Shibata, M., “Thermodynamics of binary black holes and neutron stars”, Phys. Rev. D, 65, 064035-1-20, (2002).
115 Futamase, T., “Strong-field point-particle limit and the equations of motion in the binary pulsar”, Phys. Rev. D, 36, 321-329, (1987).
116 Gal’tsov, D.V., Matiukhin, A.A., and Petukhov, V.I., “Relativistic corrections to the gravitational radiation of a binary system and the fine structure of the spectrum”, Phys. Lett. A, 77, 387-390, (1980).
117 Gergely, L.Á., “Second post-Newtonian radiative evolution of the relative orientations of angular momenta in spinning compact binaries”, Phys. Rev. D, 62, 024007-1-6, (2000). Related online version (cited on 30 June 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0003037.
118 Gergely, L.Á., “Spin-spin effects in radiating compact binaries”, Phys. Rev. D, 61, 024035-1-9, (2000). Related online version (cited on 30 June 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9911082.
119 Gergely, L.Á., Perjés, Z., and Vasúth, M., “Spin effects in gravitational radiation back reaction. II. Finite mass effects”, Phys. Rev. D, 57, 3423-3432, (1998). Related online version (cited on 30 June 2006):
External Linkhttp://arXiv.org/abs/gr-qc/980103.
120 Geroch, R., “Multipole Moments. II. Curved Space”, J. Math. Phys., 11, 2580-2588, (1970).
121 Geroch, R., and Horowitz, G.T., “Asymptotically simple does not imply asymptotically Minkowskian”, Phys. Rev. Lett., 40, 203-206, (1978).
122 Gopakumar, A., and Iyer, B.R., “Gravitational waves from inspiraling compact binaries: Angular momentum flux, evolution of the orbital elements and the waveform to the second post-Newtonian order”, Phys. Rev. D, 56, 7708-7731, (1997). Related online version (cited on 15 October 1997):
External Linkhttp://arXiv.org/abs/gr-qc/9710075.
123 Gourgoulhon, E., Grandclément, P., and Bonazzola, S., “Binary black holes in circular orbits. I. A global spacetime approach”, Phys. Rev. D, 65, 044020-1-19, (2002). Related online version (cited on 26 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0106015.
124 Gourgoulhon, E., Grandclément, P., Taniguchi, K., Marck, J.-A., and Bonazzola, S., “Quasi-equilibrium sequences of synchronized and irrotational binary neutron stars in general relativity”, Phys. Rev. D, 63, 064029, (2001). Related online version (cited on 26 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0007028.
125 Gradshteyn, I.S., and Ryzhik, I.M., Table of Integrals, Series and Products, (Academic Press, San Diego, U.S.A.; London, U.K., 1980).
126 Grandclément, P., Gourgoulhon, E., and Bonazzola, S., “Binary black holes in circular orbits. II. Numerical methods and first results”, Phys. Rev. D, 65, 044021-1-18, (2002). Related online version (cited on 26 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0106015.
127 Grishchuk, L.P., and Kopeikin, S.M., “Equations of motion for isolated bodies with relativistic corrections including the radiation-reaction force”, in Kovalevsky, J., and Brumberg, V.A., eds., Relativity in Celestial Mechanics and Astrometry: High Precision Dynamical Theories and Observational Verifications, Proceedings of the 114th Symposium of the International Astronomical Union, held in Leningrad, USSR, May 28-31, 1985, 19-34, (Reidel, Dordrecht, Netherlands; Boston, U.S.A., 1986).
128 Hadamard, J., Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques, (Hermann, Paris, France, 1932).
129 Hansen, R.O., “Multipole moments of stationary space-times”, J. Math. Phys., 15, 46-52, (1974).
130 Hunter, A.J., and Rotenberg, M.A., “The double-series approximation method in general relativity. I. Exact solution of the (24) approximation. II. Discussion of ’wave tails’ in the (2s) approximation”, J. Phys. A, 2, 34-49, (1969).
131 Isaacson, R.A., and Winicour, J., “Harmonic and Null Descriptions of Gravitational Radiation”, Phys. Rev., 168, 1451-1456, (1968).
132 Itoh, Y., “Equation of motion for relativistic compact binaries with the strong field point particle limit: Third post-Newtonian order”, Phys. Rev. D, 69, 064018-1-43, (2004).
133 Itoh, Y., and Futamase, T., “New derivation of a third post-Newtonian equation of motion for relativistic compact binaries without ambiguity”, Phys. Rev. D, 68, 121501(R), (2003).
134 Itoh, Y., Futamase, T., and Asada, H., “Equation of motion for relativistic compact binaries with the strong field point particle limit: Formulation, the first post-Newtonian order, and multipole terms”, Phys. Rev. D, 62, 064002-1-12, (2000). Related online version (cited on 17 May 2000):
External Linkhttp://arXiv.org/abs/gr-qc/9910052.
135 Itoh, Y., Futamase, T., and Asada, H., “Equation of motion for relativistic compact binaries with the strong field point particle limit: The second and half post-Newtonian order”, Phys. Rev. D, 63, 064038-1-21, (2001). Related online version (cited on 30 January 2001):
External Linkhttp://arXiv.org/abs/gr-qc/0101114.
136 Iyer, B.R., and Will, C.M., “Post-Newtonian gravitational radiation reaction for two-body systems”, Phys. Rev. Lett., 70, 113-116, (1993).
137 Iyer, B.R., and Will, C.M., “Post-Newtonian gravitational radiation reaction for two-body systems: Nonspinning bodies”, Phys. Rev. D, 52, 6882-6893, (1995).
138 Jaranowski, P., and Schäfer, G., “Radiative 3.5 post-Newtonian ADM Hamiltonian for many-body point-mass systems”, Phys. Rev. D, 55, 4712-4722, (1997).
139 Jaranowski, P., and Schäfer, G., “Third post-Newtonian higher order ADM Hamilton dynamics for two-body point-mass systems”, Phys. Rev. D, 57, 7274-7291, (1998). Related online version (cited on 17 December 1997):
External Linkhttp://arXiv.org/abs/gr-qc/9712075. Erratum Phys. Rev. D, 63, 029902, (2001).
140 Jaranowski, P., and Schäfer, G., “The binary black-hole problem at the third post-Newtonian approximation in the orbital motion: Static part”, Phys. Rev. D, 60, 124003-1-7, (1999). Related online version (cited on 23 June 1999):
External Linkhttp://arXiv.org/abs/gr-qc/9906092.
141 Jaranowski, P., and Schäfer, G., “The binary black-hole dynamics at the third post-Newtonian order in the orbital motion”, Ann. Phys. (Berlin), 9, 378-383, (2000). Related online version (cited on 14 March 2000):
External Linkhttp://arXiv.org/abs/gr-qc/0003054.
142 Kerlick, G.D., “Finite reduced hydrodynamic equations in the slow-motion approximation to general relativity. Part I. First post-Newtonian equations”, Gen. Relativ. Gravit., 12, 467-482, (1980).
143 Kerlick, G.D., “Finite reduced hydrodynamic equations in the slow-motion approximation to general relativity. Part II. Radiation reaction and higher-order divergent terms”, Gen. Relativ. Gravit., 12, 521-543, (1980).
144 Kidder, L.E., “Coalescing binary systems of compact objects to (post)5/2-Newtonian order. V. Spin effects”, Phys. Rev. D, 52, 821-847, (1995). Related online version (cited on 8 June 1995):
External Linkhttp://arXiv.org/abs/gr-qc/9506022.
145 Kidder, L.E., Will, C.M., and Wiseman, A.G., “Coalescing binary systems of compact objects to (post)5/2-Newtonian order. III. Transition from inspiral to plunge”, Phys. Rev. D, 47, 3281-3291, (1993).
146 Kidder, L.E., Will, C.M., and Wiseman, A.G., “Spin effects in the inspiral of coalescing compact binaries”, Phys. Rev. D, 47, R4183-R4187, (1993).
147 Kochanek, C.S., “Coalescing Binary Neutron Stars”, Astrophys. J., 398(1), 234-247, (1992).
148 Königsdörffer, C., Faye, G., and Schäfer, G., “Binary black-hole dynamics at the third-and-a-half post-Newtonian order in the ADM formalism”, Phys. Rev. D, 68, 044004-1-19, (2003). Related online version (cited on 26 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0305048.
149 Kopeikin, S.M., “The equations of motion of extended bodies in general-relativity with conservative corrections and radiation damping taken into account”, Astron. Zh., 62, 889-904, (1985).
150 Kopeikin, S.M., “Celestial Coordinate Reference Systems in Curved Spacetime”, Celest. Mech., 44, 87, (1988).
151 Kopeikin, S.M., Schäfer, G., Gwinn, C.R., and Eubanks, T.M., “Astrometric and timing effects of gravitational waves from localized sources”, Phys. Rev. D, 59, 084023-1-29, (1999). Related online version (cited on 17 February 1999):
External Linkhttp://arXiv.org/abs/gr-qc/9811003.
152 Królak, A., Kokkotas, K.D., and Schäfer, G., “Estimation of the post-Newtonian parameters in the gravitational-wave emission of a coalescing binary”, Phys. Rev. D, 52, 2089-2111, (1995). Related online version (cited on 7 March 1995):
External Linkhttp://arXiv.org/abs/gr-qc/9503013.
153 Landau, L.D., and Lifshitz, E.M., The classical theory of fields, (Pergamon Press, Oxford, U.K.; New York, U.S.A., 1971), 3rd edition.
154 Limousin, F., Gondek-Rosińska, D., and Gourgoulhon, E., “Last orbits of binary strange quark stars”, Phys. Rev. D, 71, 064012-1-11, (2005). Related online version (cited on 26 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0411127.
155 Lincoln, C.W., and Will, C.M., “Coalescing binary systems of compact objects to (post)5/2-Newtonian order: Late time evolution and gravitational radiation emission”, Phys. Rev. D, 42, 1123-1143, (1990).
156 Lorentz, H.A., and Droste, J., in The Collected Papers of H.A. Lorentz, Vol. 5, (Nijhoff, The Hague, Netherlands, 1937), Versl. K. Akad. Wet. Amsterdam, 26, 392 and 649, (1917).
157 Madore, J., “Gravitational radiation from a bounded source. I”, Ann. Inst. Henri Poincare, 12, 285-305, (1970). Related online version (cited on 02 May 2006):
External Linkhttp://www.numdam.org/item?id=AIHPA_1970__12_3_285_0.
158 Martin, J., and Sanz, J.L., “Slow motion approximation in predictive relativistic mechanics. II. Non-interaction theorem for interactions derived from the classical field-theory”, J. Math. Phys., 20, 25-34, (1979).
159 Mathews, J., “Gravitational multipole radiation”, J. Soc. Ind. Appl. Math., 10, 768-780, (1962).
160 Mino, Y., Sasaki, M., Shibata, M., Tagoshi, H., and Tanaka, T., “Black Hole Perturbation”, Prog. Theor. Phys. Suppl., 128, 1-121, (1997). Related online version (cited on 12 December 1997):
External Linkhttp://arXiv.org/abs/gr-qc/9712057.
161 Mora, T., and Will, C.M., “A post-Newtonian diagnostic of quasi-equilibrium binary configurations of compact objects”, Phys. Rev. D, 69, 104021, (2004). Related online version (cited on 26 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0312082.
162 Moritz, H., Advanced Physical Geodesy, (H. Wichmann, Karlsruhe, Germany, 1980).
163 Newhall, X.X., Standish, E.M., and Williams, J.G., “DE-102 - A Numerically Integrated Ephemeris of the Moon and Planets Spanning 44 Centuries”, Astron. Astrophys., 125, 150-167, (1983).
164 Nissanke, S., and Blanchet, L., “Gravitational radiation reaction in the equations of motion of compact binaries to 3.5 post-Newtonian order”, Class. Quantum Grav., 22, 1007, (2005). Related online version (cited on 26 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0412018.
165 Ohta, T., Okamura, H., Kimura, T., and Hiida, K., “Physically acceptable solution of Eintein’s equation for many-body system”, Prog. Theor. Phys., 50, 492-514, (1973).
166 Ohta, T., Okamura, H., Kimura, T., and Hiida, K., “Coordinate condition and higher-order gravitational potential in canonical formalism”, Prog. Theor. Phys., 51, 1598-1612, (1974).
167 Ohta, T., Okamura, H., Kimura, T., and Hiida, K., “Higher-order gravitational potential for many-body system”, Prog. Theor. Phys., 51, 1220-1238, (1974).
168 Owen, B.J., Tagoshi, H., and Ohashi, A., “Nonprecessional spin-orbit effects on gravitational waves from inspiraling compact binaries to second post-Newtonian order”, Phys. Rev. D, 57, 6168-6175, (1998). Related online version (cited on 31 October 1997):
External Linkhttp://arXiv.org/abs/gr-qc/9710134.
169 Papapetrou, A., “Equations of motion in general relativity”, Proc. Phys. Soc. London, Sect. B, 64, 57-75, (1951).
170 Papapetrou, A., Ann. Inst. Henri Poincare, XIV, 79, (1962).
171 Papapetrou, A., “Relativité - une formule pour le rayonnement gravitationnel en première approximation”, C. R. Acad. Sci. Ser. II, 255, 1578, (1962).
172 Papapetrou, A., and Linet, B., “Equation of motion including the reaction of gravitational radiation”, Gen. Relativ. Gravit., 13, 335, (1981).
173 Pati, M.E., and Will, C.M., “Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations: Foundations”, Phys. Rev. D, 62, 124015-1-28, (2000). Related online version (cited on 31 July 2000):
External Linkhttp://arXiv.org/abs/gr-qc/0007087.
174 Pati, M.E., and Will, C.M., “Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. II. Two-body equations of motion to second post-Newtonian order, and radiation-reaction to 3.5 post-Newtonian order”, Phys. Rev. D, 65, 104008-1-21, (2001). Related online version (cited on 31 December 2001):
External Linkhttp://arXiv.org/abs/gr-qc/0201001.
175 Penrose, R., “Asymptotic Properties of Fields and Space-Times”, Phys. Rev. Lett., 10, 66-68, (1963).
176 Penrose, R., “Zero rest-mass fields including gravitation: asymptotic behaviour”, Proc. R. Soc. London, Ser. A, 284, 159-203, (1965).
177 Peters, P.C., “Gravitational Radiation and the Motion of Two Point Masses”, Phys. Rev., 136, B1224-B1232, (1964).
178 Peters, P.C., and Mathews, J., “Gravitational Radiation from Point Masses in a Keplerian Orbit”, Phys. Rev., 131, 435-440, (1963).
179 Petrova, N.M., “Ob Uravnenii Dvizheniya i Tenzore Materii dlya Sistemy Konechnykh Mass v Obshchei Teorii Otnositielnosti”, J. Exp. Theor. Phys., 19(11), 989-999, (1949).
180 Pfeiffer, H.P., Teukolsky, S.A., and Cook, G.B., “Quasicircular orbits for spinning binary black holes”, Phys. Rev. D, 62, 104018-1-11, (2000).
181 Pirani, F.A.E., “Introduction to Gravitational Radiation Theory”, in Trautman, A., Pirani, F.A.E., and Bondi, H., eds., Lectures on General Relativity, Vol. 1, Brandeis Summer Institute in Theoretical Physics, 249-373, (Prentice-Hall, Englewood Cliffs, U.S.A., 1964).
182 Poisson, E., “Gravitational radiation from a particle in circular orbit around a black hole. I. Analytic results for the nonrotating case”, Phys. Rev. D, 47, 1497-1510, (1993).
183 Poisson, E., “Gravitational radiation from a particle in circular orbit around a black-hole. VI. Accuracy of the post-Newtonian expansion”, Phys. Rev. D, 52, 5719-5723, (1995). Related online version (cited on 11 February 1997):
External Linkhttp://arXiv.org/abs/gr-qc/9505030. Addendum Phys. Rev. D 55 (1997) 7980-7981.
184 Poisson, E., and Will, C.M., “Gravitational waves from inspiralling compact binaries: Parameter estimation using second-post-Newtonian waveforms”, Phys. Rev. D, 52, 848-855, (1995). Related online version (cited on 24 February 1995):
External Linkhttp://arXiv.org/abs/gr-qc/9502040.
185 Poujade, O., and Blanchet, L., “Post-Newtonian approximation for isolated systems calculated by matched asymptotic expansions”, Phys. Rev. D, 65, 124020-1-25, (2002). Related online version (cited on 21 December 2001):
External Linkhttp://arXiv.org/abs/gr-qc/0112057.
186 Press, W.H., “Gravitational Radiation from Sources Which Extend Into Their Own Wave Zone”, Phys. Rev. D, 15, 965-968, (1977).
187 Rendall, A.D., “Convergent and divergent perturbation series and the post-Minkowskian scheme”, Class. Quantum Grav., 7, 803, (1990).
188 Rendall, A.D., “On the definition of post-Newtonian approximations”, Proc. R. Soc. London, Ser. A, 438, 341-360, (1992).
189 Rendall, A.D., “The Newtonian limit for asymptotically flat solutions of the Vlasov-Einstein system”, Commun. Math. Phys., 163, 89, (1994). Related online version (cited on 26 April 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9303027.
190 Riesz, M., “L’intégrale de Riemann-Liouville et le problème de Cauchy”, Acta Math., 81, 1-218, (1949).
191 Sachs, R., and Bergmann, P.G., “Structure of Particles in Linearized Gravitational Theory”, Phys. Rev., 112, 674-680, (1958).
192 Sachs, R.K., “Gravitational waves in general relativity VI. The outgoing radiation condition”, Proc. R. Soc. London, Ser. A, 264, 309-338, (1961).
193 Sachs, R.K., “Gravitational waves in general relativity VIII. Waves in asymptotically flat space-time”, Proc. R. Soc. London, Ser. A, 270, 103-126, (1962).
194 Sasaki, M., “Post-Newtonian Expansion of the Ingoing-Wave Regge-Wheeler Function”, Prog. Theor. Phys., 92, 17-36, (1994).
195 Schäfer, G., “The Gravitational Quadrupole Radiation-Reaction Force and the Canonical Formalism of ADM”, Ann. Phys. (N.Y.), 161, 81-100, (1985).
196 Schäfer, G., “The ADM Hamiltonian at the Postlinear Approximation”, Gen. Relativ. Gravit., 18, 255-270, (1986).
197 Schäfer, G., and Wex, N., “Second post-Newtonian motion of compact binaries”, Phys. Lett. A, 174, 196-205, (1993). Erratum Phys. Lett. A, 177, 461, (1993).
198 Schwartz, L., “Sur l’impossibilité de la multiplication des distributions”, C. R. Acad. Sci. Ser. II, 239, 847-848, (1954).
199 Schwartz, L., Théorie des distributions, (Hermann, Paris, France, 1978).
200 Sellier, A., “Hadamard’s finite part concept in dimension n > 2, distributional definition, regularization forms and distributional derivatives”, Proc. R. Soc. London, Ser. A, 445, 69-98, (1994).
201 Simon, W., and Beig, R., “The multipole structure of stationary space-times”, J. Math. Phys., 24, 1163-1171, (1983).
202 ’t Hooft, G., and Veltman, M.J.G., “Regularization and renormalization of gauge fields”, Nucl. Phys. B, 44, 189-213, (1972).
203 Tagoshi, H., and Nakamura, T., “Gravitational waves from a point particle in circular orbit around a black hole: Logarithmic terms in the post-Newtonian expansion”, Phys. Rev. D, 49, 4016-4022, (1994).
204 Tagoshi, H., Ohashi, A., and Owen, B.J., “Gravitational field and equations of motion of spinning compact binaries to 2.5-post-Newtonian order”, Phys. Rev. D, 63, 044006-1-14, (2001). Related online version (cited on 4 October 2000):
External Linkhttp://arXiv.org/abs/gr-qc/0010014.
205 Tagoshi, H., and Sasaki, M., “Post-Newtonian Expansion of Gravitational Waves from a Particle in Circular Orbit around a Schwarzschild Black Hole”, Prog. Theor. Phys., 92, 745-771, (1994).
206 Tanaka, T., Tagoshi, H., and Sasaki, M., “Gravitational Waves by a Particle in Circular Orbit around a Schwarzschild Black Hole”, Prog. Theor. Phys., 96, 1087-1101, (1996).
207 Taylor, J.H., “Pulsar timing and relativistic gravity”, Class. Quantum Grav., 10, 167-174, (1993).
208 Taylor, J.H., Fowler, L.A., and McCulloch, P.M., “Measurements of general relativistic effects in the binary pulsar PSR 1913+16”, Nature, 277, 437-440, (1979).
209 Taylor, J.H., and Weisberg, J.M., “A New Test of General Relativity: Gravitational Radiation and the Binary Pulsar PSR 1913+16”, Astrophys. J., 253, 908-920, (1982).
210 Thorne, K.S., “Multipole expansions of gravitational radiation”, Rev. Mod. Phys., 52, 299-340, (1980).
211 Thorne, K.S., “The theory of gravitational radiation: An introductory review”, in Deruelle, N., and Piran, T., eds., Gravitational Radiation, NATO Advanced Study Institute, Centre de physique des Houches, 2-21 June 1982, 1-57, (North-Holland; Elsevier, Amsterdam, Netherlands; New York, U.S.A., 1983).
212 Thorne, K.S., “Gravitational radiation”, in Hawking, S.W., and Israel, W., eds., Three Hundred Years of Gravitation, 330-458, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1987).
213 Thorne, K.S., “Gravitational-wave bursts with memory: The Christodoulou effect”, Phys. Rev. D, 45, 520, (1992).
214 Thorne, K.S., and Hartle, J.B., “Laws of motion and precession for black holes and other bodies”, Phys. Rev. D, 31, 1815-1837, (1985).
215 Thorne, K.S., and Kovàcs, S.J., “Generation of gravitational waves. I. Weak-field sources”, Astrophys. J., 200, 245-262, (1975).
216 Wagoner, R.V., “Test for Existence of Gravitational Radiation”, Astrophys. J. Lett., 196, L63-L65, (1975).
217 Wagoner, R.V., and Will, C.M., “Post-Newtonian gravitational radiation from orbiting point masses”, Astrophys. J., 210, 764-775, (1976).
218 Will, C.M., “Gravitational Waves from Inspiralling Compact Binaries: A Post-Newtonian Approach”, in Sasaki, M., ed., Relativistic Cosmology, Proceedings of the 8th Nishinomiya-Yukawa Memorial Symposium, on October 28-29, 1993, Shukugawa City Hall, Nishinomiya, Hyogo, Japan, vol. 8 of NYMSS, 83-98, (Universal Academy Press, Tokyo, Japan, 1994).
219 Will, C.M., “Generation of Post-Newtonian Gravitational Radiation via Direct Integration of the Relaxed Einstein Equations”, Prog. Theor. Phys. Suppl., 136, 158-167, (1999). Related online version (cited on 15 October 1999):
External Linkhttp://arXiv.org/abs/gr-qc/9910057.
220 Will, C.M., and Wiseman, A.G., “Gravitational radiation from compact binary systems: Gravitational waveforms and energy loss to second post-Newtonian order”, Phys. Rev. D, 54, 4813-4848, (1996). Related online version (cited on 5 August 1996):
External Linkhttp://arXiv.org/abs/gr-qc/9608012.
221 Wiseman, A.G., “Coalescing binary-systems of compact objects to 5/2-post-Newtonian order. IV. The gravitational-wave tail”, Phys. Rev. D, 48, 4757-4770, (1993).
222 Wiseman, A.G., and Will, C.M., “Christodoulou’s nonlinear gravitational-wave memory: Evaluation in the quadrupole approximation”, Phys. Rev. D, 44, R2945-R2949, (1991).