Go to previous page Go up Go to next page

13.4 The relativistic problem

The theoretical framework for studying stellar stability in general relativity was mainly developed during the 1970s, with key contributions from Chandrasekhar and Friedman [3132] and Schutz [102103]. Their work extends the Newtonian analysis discussed above. There are basically two reasons why a relativistic analysis is more complicated than the Newtonian one. Firstly, the problem is algebraically more complex because one must solve the Einstein field equations in addition to the fluid equations of motion. Secondly, one must account for the fact that a general perturbation will generate gravitational waves. The work culminated in a series of papers [43444542] in which the role that gravitational radiation plays in these problems was explained, and a foundation for subsequent research in this area was established. The main result was that gravitational radiation acts in the same way in the full theory as in a post-Newtonian analysis of the problem. If we consider a sequence of equilibrium models, then a mode becomes secularly unstable at the point where its frequency vanishes (in the inertial frame). Most importantly, the proof does not require the completeness of the modes of the system.


  Go to previous page Go up Go to next page