1 Abbott, L.F., Grisaru, M.T., and Schaefer, R.K., “The background field method and the S-matrix”, Nucl. Phys. B, 229, 372–380, (1983).
2 Adams, A., Arkani-Hamed, N., Dubovsky, S., Nicolis, A., and Rattazzi, R., “Causality, Analyticity and an IR Obstruction to UV Completion”, (2006). URL (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0602178.
3 Aida, T., Kitazawa, Y., Kawai, H., and Ninomiya, M., “Conformal invariance and renormalization group in quantum gravity near two-dimensions”, Nucl. Phys. B, 427, 158, (1994). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/9404171.
4 Alekseev, G.A., “Monodromy data parametrization of the spaces of local solutions of integrable reductions of Einstein’s field equations”, Theor. Math. Phys., 143, 720, (2005). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0503043. Teor. Mat. Fiz. 143 (2005) 278.
5 Ambjørn, J., Jurkiewicz, J., and Loll, R., “Dynamically triangulating Lorentzian quantum gravity”, Nucl. Phys. B, 610, 347, (2001). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0105267.
6 Ambjørn, J., Jurkiewicz, J., and Loll, R., “Emergence of a 4D world from causal quantum gravity”, Phys. Rev. Lett., 93, 131301, (2004). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0404156.
7 Ambjørn, J., Jurkiewicz, J., and Loll, R., “Spectral dimension of the universe”, Phys. Rev. Lett., 95, 171301, (2005). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0505113.
8 Ambjørn, J., Jurkiewicz, J., and Watabiki, Y., “Dynamical triangulations, a gateway to quantum gravity?”, J. Math. Phys., 36, 6299–6339, (1995). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/9503108.
9 Anderson, I.M., and Torre, C.G., “Classification of generalized symmetries for the vacuum Einstein equations”, Commun. Math. Phys., 176, 479, (1996). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9404030.
10 Anselmi, D., “Absence of higher derivatives in the renormalization of propagators in quantum field theories with infinitely many couplings”, Class. Quantum Grav., 20, 2355–2378, (2003). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0212013.
11 Anselmi, D., “Infinite reduction of couplings in non-renormalizable quantum field theory”, J. High Energy Phys., 2005(08), 029, (2005). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0503131.
12 Antoniadis, I., and Mottola, E., “Four dimensional quantum gravity in the conformal sector”, Phys. Rev. D, 45, 2013, (1992).
13 Arnone, S., Morris, R.T., and Rosten, O.J., “A generalised manifestly gauge invariant exact renormalisation group for SU(N) Yang–Mills”, (2005). URL (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0507154.
14 Ashtekar, A., and Lewandowski, J., “Representation theory of analytic holonomy C algebras”, in Baez, J.C., ed., Knots and Quantum Gravity, Proceedings of a workshop held at UC Riverside on May 14–16, 1993, vol. 1 of Oxford Lecture Series in Mathematics and its Applications, 21–61, (Clarendon Press; Oxford University Press, Oxford, U.K.; New York, U.S.A., 1994). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9311010.
15 Ashtekar, A., and Lewandowski, J., “Background independent quantum gravity: A status report”, Class. Quantum Grav., 21, R53–R152, (2004). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0404018.
16 Atance, M., and Cortes, J.L., “Effective field theory of gravity, reduction of couplings and the renormalization group”, Phys. Rev. D, 54, 4973, (1996). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-ph/9605455.
17 Avramadi, I.G., “Covariant techniques for computation of the heat kernel”, Rev. Math. Phys., 11, 947–980, (1999). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/9704166.
18 Avramidi, I.G., Covariant Methods for the Calculation of the Effective Action in Quantum Field Theory and Investigation of Higher-Derivative Quantum Gravity, Ph.D. Thesis, (Moscow State University, Moscow, USSR, 1986). URL (cited on 05 October 2006):
External Linkhttp://arXiv.org/abs/hep-th/9510140. English translation by the author 1995.
19 Avramidy, I.G., and Barvinsky, A.O., “Asymptotic Freedom In Higher Derivative Quantum Gravity”, Phys. Lett. B, 159, 269, (1985).
20 Babelon, O., and Viallet, C., “The Riemannian geometry of the configuration space of gauge theories”, Commun. Math. Phys., 81, 515, (1981).
21 Bagnuls, C., and Bervillier, C., “Exact renormalization group equations: An introductory review”, Phys. Rep., 348, 91, (2001). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0002034.
22 Balog, J., and Niedermaier, M., “Off-shell dynamics of the O(3) NLS model beyond Monte Carlo and perturbation theory”, Nucl. Phys. B, 500, 421, (1997). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/9612039.
23 Barbero G, J.F., Mena Marugán, G.A., and Villasenor, E.J.S., “Particles and vacuum for perturbative and non-perturbative Einstein–Rosen gravity”, Phys. Rev. D, 70, 044028, (2004). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0406087.
24 Baumann, K., “On canonical irreducible quantum field theories describing bosons and fermions”, J. Math. Phys., 29, 1225, (1988).
25 Becchi, C., and Collina, R., “Further comments on the background field method and gauge-invariant effective actions”, Nucl. Phys. B, 562, 412–430, (1999).
26 Belinski, V., and Verdaguer, E., Gravitational solitons, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 2001).
27 Ben-Avraham, D., and Havlin, S., Diffusion and reactions in fractals and disordered systems, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 2000).
28 Bentivegna, E., Bonanno, A., and Reuter, M., “Confronting the IR fixed point cosmology with high redshift supernova data”, J. Cosmol. Astropart. Phys., 2004(01), 001, (2004). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/astro-ph/0303150.
29 Berges, J., Tetradis, N., and Wetterich, C., “Non-perturbative renormalization flow in quantum field theory and statistical physics”, Phys. Rep., 363, 223, (2002). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-ph/0005122.
30 Bern, Z., “Perturbative Quantum Gravity and its Relation to Gauge Theory”, Living Rev. Relativity, 5, lrr-2002-5, (2002). URL (cited on 15 May 2006):
http://www.livingreviews.org/lrr-2002-5.
31 Bern, Z., Mottola, E., and Blau, S.K., “General covariance of the path integral for quantum gravity”, Phys. Rev. D, 43, 1212, (1991).
32 Bjerrum-Bohr, N.E.J., Donoghue, F.J., and Holstein, B.R., “Quantum gravitational corrections to the nonrelativistic scattering potential of two masses”, Phys. Rev. D, 67, 1–12, 084033, (2003). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0211072. Erratum: Phys. Rev. D, 71, 069903, (2005).
33 Bjerrum-Bohr, N.E.J., Donoghue, J.F., and Holstein, B.R., “On the parameterization dependence of the energy momentum tensor and the metric”, (2006). URL (cited on 14 November 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0610096.
34 Blaizot, J.P., Mendez-Galain, R., and Wschebor, N., “Non perturbative renormalisation group and momentum dependence of n-point functions (I)”, (2005). URL (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0512317.
35 Bonanno, A., and Reuter, M., “Quantum gravity effects near the null black hole singularity”, Phys. Rev. D, 60, 084011, (1999). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9811026.
36 Bonanno, A., and Reuter, M., “Renormalization group improved black hole spacetimes”, Phys. Rev. D, 62, 043008, (2000). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0002196.
37 Bonanno, A., and Reuter, M., “Cosmology of the Planck era from a renormalization group for quantum gravity”, Phys. Rev. D, 65, 043508, (2002). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0106133.
38 Bonanno, A., and Reuter, M., “Cosmological perturbations in renormalization group derived cosmologies”, Int. J. Mod. Phys. D, 13, 107, (2004). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/astro-ph/0210472.
39 Bonanno, A., and Reuter, M., “Proper time flow equation for gravity”, J. High Energy Phys., 2005(02), 035, (2005). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0410191.
40 Bonanno, A., and Reuter, M., “Spacetime structure of an evaporating black hole in quantum gravity”, Phys. Rev. D, 73, 083005, (2006). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0602159.
41 Bonneau, G., and Delduc, F., “Nonlinear renormalization and the equivalence theorem”, Nucl. Phys. B, 266, 536, (1986).
42 Boulware, D., “Gauge dependence of the effective action”, Phys. Rev. D, 23, 389–396, (1981).
43 Bovier, A., and Felder, G., “Skeleton inequalities and the asymptotic nature of perturbation theory for φ4 theories in two-dimensions and three-dimensions”, Commun. Math. Phys., 93, 259, (1984).
44 Branchina, V., Meissner, A.K., and Veneziano, G., “The price of an exact, gauge-invariant RG-flow equation”, Phys. Lett. B, 574, 319, (2003). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0309234.
45 Breitenlohner, P., Gibbons, G., and Maison, D., “4-Dimensional Black Holes from Kaluza–Klein Reduction”, Commun. Math. Phys., 120, 295–333, (1988).
46 Breitenlohner, P., and Maison, D., “On nonlinear sigma-models arising in (super-)gravity”, Commun. Math. Phys., 209, 785, (2000). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9806002.
47 Brezin, E., Hikami, S., and Zinn-Justin, J., “Generalized non-linear sigma-models with gauge invariance”, Nucl. Phys. B, 165, 528, (1980).
48 Brydges, C.D., Mitter, K.P., and Scoppola, B., “Critical φ34”, Commun. Math. Phys., 240, 281, (2003). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0206040.
49 Buchbinder, I.L., Odintsov, S.D., and Shapiro, I.L., Effective Action in Quantum Gravity, (Institute of Physics Publishing, Bristol, U.K., 1992).
50 Burgess, C.P., “Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory”, Living Rev. Relativity, 7, lrr-2004-5, (2004). URL (cited on 15 May 2006):
http://www.livingreviews.org/lrr-2004-5.
51 Burgess, C.P., and Kunstatter, G., “On the physical interpretation of the Vilkovisky–DeWitt effective action”, Mod. Phys. Lett. A, 2, 875–886, (1987). Erratum: Mod. Phys. Lett. A, 2, 1003, (1987).
52 Chow, B., and Knopf, D., The Ricci Flow: An Introduction, vol. 110 of Mathematical Surveys and Monographs, (American Mathematical Society, Providence, U.S.A., 2004).
53 Christensen, S.M., and Duff, M.J., “Quantum gravity in 2 + ε dimensions”, Phys. Lett. B, 79, 213, (1978).
54 Codello, A., and Percacci, R., “Fixed points of higher derivative gravity”, (2006). URL (cited on 05 October 2006):
External Linkhttp://arXiv.org/abs/hep-th/0607128.
55 Cooper, A., Feldman, J., and Rosen, L., “Legendre transforms and r-particle irreducibility in quantum field theory: the formal power series framework”, Ann. Phys. (N.Y.), 137, 213, (1981).
56 Cremmer, E., Julia, B., Lü, H., and Pope, C., “Higher dimensional origin of D = 3 coset symmetries”, (1999). URL (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/9909099.
57 Curci, G., and Paffuti, G., “Consistency between the string background field equations of motion and the vanishing of the conformal anomaly”, Nucl. Phys. B, 286, 399, (1987).
58 de Bakker, B.V., and Smit, J., “Gravitational binding in 4D dynamical triangulation”, Nucl. Phys. B, 484, 476–492, (1997). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-lat/9604023.
59 de Berredo-Peixoto, G., and Shapiro, I.L., “Higher derivative quantum gravity with Gauss–Bonnet term”, Phys. Rev. D, 71, 064005, (2005). Related online version (cited on 05 October 2006):
External Linkhttp://arXiv.org/abs/hep-th/0412249.
60 de Calan, C., Faria da Veiga, P., Magnen, J., and Seneor, R., “Constructing the three-dimensional Gross–Neveu model with a large number of flavor components”, Phys. Rev. Lett., 66, 3233, (1991).
61 de Wit, B., Grisaru, M.T., Nicolai, H., and Rabinovici, E., “Two loop finiteness of d = 2 supergravity”, Phys. Lett., 286, 78, (1992). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/9205012.
62 Deser, S., and Jackiw, R., “Energy-momentum improvements in two dimensions”, Int. J. Mod. Phys. B, 10, 1499, (1996). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/9510145.
63 Deser, S., and van Nieuwenhuizen, P., “One loop divergencies of quantized Einstein–Maxwell fields”, Phys. Rev. D, 10, 401, (1974).
64 DeWitt, B.S., “Quantum Theory of Gravity. I. The Canonical Theory”, Phys. Rev., 160, 1113–1148, (1967).
65 DeWitt, B.S., “Quantum Theory of Gravity. II. The Manifestly Covariant Theory”, Phys. Rev., 162, 1195–1239, (1967).
66 DeWitt, B.S., “Quantum Theory of Gravity. III. Applications of the Covariant Theory”, Phys. Rev., 162, 1239–1256, (1967).
67 DeWitt, B.S, “Approximative Effective Action for Quantum Gravity”, Phys. Rev. Lett., 47, 1647–1650, (1981).
68 DeWitt, B.S., The Global Approach to Quantum Field Theory, 2 vols., vol. 114 of International Series of Monographs on Physics, (Oxford University Press, Oxford, U.K.; New York, U.S.A., 2003).
69 Dimock, J., “Asymptotic perturbation expansion in the P2(φ) theory”, Commun. Math. Phys., 35, 347, (1974).
70 Dittrich, B., “Partial and Complete Observables for Canonical General Relativity”, (2005). URL (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0507106.
71 Dittrich, W., “Bloch–Nordsieck approximation in linearized quantum gravity”, in Semikhatov, A., Vasiliev, M., and Zaikin, V., eds., Quantization, Gauge theory, and Strings, Vol. II, Proceedings of the International Conference dedicated to the memory of Professor Efim Fradkin, Moscow, Russia, June 5–10, 2000, (Scientific World, Moscow, Russia, 2001).
72 Dou, D., and Percacci, R., “The running gravitational couplings”, Class. Quantum Grav., 15, 3449, (1998). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/9707239.
73 Fabbrichesi, M., Pettorino, R., Veneziano, G., and Vilkovisky, G.A., “Planckian energy scattering and surface terms in the gravitational action”, Nucl. Phys. B, 419, 147, (1994). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/9309037.
74 Fatibene, L., Ferraris, M., Francaviglia, M., and Raiteri, M., “Noether charges, Brown–York quasilocal energy and related topics”, J. Math. Phys., 42, 1173–1195, (2001). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0003019.
75 Felder, G., “Renormalization group in the local potential approximation”, Commun. Math. Phys., 111, 101–121, (1987).
76 Fels, M.E., and Torre, C.G., “The principle of symmetric criticality”, Class. Quantum Grav., 19, 641–676, (2002). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0108033.
77 Fernández, R., Fröhlich, J., and Sokal, A.D., Random walks, critical phenomena, and triviality in quantum field theory, (Springer, Berlin, Germany; New York, U.S.A., 1992).
78 Feynman, R.P., “Quantum theory of gravitation”, Acta Phys. Pol., 24, 697–722, (1963).
79 Fischer, P., and Litim, D.F., “Fixed points of quantum gravity in extra dimensions”, Phys. Lett. B, 638, 497, (2006). Related online version (cited on 05 October 2006):
External Linkhttp://arXiv.org/abs/hep-lat/0602203.
80 Fokas, A., and Mohammedi, N., “Three-loop calculation of the beta function for the purely metric nonlinear sigma-model”, Phys. Lett. B, 198, 359, (1987).
81 Ford, L.H., “Gravitational radiation by quantum systems”, Ann. Phys. (N.Y.), 144, 238–248, (1982).
82 Forgács, P., and Niedermaier, M., “A fixed point for truncated quantum Einstein gravity”, (2002). URL (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0207028.
83 Fradkin, E.S., and Tseytlin, A.A., “Higher Derivative Quantum Gravity: One Loop Counterterms And Asymptotic Freedom”, Nucl. Phys. B, 201, 469, (1982). Related online version (cited on 05 October 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0601137.
84 Friedan, D.H., “Nonlinear models in 2 + ε dimensions”, Ann. Phys. (N.Y.), 163, 318, (1985).
85 Garay, L.J., “Quantum gravity and minimum length”, Int. J. Mod. Phys. A, 10, 145–166, (1995). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9403008.
86 Gastmans, R., Kallosh, R., and Truffin, C., “Quantum gravity near two-dimensions”, Nucl. Phys. B, 133, 417, (1978).
87 Gawedski, K., and Kupainen, A., “Exact renormalization in Gross–Neveu model of quantum fields”, Phys. Rev. Lett., 54, 2191, (1985).
88 Gawedski, K., and Kupainen, A., “Renormalizing the nonrenormalizable”, Phys. Rev. Lett., 55, 363, (1985).
89 Gawedzki, K., and Kupiainen, A., “Gross–Neveu model through convergent perturbation expansions”, Commun. Math. Phys., 102, 1, (1985).
90 Geroch, R., “A Method for Generating Solutions of Einstein’s Equations”, J. Math. Phys., 12, 918–924, (1971).
91 Geroch, R., “A Method for Generating New Solutions of Einstein’s Equation. II”, J. Math. Phys., 13, 394–404, (1972).
92 Gibbons, G.W., and Hawking, S.W., eds., Euclidean Quantum Gravity, (World Scientific, Singapore; River Edge, U.S.A., 1993).
93 Gies, H., “Renormalizability of gauge theories in extra dimensions”, Phys. Rev. D, 68, 085015, (2003). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0305208.
94 Gomis, J., and Weinberg, S., “Are nonrenormalizable gauge theories renormalizable?”, Nucl. Phys. B, 469, 473–487, (1996). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/9510087.
95 Goroff, M.H., and Sagnotti, A., “The ultraviolet behavior of Einstein gravity”, Nucl. Phys. B, 266, 709–736, (1986).
96 Graham, S., “Three-loop beta function for the bosonic nonlinear sigma-model”, Phys. Lett. B, 197, 543, (1987).
97 Green, M.B., Schwarz, J.H., and Witten, E., Superstring Theory, 2 vols., Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K., New York, U.S.A., 1987).
98 Griffiths, J.B., Colliding plane waves in general relativity, (Clarendon Press, Oxford, U.K.; New York, U.S.A., 1991).
99 Haag, R., Local Quantum Physics: Fields, Particles, Algebras, (Springer, Berlin, Germany; New York, U.S.A., 1996), 2nd edition.
100 Hamber, H.W., and Williams, R.M., “Newtonian potential in quantum Regge gravity”, Nucl. Phys. B, 435, 361–398, (1995). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/9406163.
101 Hands, S., Kocić, A., and Kogut, J.B., “Four-Fermi Theories in Fewer Than Four Dimensions”, Ann. Phys. (N.Y.), 224, 29–89, (1993).
102 Hasenfratz, P., “The theoretical background and properties of perfect actions”, (1998). URL (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-lat/9803027.
103 Hauser, I., and Ernst, F.J., “Proof of a generalized Geroch conjecture for the hyperbolic Ernst equation”, Gen. Relativ. Gravit., 33, 195–293, (2001). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0002049.
104 Hawking, S.W., “Quantum gravity and path integrals”, Phys. Rev. D, 18, 1747, (1978).
105 Hofling, F., Nowak, C., and Wetterich, C., “Phase transition and critical behaviour of the d = 3 Gross–Neveu model”, Phys. Rev. B, 66, 205111, (2002). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/cond-mat/0203588.
106 Holstein, B.R., and Donoghue, J.F., “Classical physics and quantum loops”, Phys. Rev. Lett., 93, 201602, (2004). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0405239.
107 Honerkamp, J., “Chiral multi-loops”, Nucl. Phys. B, 36, 130, (1972).
108 Honerkamp, J., “The question of invariant renormalizability of massless YM theory in a manifestly covariant approach”, Nucl. Phys. B, 48, 269, (1972).
109 Honerkamp, J., Krause, F., and Scheunert, M., “On the equivalence of standard and covariant perturbation series in non-polynomial pion Langrangian field theory”, Nucl. Phys. B, 69, 618, (1974).
110 Howe, P., Papadopoulos, G., and Stelle, K.S., “Background field method and the nonlinear σ-model”, Nucl. Phys., 296, 26, (1988).
111 Huang, K., Quantum Field Theory: From Operators to Path Integrals, (Wiley-Interscience, New York, U.S.A., 1998).
112 Johnson, C.V., D-Branes, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K., New York, U.S.A., 2002).
113 Kabat, D., and Ortiz, M., “Eikonal quantum gravity and Planckian scattering”, Nucl. Phys. B, 388, 570, (1992). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/9203082.
114 Kadanoff, L., Statistical Physics: Statics, Dynamics and Renormalization, (World Scientific, Singapore; River Edge, U.S.A., 2000).
115 Kawai, H., Kawamoto, N., Mogami, T., and Watabiki, Y., “Transfer matrix formalism for two-dimensional quantum gravity and fractal structures of space-time”, Phys. Lett. B, 306, 19, (1993). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/9302133.
116 Kawai, H., Kitazawa, Y., and Ninomiya, M., “Scaling exponents in quantum gravity near two-dimensions”, Nucl. Phys. B, 393, 280, (1993). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/9206081.
117 Kawai, H., Kitazawa, Y., and Ninomiya, M., “Ultraviolet stable fixed point and scaling relations in (2+ε)-dimensional quantum gravity”, Nucl. Phys. B, 404, 684, (1993). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/9303123.
118 Kawai, H., and Ninomiya, M., “Renormalization group and quantum gravity”, Nucl. Phys. B, 336, 115–145, (1990).
119 Kirilin, G., “Quantum corrections to the Schwarzschild metric and reparameterization transformations”, (2006). URL (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0601020.
120 Klebanov, I.R., Kogan, I.I., and Polyakov, A.M., “Gravitational dressing of renormalization group”, Phys. Rev. Lett., 71, 3243–3246, (1993). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/9309106.
121 Klein, C., and Richter, O., Ernst Equation and Riemann Surfaces: Analytical and Numerical Methods, vol. 685 of Lecture Notes in Physics, (Springer, Berlin, Germany; New York, U.S.A., 2005).
122 Knizhnik, G.V., Polyakov, M.A., and Zamolodchikov, A.B., “Fractal structure of 2d-Quantum Gravity”, Mod. Phys. Lett. A, 3, 819, (1988).
123 Kopper, C., “Renormalization theory based on flow equations”, (2005). URL (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0508143.
124 Korotkin, D., and Samtleben, H., “Poisson realization and quantization of the Geroch group”, Class. Quantum Grav., 14, L151, (1997). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9611061.
125 Kröger, H., “Fractal geometry in quantum mechanics, field theory, and spin systems”, Phys. Rep., 323, 81–181, (2000).
126 Kubo, J., and Nunami, M., “Unrenormalizable theories are predictive”, Eur. Phys. J. C, 26, 461, (2003). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0112032.
127 Kuchař, K., “Dirac constraint quantization of a parametrized field theory by anomaly-free operator representations of space-time diffeomorphisms”, Phys. Rev. D, 39, 2263–2280, (1989).
128 Kuchař, K.V., Romano, D.J., and Varadarajan, M., “Dirac constraint quantization of a dilatonic model of gravitational collapse”, Phys. Rev. D, 55, 795–808, (1997). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9608011.
129 Kunstatter, G., “The Path integral for gauge theories: A Geometrical approach”, Class. Quantum Grav., 9, S157, (1992).
130 Latorre, J.I., and Morris, T.R., “Exact scheme independence”, J. High Energy Phys., 2000(11), 004, (2000). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0008123.
131 Lauscher, O., and Reuter, M., “Flow equation of quantum Einstein gravity in a higher-derivative truncation”, Phys. Rev. D, 66, 025026, (2002). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0205062.
132 Lauscher, O., and Reuter, M., “Is Quantum Einstein Gravity nonperturbatively renormalizable?”, Class. Quantum Grav., 19, 483, (2002). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0110021.
133 Lauscher, O., and Reuter, M., “Ultraviolet fixed point and generalized flow equations of Quantum Gravity”, Phys. Rev. D, 65, 025013, (2002). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0108040.
134 Lauscher, O., and Reuter, M., “Asymptotic safety in quantum Einstein gravity: Nonperturbative renormalizability and fractal spacetime structure”, (2005). URL (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0511260.
135 Lauscher, O., and Reuter, M., “Fractal spacetime structure in asymptotically safe gravity”, J. High Energy Phys., 2005(10), 050, (2005). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0508202.
136 Litim, D.F., “Fixed points of quantum gravity”, Phys. Rev. Lett., 92, 201301, (2004). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0312114.
137 Litim, D.F., and Pawlowski, J.M., “Flow equations for Yang–Mills theories in general axial gauges”, Phys. Lett. B, 435, 181–188, (1998). Related online version (cited on 05 October 2006):
External Linkhttp://arXiv.org/abs/hep-th/9802064.
138 Loll, R., “Discrete Approaches to Quantum Gravity in Four Dimensions”, Living Rev. Relativity, 1, lrr-1998-13, (1998). URL (cited on 15 May 2006):
http://www.livingreviews.org/lrr-1998-13.
139 Lüscher, M., “Quantum nonlocal charges and absence of particle production in the two-dimensional nonlinear σ-model”, Nucl. Phys. B, 135, 1, (1978).
140 Marolf, D., and Mourão, J.M., “On the support of the Ashtekar–Lewandowski measure”, Commun. Math. Phys., 170, 583–606, (1995). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/9403112.
141 Mattei, F., Rovelli, C., Speziale, S., and Testa, M., “From 3-geometry transition amplitudes to graviton states”, Nucl. Phys. B, 739, 234–253, (2006). Related online version (cited on 05 October 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0508007.
142 Mazur, P.O., and Mottola, E., “The gravitational measure, solution of the conformal factor problem and stability of the ground state of quantum gravity”, Nucl. Phys. B, 341, 187, (1990).
143 Mead, C.A., “Possible Connection Between Gravitation and Fundamental Length”, Phys. Rev., 135, B849–B862, (1964).
144 Misner, C., “Feynman quantization of general relativity”, Rev. Mod. Phys., 29, 497–509, (1957).
145 Mitter, P.K., “The Exact Renormalization Group”, (2005). URL (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/math-ph/0505008.
146 Morris, T.R., “Elements of the continuous renormalization group”, Prog. Theor. Phys. Suppl., 131, 395, (1998). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/9802039.
147 Morris, T.R., “Equivalence of local potential approximations”, J. High Energy Phys., 2005(07), 027, (2005). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0503161.
148 Morris, T.R., “Renormalizable extra-dimensional models”, J. High Energy Phys., 2005(01), 002, (2005). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-ph/0410142.
149 Mottola, E., “Functional integration over geometries”, J. Math. Phys., 36, 2470, (1995). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/9502109.
150 Nicolai, H., and Niedermaier, M., unknown status, (1990).
151 Nicolai, H., Peeters, K., and Zamaklar, M., “Loop quantum gravity: an outside view”, Class. Quantum Grav., 22, R193–R247, (2005). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0501114.
152 Nicoll, J.F., and Chang, T.S., “An exact one particle irreducible renormalization group generator for critical phenomena”, Phys. Lett. A, 62, 287, (1977).
153 Niedermaier, M., “Quantized Einstein–Rosen waves, AdS(2), and spontaneous symmetry breaking”, Phys. Lett. B, 498, 83, (2001). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0007227.
154 Niedermaier, M., “Renormalization and asymptotic safety in truncated quantum Einstein gravity”, J. High Energy Phys., 2002(12), 066, (2002). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0207143.
155 Niedermaier, M., “Dimensionally reduced gravity theories are asymptotically safe”, Nucl. Phys. B, 673, 131, (2003). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0304117.
156 Niedermaier, M., unknown format, (2005). Unpublished notes.
157 Niedermaier, M., “The asymptotic safety scenario in quantum gravity – an introduction”, (2006). URL (cited on 05 October 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0610018.
158 Niedermaier, M., and Samtleben, H., “An algebraic bootstrap for dimensionally reduced quantum gravity”, Nucl. Phys. B, 579, 437, (2000). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/9912111.
159 Niedermayer, F., Niedermaier, M., and Weisz, P., “Questionable and unquestionable in the perturbation theory of non-Abelian models”, Phys. Rev. D, 56, 2555–2565, (1997). Related online version (cited on 05 October 2006):
External Linkhttp://arXiv.org/abs/hep-lat/9612002.
160 Oehme, R., and Zimmermann, W., “Relation between effective couplings for asymptotically free models”, Commun. Math. Phys., 97, 569, (1985).
161 O’Raifeartaigh, L., Wipf, A., and Yoneyama, H., “The Constraint Effective Potential”, Nucl. Phys. B, 271, 653, (1986).
162 Osborn, H., “Renormalization and composite operators in nonlinear σ-models”, Nucl. Phys. B, 294, 595, (1987).
163 Padmanabhan, T., “Limitations on the operational definition of space-time events and quantum gravity”, Class. Quantum Grav., 4, L107–L113, (1987).
164 Padmanabhan, T., “From Gravitons to Gravity: Myths and Reality”, (2004). URL (cited on 05 October 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0409089.
165 Pawlowski, J.M., “Geometrical effective action and Wilsonian flows”, (2003). URL (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0310018.
166 Pawlowski, J.M., “Aspects of the functional renormalisation group”, (2005). URL (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0512261.
167 Peldan, P., “Actions for gravity, with generalizations: a review”, Class. Quantum Grav., 11, 1087, (1994). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9305011.
168 Penati, S., Santambrogio, A., and Zanon, D., “Renormalization group flows in sigma-models coupled to 2D dynamical gravity”, Nucl. Phys. B, 483, 495, (1997). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/9605124.
169 Percacci, R., “Further evidence for a gravitational fixed point”, Phys. Rev. D, 73, 041501, (2006). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0511177.
170 Percacci, R., and Perini, D., “Asymptotic safety of gravity coupled to matter”, Phys. Rev. D, 68, 044018, (2003). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0304222.
171 Percacci, R., and Perini, D., “Constraints on matter from asymptotic safety”, Phys. Rev. D, 67, 081503, (2003). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0207033.
172 Percacci, R., and Perini, D., “Should we expect a fixed point for Newton’s constant?”, Class. Quantum Grav., 21, 5035, (2004). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0401071.
173 Perez, A., “On the regularization ambiguities in loop quantum gravity”, Phys. Rev. D, 73, 044007, (2006). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0509118.
174 Perry, R.J., and Wilson, K.G., “Perturbative renormalizability with an infinite number of relevant and marginal operators”, Nucl. Phys. B, 403, 587, (1993).
175 Peskin, M.E., and Schroeder, D.V., An Introduction to Quantum Field Theory, (Westview Press, Boulder, U.S.A., 1995).
176 Polchinski, J., “Scale and conformal invariance in quantum field theory”, Nucl. Phys. B, 303, 226–236, (1988).
177 Polchinski, J.G., String Theory, 2 vols., Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K., New York, U.S.A., 1998).
178 Rebhan, A., “Feynman rules and S-matrix equivalence of the Vilkovisky–DeWitt effective action”, Nucl. Phys. B, 298, 726–740, (1988).
179 Reuter, M., “Nonperturbative Evolution Equation for Quantum Gravity”, Phys. Rev. D, 57, 971, (1998). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/9605030.
180 Reuter, M., and Saueressig, F., “A class of nonlocal truncations in quantum Einstein gravity and its renormalization group behavior”, Phys. Rev. D, 66, 125001, (2002). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0206145.
181 Reuter, M., and Saueressig, F., “Renormalization group flow of quantum gravity in the Einstein–Hilbert truncation”, Phys. Rev. D, 65, 065016, (2002). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0110054.
182 Reuter, M., and Saueressig, F., “Nonlocal quantum gravity and the size of the universe”, Fortschr. Phys., 52, 650, (2004). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0311056.
183 Reuter, M., and Saueressig, F., “From big bang to asymptotic de Sitter: Complete cosmologies in a quantum gravity framework”, J. Cosmol. Astropart. Phys., 2005(09), 012, (2005). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0507167.
184 Reuter, M., and Schwindt, J.M., “A minimal length from the cutoff modes in asymptotically safe quantum gravity”, J. High Energy Phys., 2006(01), 070, (2006). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0511021.
185 Reuter, M., and Wetterich, C., “Average action for the Higgs model with Abelian gauge symmetry”, Nucl. Phys. B, 391, 147, (1993).
186 Reuter, M., and Wetterich, C., “Running gauge coupling in three-dimensions and the electroweak phase transition”, Nucl. Phys. B, 408, 91, (1993).
187 Reuter, M., and Wetterich, C., “Effective average action for gauge theories and exact evolution equations”, Nucl. Phys. B, 417, 181, (1994).
188 Reuter, M., and Wetterich, C., “Quantum Liouville field theory as solution of a flow equation”, Nucl. Phys. B, 506, 483, (1997). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/9605039.
189 Reuter, M., and Weyer, H., “Quantum gravity at astrophysical distances?”, J. Cosmol. Astropart. Phys., 2004(12), 001, (2004). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0410119.
190 Reuter, M., and Weyer, H., “Renormalization group improved gravitational actions: A Brans–Dicke approach”, Phys. Rev. D, 69, 104022, (2004). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0311196.
191 Reuter, M., and Weyer, H., “Running Newton constant, improved gravitational actions, and galaxy rotation curves”, Phys. Rev. D, 70, 124028, (2004). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0410117.
192 Riedel, E.K., Golner, G.R., and Newman, K.E., “Scaling-Field Representation of Wilson’s Exact Renormalization-Group Equation”, Ann. Phys. (N.Y.), 161, 178–238, (1985).
193 Ringwald, A., and Wetterich, C., “Average action for the N-component φ4 theory”, Nucl. Phys. B, 334, 506–526, (1990).
194 Riva, V., and Cardy, J., “Scale and conformal invariance in field theory: A physical counterexample”, Phys. Lett. B, 622, 339, (2005). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0504197.
195 Rivasseau, V., From Perturbative to Constructive Renormalization, (Princeton University Press, Princeton, U.S.A., 1991).
196 Robinson, S., “Normalization conventions for Newton’s constant and the Planck scale in arbitrary dimensions”, (2006). URL (cited on 05 October 2006):
External Linkhttp://arXiv.org/abs/hep-th/0609060.
197 Romano, J.D., and Torre, C.G., “Internal time formalism for spacetimes with two Killing vectors”, Phys. Rev. D, 53, 5634–5650, (1996). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9509055.
198 Rosa, L., Vitale, P., and Wetterich, C., “Critical exponents of the Gross–Neveu model from the effective average action”, Phys. Rev. Lett., 86, 958, (2001). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0007093.
199 Rovelli, C., Quantum Gravity, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 2004).
200 Salmhofer, M., Renormalization: An Introduction, (Springer, Berlin, Germany; New York, U.S.A., 1999).
201 Shore, G.M., “A local renormalization group equation, diffeomorphisms and conformal invariance in sigma models”, Nucl. Phys. B, 286, 349–377, (1987).
202 Shore, G.M., “Quantum gravitational optics”, Contemp. Phys., 44, 503, (2003). Related online version (cited on 05 October 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0304059.
203 Smolin, L., “A fixed point for quantum gravity”, Nucl. Phys. B, 208, 439–466, (1982).
204 Souma, W., “Non-trivial UV fixed point in quantum gravity”, Prog. Theor. Phys., 102, 181, (1999). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/9907027.
205 Souma, W., “Gauge and cutoff function dependence of the ultraviolet fixed point in quantum gravity”, (2000). URL (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0006008.
206 Stelle, K.S., “Renormalization of higher derivative Quantum Gravity”, Phys. Rev. D, 16, 953, (1977).
207 Stelle, K.S., “Classical Gravity With Higher Derivatives”, Gen. Relativ. Gravit., 9, 353, (1978).
208 Sumi, I.J., Souma, W., Aoki, I.K., Terao, H., and Morikawa, K., “Scheme dependence of the Wilsonian effective action and sharp cutoff limit of the flow equation”, (2000). URL (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/0002231.
209 ’t Hooft, G., “Graviton dominance in ultrahigh-energy scattering”, Phys. Lett. B, 198, 61, (1987).
210 ’t Hooft, G., and Veltman, M.J.G., “One loop divergencies in the theory of gravitation”, Ann. Inst. Henri Poincare A, 20, 69–94, (1974).
211 Taylor, T.R., and Veneziano, G., “Quantum gravity at large distances and the cosmological constant”, Nucl. Phys. B, 345, 210, (1990).
212 Teitelboim, C., “The proper time gauge in quantum theory of gravitation”, Phys. Rev. D, 28, 297, (1983).
213 Teitelboim, C., “Quantum mechanics of the gravitational field in asymptotically flat space”, Phys. Rev. D, 28, 310, (1983).
214 Teitelboim, C., “The Hamiltonian structure of two-dimensional space-time and its relation with the conformal anomaly”, in Christensen, S.M., ed., Quantum Theory of Gravity: Essays in Honor of the 60th Birthday of Bryce S. DeWitt, (Adam Hilger, Bristol, U.K., 1984).
215 Thompson, R.T., and Ford, L.H., “Spectral line broadening and angular blurring due to spacetime geometry fluctuations”, Phys. Rev. D, 74, 024012, (2006). Related online version (cited on 05 October 2006):
External Linkhttp://arXiv.org/abs/gr-qc/0601137.
216 Tomboulis, E., “1∕N expansion and renormalization in quantum gravity”, Phys. Lett. B, 70, 361–364, (1977).
217 Tomboulis, E., “Renormalizability and asymptotic freedom in quantum gravity”, Phys. Lett. B, 97, 77–80, (1980).
218 Tomboulis, E.T., “Superrenormalizable gauge and gravitational theories”, (1997). URL (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/9702146.
219 Torre, C.G., “Gravitational observables and local symmetries”, Phys. Rev. D, 48, 2373–2376, (1993). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/gr-qc/9306030.
220 Tseytlin, A.A., “Sigma-model Weyl invariance conditions and string equations of motion”, Nucl. Phys. B, 294, 383, (1987).
221 Tseytlin, A.A., “Finite σ models and exact string solutions with Minkowski signature metric”, Phys. Rev. D, 47, 3421–3429, (1993). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/9211061.
222 van de Ven, A.E.M., “Two loop quantum gravity”, Nucl. Phys. B, 378, 309–366, (1992).
223 Vilkovisky, G.A., “The Gospel according to deWitt”, in Christensen, S.M., ed., Quantum Theory of Gravity: Essays in Honor of the 60th Birthday of Bryce S. DeWitt, (Adam Hilger, Bristol, U.K., 1984).
224 Vilkovisky, G.A., “The unique effective action in quantum field theory”, Nucl. Phys. B, 234, 125, (1984).
225 Vilkovisky, G.A., “Heat kernel: Rencontre entre physiciens et mathématiciens”, (1991). URL (cited on 15 May 2006):
External Linkhttp://cdsweb.cern.ch/search.py?recid=234641.
226 Ward, B.F.L., “Quantum corrections to Newton’s law”, Mod. Phys. Lett. A, 17, 2371, (2002). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-ph/0204102.
227 Weinberg, S., “Ultraviolet divergencies in quantum theories of gravitation”, in Hawking, S.W., and Israel, W., eds., General Relativity: An Einstein Centenary Survey, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1979).
228 Wetterich, C., “Exact evolution equation for the effective potential”, Phys. Lett. B, 301, 90, (1993).
229 Wetterich, C., “Effective average action in statistical physics and quantum field theory”, Int. J. Mod. Phys. A, 16, 1951, (2001). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-ph/0101178.
230 Wilczek, F., “Quantum field theory”, Rev. Mod. Phys., 71, S85, (1999). Related online version (cited on 15 May 2006):
External Linkhttp://arXiv.org/abs/hep-th/9803075.
231 Wilson, K.G., “Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture”, Phys. Rev. B, 4, 3174–3183, (1971).
232 Wilson, K.G., “Renormalization Group and Critical Phenomena. II. Phase-Space Cell Analysis of Critical Behavior”, Phys. Rev. B, 4, 3184–3205, (1971).
233 Wilson, K.G., “Quantum Field-Theory Models in Less Than 4 Dimensions”, Phys. Rev. D, 7, 2911–2926, (1973).
234 Wilson, K.G., “The Renormalization Group and Critical Phenomena”, in Frängsmyr, T., and Ekspong, G., eds., Nobel Lectures, Physics 1981–1990, (World Scientific, Singapore; River Edge, U.S.A., 1993). Related online version (cited on 15 May 2006):
External Linkhttp://nobelprize.org/physics/laureates/1982/wilson-lecture.html. Nobel lecture of December 8, 1982.
235 York Jr, J.W., “Conformally invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial-value problem of general relativity”, J. Math. Phys., 14, 456–464, (1973).
236 Zimmermann, W., “Reduction in the number of coupling parameters”, Commun. Math. Phys., 97, 211, (1985).
237 Zinn-Justin, J., Quantum Field Theory and Critical Phenomena, vol. 77 of International Series of Monographs on Physics, (Clarendon Press; Oxford University Press, Oxford, U.K.; New York, U.S.A., 1989), 3rd edition.