1 Abbott, B. et al. (LIGO Scientific Collaboration), “Upper limits on gravitational wave emission from 78 radio pulsars”, Phys. Rev. D, 76(4), 042001, (2007). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0702039.
2 Abbott, B. et al. (LIGO Scientific Collaboration), “Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar”, Astrophys. J. Lett., 683, L45–L49, (2008). Related online version (cited on 8 December 2008):
External Linkhttp://arXiv.org/abs/0805.4758.
3 Abrikosov, A.A., Gorkov, L.P., and Dzyaloshinski, I.E., Methods of Quantum Field Theory in Statistical Physics, (Dover, New York, U.S.A., 1975), rev. edition.
4 Alford, M., Bowers, J.A., and Rajagopal, K., “Crystalline color superconductivity”, Phys. Rev. D, 63(7), 074016, (2001). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/hep-ph/0008208.
5 Alpar, M.A., “Pinning and Threading of Quantized Vortices in the Pulsar Crust Superfluid”, Astrophys. J., 213, 527–530, (1977).
6 Alpar, M.A., Chau, H.F., Cheng, K.S., and Pines, D., “Postglitch relaxation of the VELA pulsar after its first eight large glitches: A reevaluation with the vortex creep model”, Astrophys. J., 409, 345–359, (1993).
ADS: External Linkhttp://adsabs.harvard.edu/abs/1993ApJ...409..345A.
7 Alpar, M.A., Chau, H.F., Cheng, K.S., and Pines, D., “Postglitch Relaxation of the Crab Pulsar after Its First Four Major Glitches: The Combined Effects of Crust Cracking, Formation of Vortex Depletion Region and Vortex Creep”, Astrophys. J., 459, 706, (1996).
8 Alpar, M.A., Langer, S.A., and Sauls, J.A., “Rapid postglitch spin-up of the superfluid core in pulsars”, Astrophys. J., 282, 533–541, (1984).
9 Alpar, M.A., Pines, D., Anderson, P.W., and Shaham, J., “Vortex creep and the internal temperature of neutron stars. I. General theory”, Astrophys. J., 276, 325–334, (1984).
ADS: External Linkhttp://adsabs.harvard.edu/abs/1984ApJ...276..325A.
10 Anderson, P.W., and Itoh, N., “Pulsar glitches and restlessness as a hard superfluidity phenomenon”, Nature, 256, 25–27, (1975).
11 Anderson, P.W., and Morel, P., “Generalized Bardeen-Cooper-Schrieffer States and the Proposed Low-Temperature Phase of Liquid He3”, Phys. Rev., 123, 1911–1934, (1961).
12 Andersson, N., “Gravitational waves from instabilities in relativistic stars”, Class. Quantum Grav., 20, R105–R144, (2003). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0211057.
13 Andersson, N., and Comer, G.L., “On the dynamics of superfluid neutron star cores”, Mon. Not. R. Astron. Soc., 328, 1129–1143, (2001). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0101193.
14 Andersson, N., and Comer, G.L., “Probing Neutron-Star Superfluidity with Gravitational-Wave Data”, Phys. Rev. Lett., 87, 241101, (2001). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0110112.
15 Andersson, N., and Comer, G.L., “Relativistic Fluid Dynamics: Physics for Many Different Scales”, Living Rev. Relativity, 10, lrr-2007-1, (2007). URL (cited on 2 October 2007):
http://www.livingreviews.org/lrr-2007-1.
16 Andersson, N., Comer, G.L., and Prix, R., “The superfluid two-stream instability”, Mon. Not. R. Astron. Soc., 354, 101–110, (2004).
17 Andersson, N., and Kokkotas, K.D., “The R-Mode Instability in Rotating Neutron Stars”, Int. J. Mod. Phys. D, 10, 381–441, (2001). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0010102.
18 Andersson, N., Sidery, T., and Comer, G.L., “Mutual friction in superfluid neutron stars”, Mon. Not. R. Astron. Soc., 368, 162–170, (2006). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0510057.
19 Andersson, N., Sidery, T., and Comer, G.L., “Superfluid neutron star turbulence”, Mon. Not. R. Astron. Soc., 381, 747–756, (2007). Related online version (cited on 16 June 2008):
External Linkhttp://arXiv.org/abs/astro-ph/0703257.
20 Andreev, A.F., and Bashkin, E.P., “Three-velocity hydrodynamics of superfluid solutions”, Sov. Phys. JETP, 42, 164–167, (1975).
21 Andronikashvili, E.L., “Direct observation of two types of motion in helium II”, Zh. Eksp. Teor. Fiz., 16, 780–785, (1946).
22 Annett, J.F., Superconductivity, Superfluids and Condensates, Oxford Master Series in Condensed Matter Physics, (Oxford University Press, Oxford, U.K.; New York, U.S.A., 2004).
23 Arnould, M., Goriely, S., and Takahashi, K., “The r-process of stellar nucleosynthesis: Astrophysics and nuclear physics achievements and mysteries”, Phys. Rep., 450, 97–213, (2007). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/0705.4512.
24 ATNF/CSIRO, “ATNF Pulsar Catalogue: Glitch parameters”, web interface to database. URL (cited on 10 September 2007):
External Linkhttp://www.atnf.csiro.au/research/pulsar/psrcat/glitchTbl.html.
25 Audi, G., Wapstra, A.H., and Thibault, C., “The AME2003 atomic mass evaluation (II). Tables, graphs and references”, Nucl. Phys. A, 729, 337–676, (2003).
ADS: External Linkhttp://adsabs.harvard.edu/abs/2003NuPhA.729..337A.
26 Australia Telescope National Facility, “ATNF pulsar database”, web interface to database. URL (cited on 20 August 2007):
External Linkhttp://www.atnf.csiro.au/research/pulsar/psrcat/.
27 Avogadro, P., Barranco, F., Broglia, R.A., and Vigezzi, E., “Quantum calculation of vortices in the inner crust of neutron stars”, Phys. Rev. C, 75, 012805, (2007). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/0602028.
28 Baldo, M., Lombardo, U., Saperstein, E.E., and Tolokonnikov, S.V., “The role of superfluidity in the structure of the neutron star inner crust”, Nucl. Phys. A, 750, 409–424, (2005).
29 Baldo, M., Saperstein, E.E., and Tolokonnikov, S.V., “Superfluidity in nuclear and neutron matter”, Nucl. Phys. A, 749, 42–52, (2005).
30 Baldo, M., Saperstein, E.E., and Tolokonnikov, S.V., “The role of the boundary conditions in the Wigner Seitz approximation applied to the neutron star inner crust”, Nucl. Phys. A, 775, 235–244, (2006). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/0605010.
31 Baldo, M., Saperstein, E.E., and Tolokonnikov, S.V., “A realistic model of superfluidity in the neutron star inner crust”, Eur. Phys. J. A, 32, 97–108, (2007). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/0609031.
32 Baldo, M., Saperstein, E.E., and Tolokonnikov, S.V., “Upper edge of the neutron star inner crust: The drip point and its vicinity”, Phys. Rev. C, 76, 025803, (2007). Related online version (cited on 16 June 2008):
External Linkhttp://arXiv.org/abs/nucl-th/0703099.
33 Balibar, S., “The Discovery of Superfluidity”, J. Low Temp. Phys., 146, 441–470, (2007).
34 Barat, C., Hayles, R.I., Hurley, K., Niel, M., Vedrenne, G., Desai, U., Kurt, V.G., Zenchenko, V.M., and Estulin, I.V., “Fine time structure in the 1979 March 5 gamma ray burst”, Astron. Astrophys., 126, 400–402, (1983).
35 Bardeen, J., “Critical Fields and Currents in Superconductors”, Rev. Mod. Phys., 34, 667–681, (1962).
36 Bardeen, J., Cooper, L.N., and Schrieffer, J.R., “Theory of Superconductivity”, Phys. Rev., 108, 1175–1204, (1957).
37 Barranco, F., Broglia, R.A., Esbensen, H., and Vigezzi, E., “Role of finite nuclei on the pairing gap of the inner crust of neutron stars”, Phys. Lett. B, 390, 13–17, (1997).
38 Barranco, F., Broglia, R.A., Esbensen, H., and Vigezzi, E., “Semiclassical approximation to neutron star superfluidity corrected for proximity effects”, Phys. Rev. C, 58, 1257–1262, (1998). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/9806056.
39 Baym, G., Bethe, H.A., and Pethick, C.J., “Neutron Star Matter”, Nucl. Phys. A, 175, 225–271, (1971).
40 Baym, G., Pethick, C., Pines, D., and Ruderman, M., “Spin Up in Neutron Stars: The Future of the Vela Pulsar”, Nature, 224, 872, (1969).
41 Baym, G., Pethick, C.J., and Pines, D., “Superfluidity in Neutron Stars”, Nature, 224, 673, (1969).
42 Baym, G., Pethick, C.J., and Sutherland, P., “The Ground State of Matter at High Densities: Equation of State and Stellar Models”, Astrophys. J., 170, 299–317, (1971).
43 Baym, G., and Pines, D., “Neutron starquakes and pulsar speedup.”, Ann. Phys. (N.Y.), 66, 816–835, (1971).
44 Beig, R., and Schmidt, B.G., “Relativistic elasticity”, Class. Quantum Grav., 20, 889–904, (2003). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0211054.
45 Bejger, M., Haensel, P., and Zdunik, J.L., “Rotation at 1122 Hz and the neutron star structure”, Astron. Astrophys., 464, L49–L52, (2007). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0612216.
46 Belyaev, S.T., “Effect of pairing correlations on nuclear properties”, Mat.-Fys. Medd. K. Dan. Vid. Selsk., 31(11), 1–55, (1959).
47 Bender, M., Heenen, P., and Reinhard, P., “Self-consistent mean-field models for nuclear structure”, Rev. Mod. Phys., 75, 121–180, (2003).
48 Bildsten, L., and Epstein, R.I., “Superfluid dissipation time scales in neutron star crusts”, Astrophys. J., 342, 951–957, (1989).
49 Bildsten, L., and Ushomirsky, G., “Viscous Boundary-Layer Damping of r-Modes in Neutron Stars”, Astrophys. J., 529, L33–L36, (2000). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/9911155.
50 Bisnovatyi-Kogan, G.S., and Chechetkin, V.M., “Nonequilibrium envelopes of the neutron stars, their role in the maintenance of X-ray luminosity and nucleosynthesis”, Usp. Fiz. Nauk, 127, 263–296, (1979).
51 Bohr, A., Mottelson, B.R., and Pines, D., “Possible Analogy between the Excitation Spectra of Nuclei and Those of the Superconducting Metallic State”, Phys. Rev., 110, 936–938, (1958).
52 Bohr, N., and Wheeler, J.A., “The Mechanism of Nuclear Fission”, Phys. Rev., 56, 426–450, (1939).
53 Bonazzola, S., Gourgoulhon, E., Salgado, M., and Marck, J.A., “Axisymmetric rotating relativistic bodies: A new numerical approach for ‘exact’ solutions”, Astron. Astrophys., 278, 421–443, (1993).
54 Bonche, P., and Vautherin, D., “A mean-field calculation of the equation of state of supernova matter.”, Nucl. Phys. A, 372, 496–526, (1981).
55 Bonche, P., and Vautherin, D., “Mean-field calculations of the equation of state of supernova matter II”, Astron. Astrophys., 112, 268–272, (1982).
56 Botvina, A.S., and Mishustin, I.N., “Multifragmentation reactions and properties of stellar matter at subnuclear densities”, Phys. Rev. C, 72, 048801, (2005). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/0506061.
57 Botvina, A.S., Mishustin, I.N., and Trautmann, W., “Properties of stellar matter in supernova explosions and nuclear multifragmentation”, (2006). URL (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/0612055.
58 Brack, M., Guet, C., and Hakansson, H.-B., “Selfconsistent semiclassical description of average nuclear properties-a link between microscopic and macroscopic models”, Phys. Rep., 123, 275–364, (1985).
59 Broglia, R.A., de Blasio, F., Lazzari, G., Lazzari, M., and Pizzochero, P.M., “Specific heat of superfluid matter in the inner crust of neutron stars”, Phys. Rev. D, 50, 4781–4785, (1994).
60 Brown, E.F., Bildsten, L., and Rutledge, R.E., “Crustal Heating and Quiescent Emission from Transiently Accreting Neutron Stars”, Astrophys. J. Lett., 504, L95, (1998). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/9807179.
61 Buchler, J.-R., and Barkat, Z., “Properties of low-density neutron-star matter.”, Phys. Rev. Lett., 27, 48–51, (1971).
62 Bulgac, A., and Magierski, P., “Quantum corrections to the ground state energy of inhomogeneous neutron matter”, Nucl. Phys. A, 683, 695–712, (2001). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0002377.
63 Burrows, A., and Lattimer, J.M., “On the accuracy of the single-nucleus approximation in the equation of state of hot, dense matter”, Astrophys. J., 285, 294–303, (1984).
64 Bürvenich, T.J., Mishustin, I.N., and Greiner, W., “Nuclei embedded in an electron gas”, Phys. Rev. C, 76, 034310, (2007). Related online version (cited on 16 June 2008):
External Linkhttp://arXiv.org/abs/0706.1450.
65 Caballero, O.L., Horowitz, C.J., and Berry, D.K., “Neutrino scattering in heterogeneous supernova plasmas”, Phys. Rev. C, 74(6), 065801, (2006). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0607564.
66 Cackett, E.M., Wijnands, R., Linares, M., Miller, J.M., Homan, J., and Lewin, W.H.G., “Cooling of the quasi-persistent neutron star X-ray transients KS 1731-260 and MXB 1659-29”, Mon. Not. R. Astron. Soc., 372, 479–488, (2006). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0605490.
67 California Institute of Technology, “LIGO Laboratory Home Page”, project homepage. URL (cited on 20 August 2007):
External Linkhttp://www.ligo.caltech.edu/.
68 Campbell, L.J., “Rotational speedups accompanying angular deceleration of a superfluid”, Phys. Rev. Lett., 43, 1336–1339, (1979).
69 Cao, L.G., Lombardo, U., and Schuck, P., “Screening effects in superfluid nuclear and neutron matter within Brueckner theory”, Phys. Rev. C, 74(6), 064301, (2006). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/0608005.
70 Carter, B., “Covariant theory of conductivity in ideal fluid or solid media”, in Anile, A., and Choquet-Bruhat, Y., eds., Relativistic Fluid Dynamics, Lectures given at the 1st 1987 Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held at Noto, Italy, May 25 – June 3, 1987, Lecture Notes in Mathematics, vol. 1385, pp. 1–64, (Springer, Berlin, Germany; New York, U.S.A., 1989).
71 Carter, B., “Relativistic dynamics of vortex defects in superfluids”, in Bunkov, Y.M., and Godfrin, H., eds., Topological Defects and Non-Equilibrium Dynamics of Phase Transitions, Proceedings of the Les Houches Winter School, 16 – 26 February 1999, NATO Science Series C, vol. 549, pp. 267–302, (Kluwer Academic Publishers, Dordrecht, Netherlands; Boston, U.S.A., 2000).
72 Carter, B., and Chachoua, E., “Newtonian Mechanics of Neutron Superfluid in Elastic Star Crust”, Int. J. Mod. Phys. D, 15, 1329–1358, (2006). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0601658.
73 Carter, B., Chachoua, E., and Chamel, N., “Covariant Newtonian and relativistic dynamics of (magneto)-elastic solid model for neutron star crust”, Gen. Relativ. Gravit., 38, 83–119, (2006). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0507006.
74 Carter, B., and Chamel, N., “Covariant Analysis of Newtonian Multi-Fluid Models for Neutron Stars I: Milne-Cartan Structure and Variational Formulation”, Int. J. Mod. Phys. D, 13, 291–325, (2004). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0305186.
75 Carter, B., and Chamel, N., “Covariant Analysis of Newtonian Multi-Fluid Models for Neutron Stars II: Stress-Energy Tensors and Virial Theorems”, Int. J. Mod. Phys. D, 14, 717–748, (2005). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0312414.
76 Carter, B., and Chamel, N., “Covariant Analysis of Newtonian Multi-Fluid Models for Neutron Stars III: Transvective, Viscous, and Superfluid Drag Dissipation”, Int. J. Mod. Phys. D, 14, 749–774, (2005). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0410660.
77 Carter, B., Chamel, N., and Haensel, P., “Effect of BCS pairing on entrainment in neutron superfluid current in neutron star crust”, Nucl. Phys. A, 759, 441–464, (2005). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0406228.
78 Carter, B., Chamel, N., and Haensel, P., “Entrainment coefficient and effective mass for conduction neutrons in neutron star crust: simple microscopic models”, Nucl. Phys. A, 748, 675–697, (2005). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/0402057.
79 Carter, B., Chamel, N., and Haensel, P., “Entrainment Coefficient and Effective Mass for Conduction Neutrons in Neutron Star Crust: Macroscopic Treatment”, Int. J. Mod. Phys. D, 15, 777–803, (2006). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0408083.
80 Carter, B., and Langlois, D., “Relativistic models for superconducting-superfluid mixtures”, Nucl. Phys. B, 531, 478–504, (1998). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/gr-qc/9806024.
81 Carter, B., Langlois, D., and Sedrakian, D.M., “Centrifugal buoyancy as a mechanism for neutron star glitches”, Astron. Astrophys., 361, 795–802, (2000). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0004121.
82 Carter, B., and Quintana, H., “Foundations of General Relativistic High-Pressure Elasticity Theory”, Proc. R. Soc. London, Ser. A, 331, 57–83, (1972).
83 Carter, B., and Quintana, H., “Relativistic formulation of the neutron starquake theory of pulsar glitches”, Ann. Phys. (N.Y.), 95, 74–89, (1975).
84 Carter, B., and Quintana, H., “Stationary elastic rotational deformation of a relativistic neutron star model”, Astrophys. J., 202, 511–522, (1975).
85 Carter, B., and Samuelsson, L., “Relativistic mechanics of neutron superfluid in (magneto)elastic star crust”, Class. Quantum Grav., 23, 5367–5388, (2006). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0605024.
86 Chabanat, E., Bonche, P., Haensel, P., Meyer, J., and Schaeffer, R., “A Skyrme parametrization from subnuclear to neutron star densities”, Nucl. Phys. A, 627, 710–746, (1997).
87 Chabanat, E., Bonche, P., Haensel, P., Meyer, J., and Schaeffer, R., “Erratum to ‘A Skyrme parametrization from subnuclear to neutron star densities. Part II. Nuclei far from stabilities’ [Nucl. Phys. A 635 (1998) 231–256]”, Nucl. Phys. A, 643, 441–441, (1998).
88 Chabanat, E., Bonche, P., Haensel, P., Meyer, J., and Schaeffer, R., “A Skyrme parametrization from subnuclear to neutron star densities. Part II. Nuclei far from stabilities”, Nucl. Phys. A, 635, 231–256, (1998).
89 Chakrabarty, D., Morgan, E.H., Muno, M.P., Galloway, D.K., Wijnands, R., van der Klis, M., and Markwardt, C.B., “Nuclear-powered millisecond pulsars and the maximum spin frequency of neutron stars”, Nature, 424, 42–44, (2003). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0307029.
90 Chamel, N., “Band structure effects for dripped neutrons in neutron star crust”, Nucl. Phys. A, 747, 109–128, (2005). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/0405003.
91 Chamel, N., “Effective mass of free neutrons in neutron star crust”, Nucl. Phys. A, 773, 263–278, (2006). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/0512034.
92 Chamel, N., “Neutron Star Crust beyond the Wigner-Seitz Approximation”, in Lombardo, U., Baldo, M., Burgio, F., and Schulze, H.-J., eds., Exotic States of Nuclear Matter, Proceedings of the International Symposium EXOCT07, Catania, Italy, June 11 – June 15, 2007, pp. 91–98, (World Scientific, Singapore; Hackensack, U.S.A., 2008). Related online version (cited on 30 April 2008):
External Linkhttp://arXiv.org/abs/0709.3798.
93 Chamel, N., “Two-fluid models of superfluid neutron star cores”, Mon. Not. R. Astron. Soc., 388, 737–752, (2008). Related online version (cited on 8 December 2008):
External Linkhttp://arXiv.org/abs/0805.1007.
94 Chamel, N., and Carter, B., “Effect of entrainment on stress and pulsar glitches in stratified neutron star crust”, Mon. Not. R. Astron. Soc., 368, 796–808, (2006). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0503044.
95 Chamel, N., and Haensel, P., “Entrainment parameters in a cold superfluid neutron star core”, Phys. Rev. C, 73, 045802, (2006). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/0603018.
96 Chamel, N., Naimi, S., Khan, E., and Margueron, J., “Validity of the Wigner-Seitz approximation in neutron star crust”, Phys. Rev. C, 75, 055806, (2007). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0701851.
97 Cheng, K.S., Yao, C.C., and Dai, Z.G., “Properties of nuclei in the inner crusts of neutron stars in the relativistic mean-field theory”, Phys. Rev. C, 55, 2092–2100, (1997).
98 Chiu, H.-Y., and Morrison, P., “Neutrino Emission from Black-Body Radiation at High Stellar Temperatures”, Phys. Rev. Lett., 5, 573–575, (1960).
99 Chiu, H.-Y., and Stabler, R.C., “Emission of Photoneutrinos and Pair Annihilation Neutrinos from Stars”, Phys. Rev., 122, 1317–1322, (1961).
100 Chugunov, A.I., and Haensel, P., “Thermal conductivity of ions in a neutron star envelope”, Mon. Not. R. Astron. Soc., 381, 1143–1153, (2007). Related online version (cited on 12 June 2008):
External Linkhttp://arXiv.org/abs/0707.4614.
101 Chugunov, A.I., and Yakovlev, D.G., “Shear Viscosity and Oscillations of Neutron Star Crust”, Astron. Rep., 49, 724–738, (2005). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0511300.
102 Colpi, M., Geppert, U., Page, D., and Possenti, A., “Charting the Temperature of the Hot Neutron Star in a Soft X-Ray Transient”, Astrophys. J., 548, L175–L178, (2001). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0010572.
103 Combescot, R., “Ultracold Fermi Gases: The BEC-BCS Crossover”, J. Low Temp. Phys., 145, 267–276, (2006).
104 Cumming, A., Macbeth, J., in ’t Zand, J.J.M., and Page, D., “Long Type I X-Ray Bursts and Neutron Star Interior Physics”, Astrophys. J., 646, 429–451, (2006). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0508432.
105 Cutler, C., “Gravitational waves from neutron stars with large toroidal B fields”, Phys. Rev. D, 66, 084025, (2002). Related online version (cited on 26 May 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0206051.
106 Dall’Osso, S., Israel, G.L., Stella, L., Possenti, A., and Perozzi, E., “The Glitches of the Anomalous X-Ray Pulsar 1RXS J170849.0-400910”, Astrophys. J., 599, 485–497, (2003).
107 de Blasio, F., Lazzari, G., Pizzochero, P.M., and Broglia, R.A., “Superfluidity and thermal response of neutron star crusts”, Phys. Rev. D, 53, 4226–4231, (1996).
108 de Blasio, F.V., “Crustal impurities and the internal temperature of a neutron star crust”, Mon. Not. R. Astron. Soc., 299, 118–122, (1998).
109 de Blasio, F.V., “A dense two-component plasma in a strong gravity field and thermal conductivity of neutron stars”, Astron. Astrophys., 353, 1129–1133, (2000).
110 de Blasio, F.V., and Elgarøy, Ø., “Microscopic Structure of a Vortex Line in Superfluid Neutron Star Matter”, Phys. Rev. Lett., 82, 1815–1818, (1999). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/9808057.
111 de Blasio, F.V., Hjorth-Jensen, M., Elgarøy, Ø., Engvik, L., Lazzari, G., Baldo, M., and Schulze, H.-J., “Coherence length of neutron superfluids”, Phys. Rev. C, 56, 2332–2335, (1997).
112 de Blasio, F.V., and Lazzari, G., “Unusual nuclear shapes and neutron specific heat of neutron star crusts”, Phys. Rev. C, 52, 418–420, (1995).
113 de Blasio, F.V., and Lazzari, G., “Vibrations of slabs and cylindrical nuclei”, Phys. Lett. B, 384, 1–4, (1996).
114 de Gennes, P.G., Superconductivity of Metals and Alloys, (W.A. Benjamin, New York, U.S.A., 1966).
115 de Gennes, P.G., and Prost, J., The Physics of Liquid Crystals, The International Series of Monographs on Physics, vol. 83, (Clarendon Press; Oxford University Press, Oxford, U.K.; New York, U.S.A., 1993), 2nd edition.
116 Dean, D.J., and Hjorth-Jensen, M., “Pairing in nuclear systems: from neutron stars to finite nuclei”, Rev. Mod. Phys., 75, 607–656, (2003).
117 Dechargé, J., and Gogny, D., “Hartree-Fock-Bogolyubov calculations with the D1 effective interaction on spherical nuclei”, Phys. Rev. C, 21, 1568–1593, (1980).
ADS: External Linkhttp://adsabs.harvard.edu/abs/1980PhRvC..21.1568D.
118 Department of Theoretical Astrophysics, Ioffe Physico Technical-Institute, “Neutron Star Group”, project homepage. URL (cited on 20 August 2007):
External Linkhttp://www.ioffe.ru/astro/NSG/.
119 Dobaczewski, J., Michel, N., Nazarewicz, W., Płoszajczak, M., and Rotureau, J., “Shell structure of exotic nuclei”, Prog. Part. Nucl. Phys., 59, 432–445, (2007). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/0701047.
120 Donati, P., and Pizzochero, P.M., “Is there Nuclear Pinning of Vortices in Superfluid Pulsars?”, Phys. Rev. Lett., 90, 211101, (2003).
121 Donati, P., and Pizzochero, P.M., “Fully consistent semi-classical treatment of vortex-nucleus interaction in rotating neutron stars”, Nucl. Phys. A, 742, 363–379, (2004).
122 Donati, P., and Pizzochero, P.M., “Realistic energies for vortex pinning in intermediate-density neutron star matter”, Phys. Lett. B, 640, 74–81, (2006).
123 Douchin, F., and Haensel, P., “Bounds on the Existence of Neutron Rich Nuclei in Neutron Star Interiors”, Acta Phys. Pol. B, 30, 1205, (1999). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/9808030.
124 Douchin, F., and Haensel, P., “Inner edge of neutron-star crust with SLy effective nucleon-nucleon interactions”, Phys. Lett. B, 485, 107–114, (2000). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0006135.
125 Douchin, F., and Haensel, P., “A unified equation of state of dense matter and neutron star structure”, Astron. Astrophys., 380, 151–167, (2001).
126 Douchin, F., Haensel, P., and Meyer, J., “Nuclear surface and curvature properties for SLy Skyrme forces and nuclei in the inner neutron-star crust”, Nucl. Phys. A, 665, 419–446, (2000).
127 Duine, R.A., and Stoof, H.T.C., “Atom-molecule coherence in Bose gases”, Phys. Rep., 396, 115–195, (2004). Related online version (cited on 24 April 2008):
External Linkhttp://arXiv.org/abs/cond-mat/0312254.
128 Duncan, R.C., “ ‘Magnetars’, soft gamma repeaters and very strong magnetic fields”, personal homepage, University of Texas Austin. URL (cited on 20 August 2007):
External Linkhttp://solomon.as.utexas.edu/~duncan/magnetar.html.
129 Duncan, R.C., “Global Seismic Oscillations in Soft Gamma Repeaters”, Astrophys. J. Lett., 498, L45, (1998). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/9803060.
130 Dutta, A.K., Onsi, M., and Pearson, J.M., “Proton-shell effects in neutron-star matter”, Phys. Rev. C, 69, 052801, (2004).
131 Dyson, F.J., “Volcano Theory of Pulsars”, Nature, 223, 486–487, (1969).
132 Easson, I., “Long-term changes in pulsar periods and the plasma in neutron star interiors”, Astrophys. J., 233, 711–716, (1979).
133 Easson, I., “Postglitch behavior of the plasma inside neutron stars”, Astrophys. J., 228, 257–267, (1979).
134 Elgarøy, Ø., and de Blasio, F.V., “Superfluid vortices in neutron stars”, Astron. Astrophys., 370, 939–950, (2001). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0102343.
135 Elgarøy, Ø., Engvik, L., Osnes, E., de Blasio, F.V., Hjorth-Jensen, M., and Lazzari, G., “Superfluidity and neutron star crust matter”, Phys. Rev. D, 54, 1848–1851, (1996). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/9509035.
136 Elgarøy, Ø., and Hjorth-Jensen, M., “Nucleon-nucleon phase shifts and pairing in neutron matter and nuclear matter”, Phys. Rev. C, 57, 1174–1177, (1998). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/9708026.
137 Ellis, T., and McClintock, P.V.E., “The Breakdown of Superfluidity in Liquid 4He V. Measurement of the Landau Critical Velocity for Roton Creation”, Philos. Trans. R. Soc. London, Ser. A, 315, 259–300, (1985).
138 Epstein, R.I., and Baym, G., “Vortex pinning in neutron stars”, Astrophys. J., 328, 680–690, (1988).
139 Epstein, R.I., and Baym, G., “Vortex drag and the spin-up time scale for pulsar glitches”, Astrophys. J., 387, 276–287, (1992).
140 Farine, M., Von-Eiff, D., Schuck, P., Berger, J.F., Dechargé, J., and Girod, M., “Towards a new effective interaction of the Gogny type”, J. Phys. G, 25, 863–866, (1999).
141 Feibelman, P.J., “Relaxation of Electron Velocity in a Rotating Neutron Superfluid: Application to the Relaxation of a Pulsar’s Slowdown Rate”, Phys. Rev. D, 4, 1589–1597, (1971).
142 Fetter, A.L., and Walecka, J.D., Quantum Theory of Many-Particle Systems, (Dover, Mineola, U.S.A., 2003).
143 Feynman, R.P., “Application of quantum mechanics to liquid helium”, in Gorter, C.J., ed., Progress in Low Temperature Physics, vol. 1, p. 17, (North-Holland, Amsterdam, Netherlands, 1955).
144 Feynman, R.P., Statistical Mechanics: A Set Of Lectures, Advanced Book Classics, (Westview Press, Boulder, U.S.A., 1998).
145 Feynman, R.P., and Cohen, M., “Energy Spectrum of the Excitations in Liquid Helium”, Phys. Rev., 102, 1189–1204, (1956).
146 Flowers, E., and Itoh, N., “Transport properties of dense matter”, Astrophys. J., 206, 218–242, (1976).
147 Flowers, E., and Itoh, N., “Transport properties of dense matter. II”, Astrophys. J., 230, 847–858, (1979).
148 Flowers, E., Ruderman, M., and Sutherland, P., “Neutrino pair emission from finite-temperature neutron superfluid and the cooling of young neutron stars”, Astrophys. J., 205, 541–544, (1976).
149 Franco, L.M., Link, B., and Epstein, R.I., “Quaking Neutron Stars”, Astrophys. J., 543, 987–994, (2000). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/9911105.
150 Freedman, D.Z., “Coherent effects of a weak neutral current”, Phys. Rev. D, 9, 1389–1392, (1974).
151 Fuchs, K., “A Quantum Mechanical Calculation of the Elastic Constants of Monovalent Metals”, Proc. R. Soc. London, Ser. A, 153, 622–639, (1936).
152 Fujimoto, M.Y., Hanawa, T., and Miyaji, S., “Shell flashes on accreting neutron stars and X-ray bursts”, Astrophys. J., 247, 267–278, (1981).
153 Galloway, D.K., Morgan, E.H., and Levine, A.M., “A Frequency Glitch in an Accreting Pulsar”, Astrophys. J., 613, 1164–1172, (2004). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0401476.
154 Gandelman, G.M., and Pinaev, V.S., “Emission of neutrino pairs by electrons and its importance in stars”, Zh. Eksp. Teor. Fiz., 37, 1072–1078, (1959). In Russian.
155 Gandelman, G.M., and Pinaev, V.S., “Emission of neutrino pairs by electrons and its importance in stars”, Sov. Phys. JETP, 10, 764, (1960).
156 Gelfand, J.D., “The radio nebula produced by the 27 December 2004 giant flare from SGR 1806-20”, Astrophys. Space Sci., 308, 39–42, (2007).
ADS: External Linkhttp://adsabs.harvard.edu/abs/2007Ap&SS.308...39G.
157 Gelfert, A., and Nolting, W., “The absence of finite-temperature phase transitions in low-dimensional many-body models: a survey and new results”, J. Phys.: Cond. Matter, 13, R505–R524, (2001). Related online version (cited on 26 May 2008):
External Linkhttp://arXiv.org/abs/cond-mat/0106090.
158 Geppert, U., Küker, M., and Page, D., “Temperature distribution in magnetized neutron star crusts”, Astron. Astrophys., 426, 267–277, (2004). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0403441.
159 Giacconi, R., Gursky, H., Paolini, F.R., and Rossi, B.B., “Evidence for X-Rays From Sources Outside the Solar System”, Phys. Rev. Lett., 9, 439–443, (1962).
160 Ginzburg, V.L., “Superfluidity and Superconductivity in the Universe”, J. Stat. Phys., 1, 3–24, (1969).
161 Ginzburg, V.L., and Kirzhnits, D.A., “On superfluidity of neutron stars”, Zh. Eksp. Teor. Fiz., 47, 2006, (1964).
162 Ginzburg, V.L., and Kirzhnits, D.A., “On the superfluidity of neutron stars”, Sov. Phys. JETP, 20, 1346, (1965).
163 Glampedakis, K., and Andersson, N., “Crust-core coupling in rotating neutron stars”, Phys. Rev. D, 74, 044040, (2006). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0411750.
164 Glampedakis, K., and Andersson, N., “Ekman layer damping of r modes revisited”, Mon. Not. R. Astron. Soc., 371, 1311–1321, (2006). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0607105.
165 Glampedakis, K., Samuelsson, L., and Andersson, N., “Elastic or magnetic? A toy model for global magnetar oscillations with implications for quasi-periodic oscillations during flares”, Mon. Not. R. Astron. Soc., 371, L74–L77, (2006). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0605461.
166 Glendenning, N.K., ed., Compact stars: nuclear physics, particle physics, and general relativity, Astronomy and Astrophysics Library, (Springer, New York, U.S.A.; Berlin, Germany, 2000), 2nd edition.
167 Gnedin, O.Y., Yakovlev, D.G., and Potekhin, A.Y., “Thermal relaxation in young neutron stars”, Mon. Not. R. Astron. Soc., 324, 725–736, (2001). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0012306.
168 Gögelein, P., and Müther, H., “Nuclear matter in the crust of neutron stars”, Phys. Rev. C, 76, 024312, (2007). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/0704.1984.
169 Gori, G., Ramponi, F., Barranco, F., Broglia, R.A., Colò, G., Sarchi, D., and Vigezzi, E., “Excitation modes and pairing interaction in the inner crust of a neutron stars”, Nucl. Phys. A, 731, 401–408, (2004).
170 Goriely, S., Demetriou, P., Janka, H.-T., Pearson, J.M., and Samyn, M., “The r-process nucleosynthesis: a continued challenge for nuclear physics and astrophysics”, Nucl. Phys. A, 758, 587–594, (2005). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0410429.
171 Goriely, S., Samyn, M., Pearson, J.M., and Onsi, M., “Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. IV: Neutron-matter constraint”, Nucl. Phys. A, 750, 425–443, (2005).
172 Gorkov, L.P., and Melik-Barkhudarov, T.K., “Contribution to the theory of super-fluidity in an imperfect Fermi gas”, Sov. Phys. JETP, 13, 1018, (1961).
173 Gorter, C.J., and Mellink, J.H., “On the irreversible processes in liquid helium II”, Physica, 15, 285–304, (1949).
174 Gourgoulhon, E., “An Introduction to Relativistic Hydrodynamics”, in Rieutord, M., and Dubrulle, B., eds., Stellar Fluid Dynamics and Numerical Simulations: From the Sun to Neutron Stars, Aussois and Cargèse, France, September 2004 and May 2005, EAS Publications Series, vol. 21, pp. 43–79, (EDP Sciences, Les Ulis, France, 2006).
175 Greenstein, G., “Superfluid turbulence in neutron stars”, Nature, 227, 791–794, (1970).
176 Grigorian, H., “Brightness constraint for cooling models of young neutron stars”, Phys. Rev. C, 74, 025801, (2006). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0507052.
177 Grindlay, J., Gursky, H., Schnopper, H., Parsignault, D.R., Heise, J., Brinkman, A.C., and Schrijver, J., “Discovery of intense X-ray bursts from the globular cluster NGC 6624”, Astrophys. J., 205, L127–L130, (1976).
178 Gupta, S., Brown, E.F., Schatz, H., Möller, P., and Kratz, K.-L., “Heating in the Accreted Neutron Star Ocean: Implications for Superburst Ignition”, Astrophys. J., 662, 1188–1197, (2007). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0609828.
179 Gusakov, M.E., Yakovlev, D.G., Haensel, P., and Gnedin, O.Y., “Direct Urca process in a neutron star mantle”, Astron. Astrophys., 421, 1143–1148, (2004). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0404165.
180 Haberl, F., Turolla, R., de Vries, C.P., Zane, S., Vink, J., Méndez, M., and Verbunt, F., “Evidence for precession of the isolated neutron star RX J0720.4-3125”, Astron. Astrophys., 451, L17–L21, (2006). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0603724.
181 Haensel, P., Kaminker, A.D., and Yakovlev, D.G., “Electron neutrino-antineutrino bremsstrahlung in a liquid phase of neutron star crusts”, Astron. Astrophys., 314, 328–340, (2003). Related online version (cited on 28 April 2008):
External Linkhttp://arXiv.org/abs/astro-ph/9604073.
182 Haensel, P., Levenfish, K.P., and Yakovlev, D.G., “Bulk viscosity in superfluid neutron star cores. III. Effects of Σ hyperons”, Astron. Astrophys., 381, 1080–1089, (2002). Related online version (cited on 28 April 2008):
External Linkhttp://arXiv.org/abs/astro-ph/0110575.
183 Haensel, P., and Pichon, B., “Experimental nuclear masses and the ground state of cold dense matter”, Astron. Astrophys., 283, 313–318, (1994). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/9310003.
184 Haensel, P., Potekhin, A.Y., and Yakovlev, D.G., Neutron Stars 1: Equation of State and Structure, Astrophysics and Space Science Library, vol. 326, (Springer, New York, U.S.A., 2007).
185 Haensel, P., and Zdunik, J.L., “Equation of state and structure of the crust of an accreting neutron star”, Astron. Astrophys., 229, 117–122, (1990).
186 Haensel, P., and Zdunik, J.L., “Non-equilibrium processes in the crust of an accreting neutron star”, Astron. Astrophys., 227, 431–436, (1990).
187 Haensel, P., and Zdunik, J.L., “Nuclear composition and heating in accreting neutron-star crusts”, Astron. Astrophys., 404, L33–L36, (2003). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0305220.
188 Haensel, P., and Zdunik, J.L., “Models of crustal heating in accreting neutron stars”, Astron. Astrophys., 480, 459–464, (2008). Related online version (cited on 16 June 2008):
External Linkhttp://arXiv.org/abs/0708.3996.
189 Harding, D., Guyer, R.A., and Greenstein, G., “Superfluidity in neutron stars. III. Relaxation processes between the superfluid and the crust”, Astrophys. J., 222, 991–1005, (1978).
ADS: External Linkhttp://adsabs.harvard.edu/abs/1978ApJ...222..991H.
190 Hartle, J.B., “Slowly Rotating Relativistic Stars. I. Equations of Structure”, Astrophys. J., 150, 1005–1029, (1967).
191 Hashimoto, M., Seki, H., and Yamada, M., “Shape of Nuclei in the Crust of Neutron Star”, Prog. Theor. Phys., 71, 320–326, (1984).
ADS: External Linkhttp://adsabs.harvard.edu/abs/1984PThPh..71..320H.
192 Haskell, B., Jones, D.I., and Andersson, N., “Mountains on neutron stars: accreted versus non-accreted crusts”, Mon. Not. R. Astron. Soc., 373, 1423–1439, (2006). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0609438.
193 Haskell, B., Samuelsson, L., Glampedakis, K., and Andersson, N., “Modelling magnetically deformed neutron stars”, Mon. Not. R. Astron. Soc., 385, 531–542, (2008). Related online version (cited on 16 June 2008):
External Linkhttp://arXiv.org/abs/0705.1780.
194 Heinz, S., Schulz, N.S., Brandt, W.N., and Galloway, D.K., “Evidence of a Parsec-Scale X-Ray Jet from the Accreting Neutron Star Circinus X-1”, Astrophys. J., 663, L93–L96, (2007). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/0706.3881.
195 Hessels, J.W.T., Ransom, S.M., Stairs, I.H., Freire, P.C.C., Kaspi, V.M., and Camilo, F., “A Radio Pulsar Spinning at 716 Hz”, Science, 311, 1901–1904, (2006). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0601337.
196 Heyl, J.S., “r-Modes on Rapidly Rotating, Relativistic Stars. I. Do Type I Bursts Excite Modes in the Neutron Star Ocean?”, Astrophys. J., 600, 939–945, (2004). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0108450.
197 Hillebrandt, W., Wolff, R.G., and Nomoto, K., “Supernova explosions of massive stars. The mass range 8 to 10 M”, Astron. Astrophys., 133, 175–184, (1984).
ADS: External Linkhttp://adsabs.harvard.edu/abs/1984A&A...133..175H.
198 Hirasawa, M., and Shibazaki, N., “Vortex Configurations, Oscillations, and Pinning in Neutron Star Crusts”, Astrophys. J., 563, 267–275, (2001). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0109196.
199 Hobbs, G., Lyne, A.G., Joshi, B.C., Kramer, M., Stairs, I.H., Camilo, F., Manchester, R.N., D’Amico, N., Possenti, A., and Kaspi, V.M., “A very large glitch in PSR J1806-2125”, Mon. Not. R. Astron. Soc., 333, L7–L10, (2002). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0204445.
200 Horner, H., “Scattering Function S(Q,ω) for Solid Helium”, Phys. Rev. Lett., 29, 556–558, (1972).
201 Horowitz, C.J., Pérez-García, M.A., Berry, D.K., and Piekarewicz, J., “Dynamical response of the nuclear ‘pasta’ in neutron star crusts”, Phys. Rev. C, 72, 035801, (2005). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/0508044.
202 Hund, F., “Materie unter sehr hohen Drucken und Temperaturen”, Ergeb. Exakten Naturwiss., 15, 189–228, (1936).
203 Hund, F., “Matter under very high pressures and temperatures”, in Riffert, H., Müther, H., Herold, H., and Ruder, H., eds., Matter at High Densities in Astrophysics: Compact Stars and the Equation of State, Springer Tracts in Modern Physics, vol. 133, pp. 217–257, (Springer, Berlin, Germany; New York, U.S.A., 1996).
204 Hüttner, B., “A new method for the determination of the optical mass of electrons in metals”, J. Phys.: Cond. Matter, 8, 11041–11052, (1996).
205 Iida, K., and Sato, K., “Spin-down of Neutron Stars and Compositional Transitions in the Cold Crustal Matter”, Astrophys. J., 477, 294, (1997). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/9609093.
206 Iida, K., Watanabe, G., and Sato, K., “Formation of Nuclear ‘Pasta’ in Cold Neutron Star Matter”, Prog. Theor. Phys., 106, 551–559, (2001). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/0108034.
207 Iida, K., Watanabe, G., and Sato, K., “Formation of Nuclear ‘Pasta’ in Cold Neutron Star Matter”, Prog. Theor. Phys., 110, 847–848, (2003).
208 INFN, “The Virgo Project”, project homepage. URL (cited on 20 August 2007):
External Linkhttp://www.virgo.infn.it/.
209 Inman, C.L., and Ruderman, M.A., “Plasma Neutrino Emission from a Hot, Dense Electron Gas”, Astrophys. J., 140, 1025, (1964).
210 Institut für Theoretische Physik, “Matthias Hempel’s homepage”, personal homepage. URL (cited on 20 August 2007):
External Linkhttp://th.physik.uni-frankfurt.de/~hempel/.
211 Institute of Astronomy and Astrophysics, Université Libre de Bruxelles, “BRUSLIB: the Brussels Nuclear Library for Astrophysics Applications”, online resource. URL (cited on 20 August 2007):
External Linkhttp://www.astro.ulb.ac.be/Html/bruslib.html.
212 Instituto de Astronomía UNAM, “Neutron Star Theory Group at UNAM”, project homepage. URL (cited on 20 August 2007):
External Linkhttp://www.astroscu.unam.mx/neutrones/.
213 in’t Zand, J.J.M., Cornelisse, R., Kuulkers, E., Heise, J., Kuiper, L., Bazzano, A., Cocchi, M., Muller, J.M., Natalucci, L., Smith, M.J.S., and Ubertini, P., “The first outburst of SAX J1808.4-3658 revisited”, Astron. Astrophys., 372, 916–921, (2001). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0104285.
214 Israel, G.L., Belloni, T., Stella, L., Rephaeli, Y., Gruber, D.E., Casella, P., Dall’Osso, S., Rea, N., Persic, M., and Rothschild, R.E., “The Discovery of Rapid X-Ray Oscillations in the Tail of the SGR 1806-20 Hyperflare”, Astrophys. J., 628, L53–L56, (2005). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0505255.
215 Itoh, N., Adachi, T., Nakagawa, M., Kohyama, Y., and Munakata, H., “Neutrino Energy Loss in Stellar Interiors. III. Pair, Photo-, Plasma, and Bremsstrahlung Processes”, Astrophys. J., 339, 354–364, (1989).
ADS: External Linkhttp://adsabs.harvard.edu/abs/1989ApJ...339..354I.
216 Itoh, N., Adachi, T., Nakagawa, M., Kohyama, Y., and Munakata, H., “Erratum: Neutrino Energy Loss in Stellar Interiors. III. Pair, Photo-, Plasma, and Bremsstrahlung Processes”, Astrophys. J., 360, 741, (1993).
ADS: External Linkhttp://adsabs.harvard.edu/abs/1990ApJ...360..741N.
217 Itoh, N., Hayashi, H., Nishikawa, A., and Kohyama, Y., “Neutrino Energy Loss in Stellar Interiors. VII. Pair, Photo-, Plasma, Bremsstrahlung, and Recombination Neutrino Processes”, Astrophys. J. Suppl. Ser., 102, 411–424, (1996).
ADS: External Linkhttp://adsabs.harvard.edu/abs/1996ApJS..102..411I.
218 Jaikumar, P., Meyer, B.S., Otsuki, K., and Ouyed, R., “Nucleosynthesis in neutron-rich ejecta from quark-novae”, Astron. Astrophys., 471, 227–236, (2007).
219 Janka, H.-T., Langanke, K., Marek, A., Martínez-Pinedo, G., and Müller, B., “Theory of core-collapse supernovae”, Phys. Rep., 442, 38–74, (2007). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0612072.
220 Jaranowski, P., Królak, A., and Schutz, B.F., “Data analysis of gravitational-wave signals from spinning neutron stars: The signal and its detection”, Phys. Rev. D, 58(6), 063001, (1998). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/gr-qc/9804014.
221 Jog, C.J., and Smith, R.A., “Mixed lattice phases in cold dense matter”, Astrophys. J., 253, 839–841, (1982).
222 Jones, P.B., “Rotation of the neutron-drip superfluid in pulsars: temperature-dependence of the resistive force”, Mon. Not. R. Astron. Soc., 244, 675–679, (1990).
ADS: External Linkhttp://adsabs.harvard.edu/abs/1990MNRAS.244..675J.
223 Jones, P.B., “Rotation of the neutron-drip superfluid in pulsars: the Kelvin phonon contribution to dissipation”, Mon. Not. R. Astron. Soc., 257, 501–506, (1992).
ADS: External Linkhttp://adsabs.harvard.edu/abs/1992MNRAS.257..501J.
224 Jones, P.B., “Amorphous and Heterogeneous Phase of Neutron Star Matter”, Phys. Rev. Lett., 83, 3589–3592, (1999).
225 Jones, P.B., “First-principles point-defect calculations for solid neutron star matter”, Mon. Not. R. Astron. Soc., 321, 167–175, (2001).
226 Jönsson, B., Lindman, B., Holmberg, K., and Kronberg, B., Surfactants and Polymers in Aqueous Solution, (Wiley, Chichester, U.K.; New York, U.S.A., 1998).
227 Kaaret, P., Prieskorn, Z., Zand, J.J.M.i., Brandt, S., Lund, N., Mereghetti, S., Götz, D., Kuulkers, E., and Tomsick, J.A., “Evidence of 1122 Hz X-Ray Burst Oscillations from the Neutron Star X-Ray Transient XTE J1739-285”, Astrophys. J., 657, L97–L100, (2007). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0611716.
228 Kaminker, A.D., Gnedin, O.Y., Yakovlev, D.G., Amsterdamski, P., and Haensel, P., “Neutrino emissivity from ee+ annihilation in a strong magnetic field: hot, nondegenerate plasma”, Phys. Rev. D, 46, 4133–4139, (1992).
229 Kaminker, A.D., Haensel, P., and Yakovlev, D.G., “Nucleon superfluidity vs. observations of cooling neutron stars”, Astron. Astrophys., 373, L17–L20, (2001). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0105047.
230 Kaminker, A.D., Levenfish, K.P., Yakovlev, D.G., Amsterdamski, P., and Haensel, P., “Neutrino emissivity from e synchrotron and ee+ annihilation processes in a strong magnetic field: general formalism and nonrelativistic limit”, Phys. Rev. D, 46, 3256–3264, (1992).
231 Kaminker, A.D., Pethick, C.J., Potekhin, A.Y., Thorsson, V., and Yakovlev, D.G., “Neutrino-pair bremsstrahlung by electrons in neutron star crusts”, Astron. Astrophys., 343, 1009–1024, (1999). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/9812447.
232 Kaspi, V.M., and Gavriil, F.P., “A Second Glitch from the “Anomalous” X-Ray Pulsar 1RXS J170849.0-4000910”, Astrophys. J., 596, L71–L74, (2003).
233 Kaspi, V.M., Gavriil, F.P., Woods, P.M., Jensen, J.B., Roberts, M.S.E., and Chakrabarty, D., “A Major Soft Gamma Repeater-like Outburst and Rotation Glitch in the No-longer-so-anomalous X-Ray Pulsar 1E 2259+586”, Astrophys. J., 588, L93–L96, (2003). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0304205.
234 Kaspi, V.M., Lackey, J.R., and Chakrabarty, D., “A Glitch in an Anomalous X-Ray Pulsar”, Astrophys. J., 537, L31–L34, (2000).
235 Ketterle, W., “Bose-Einstein condensation in dilute atomic gases: atomic physics meets condensed matter physics”, Physica B, 280, 11–19, (2000).
236 Khalatnikov, I.M., An Introduction to the Theory of Superfluidity, (Addison-Wesley, Redwood City, U.S.A., 1989).
237 Khan, E., Sandulescu, N., and Giai, N.V., “Collective excitations in the inner crust of neutron stars: Supergiant resonances”, Phys. Rev. C, 71, 042801, (2005). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/0411056.
238 Kinney, J.B., and Mendell, G., “r-modes in accreting neutron stars with magnetoviscous boundary layers”, Phys. Rev. D, 67(2), 024032, (2003). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0206001.
239 Kirszhnits, D.A., “Superfluidity and superconductivity of neutron pulsar stars”, Radiophys. Quantum Electron., 13, 1424–1427, (1970).
240 Kirzhnits, D.A., “Superconductivity in systems with arbitrary interaction sign”, J. Exp. Theor. Phys. Lett., 9, 360–364, (1969).
ADS: External Linkhttp://adsabs.harvard.edu/abs/1969ZhPmR...9..360K.
241 Kittel, C., Introduction to Solid State Physics, (Wiley, New York, U.S.A., 1996), 7th edition.
242 Kohanoff, J., and Hansen, J.-P., “Statistical properties of the dense hydrogen plasma: An ab initio molecular dynamics investigation”, Phys. Rev. E, 54, 768–781, (1996).
243 Kohn, W., and Sham, L.J., “Self-Consistent Equations Including Exchange and Correlation Effects”, Phys. Rev., 140, 1133–1138, (1965).
ADS: External Linkhttp://adsabs.harvard.edu/abs/1965PhRv..140.1133K.
244 Kokkotas, K.D., and Schmidt, B., “Quasi-Normal Modes of Stars and Black Holes”, Living Rev. Relativity, 2, lrr-1999–2, (1999). URL (cited on 2 October 2007):
http://www.livingreviews.org/lrr-1999-2.
245 Kolomeitseiv, E.E., and Voskresensky, D.N., “Neutrino emission due to Cooper-pair recombination in neutron stars reexamined”, Phys. Rev. C, 77, 065808, (2008). Related online version (cited on 8 December 2008):
External Linkhttp://arXiv.org/abs/0802.1404.
246 Landau, L.D., “On the Theory of Superfluidity of Helium II”, J. Phys. (Moscow), 6, 91–92, (1941).
247 Landau, L.D., “The Theory of Superfluidity of Helium II”, J. Phys. (Moscow), 5, 71–90, (1941).
248 Landau, L.D., and Lifshitz, E.M., The Classical Theory of Fields, Course of Theoretical Physics, vol. 2, (Pergamon Press, Oxford, U.K.; New York, U.S.A., 1975), 4th edition.
249 Landau, L.D., and Lifshitz, E.M., Theory of Elasticity, (Pergamon Press, Oxford, U.K., 1986).
250 Langanke, K., “Neutrino nucleus reactions in core-collapse supernovae”, Prog. Part. Nucl. Phys., 57, 324–333, (2006).
251 Larson, M.B., and Link, B., “Simulations of glitches in isolated pulsars”, Mon. Not. R. Astron. Soc., 333, 613–622, (2002). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0105461.
252 Lassaut, M., Flocard, H., Bonche, P., Heenen, P.H., and Suraud, E., “Equation of state of hot dense matter”, Astron. Astrophys., 183, L3–L6, (1987).
253 Lattimer, J.M., Mackie, F., Ravenhall, D.G., and Schramm, D.N., “The decompression of cold neutron star matter”, Astrophys. J., 213, 225–233, (1977).
254 Lattimer, J.M., Prakash, M., Pethick, C.J., and Haensel, P., “Direct URCA process in neutron stars”, Phys. Rev. Lett., 66, 2701–2704, (1991).
255 Lattimer, J.M., and Swesty, F.D., “A generalized equation of state for hot, dense matter”, Nucl. Phys. A, 535, 331–376, (1991).
256 Lattimer, J.M., van Riper, K.A., Prakash, M., and Prakash, M., “Rapid cooling and the structure of neutron stars”, Astrophys. J., 425, 802–813, (1994).
257 Lee, U., “Axisymmetric oscillations of magnetic neutron stars”, Mon. Not. R. Astron. Soc., 374, 1015–1029, (2007). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0610182.
258 Legut, D., Friák, M., and Šob, M., “Why Is Polonium Simple Cubic and So Highly Anisotropic?”, Phys. Rev. Lett., 99, 016402, (2007).
259 Leinson, L.B., “Neutrino Emission from the Bubble Phase of Stellar Nuclear Matter”, Astrophys. J., 415, 759, (1993).
260 Leinson, L.B., “Neutrino Pair Emission from the Inner Crust of a Neutron Star”, Space Sci. Rev., 74, 481–484, (1995).
261 Levenfish, K.P., and Haensel, P., “Nucleon superfluidity versus thermal states of isolated and transiently accreting neutron stars”, Astrophys. Space Sci., 308, 457–465, (2007). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0611115.
262 Levin, Y., “On the theory of magnetar QPOs”, Mon. Not. R. Astron. Soc., 377, 159–167, (2007). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0612725.
263 Levin, Y., and Ushomirsky, G., “Crust–core coupling and r-mode damping in neutron stars: a toy model”, Mon. Not. R. Astron. Soc., 324, 917–922, (2001). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0006028.
264 Lindblom, L., and Owen, B. J., “Effect of hyperon bulk viscosity on neutron star r-modes”, Phys. Rev. D, 65, 063006, (2002). Related online version (cited on 28 April 2008):
External Linkhttp://arXiv.org/abs/astro-ph/0110558.
265 Lindblom, L., Owen, B.J., and Ushomirsky, G., “Effect of a neutron-star crust on the r-mode instability”, Phys. Rev. D, 62, 084030, (2000). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0006242.
266 Link, B., and Cutler, C., “Vortex unpinning in precessing neutron stars”, Mon. Not. R. Astron. Soc., 336, 211–216, (2002). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0108281.
267 Link, B., and Epstein, R.I., “Thermally Driven Neutron Star Glitches”, Astrophys. J., 457, 844, (1996). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/9508021.
268 Link, B., Epstein, R.I., and Baym, G., “Superfluid vortex creep and rotational dynamics of neutron stars”, Astrophys. J., 403, 285–302, (1993).
ADS: External Linkhttp://adsabs.harvard.edu/abs/1993ApJ...403..285L.
269 Link, B., Epstein, R.I., and Lattimer, J.M., “Pulsar Constraints on Neutron Star Structure and Equation of State”, Phys. Rev. Lett., 83, 3362–3365, (1999). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/9909146.
270 L’Observatoire de Paris, “LORENE: Langage Objet pour la RElativité NumériquE”, project homepage. URL (cited on 10 September 2007):
External Linkhttp://www.lorene.obspm.fr/.
271 Lombardo, U., and Schulze, H.-J., “Superfluidity in Neutron Star Matter”, in Blaschke, D., Glendenning, N.K., and Sedrakian, A., eds., Physics of Neutron Star Interiors, International Workshop on Physics of Neutron Star Interiors, ECT* Trento, Italy, June 19 – July 7, 2000, Lecture Notes in Physics, vol. 578, pp. 30–53, (Springer, Berlin, Germany; New York, U.S.A., 2001).
272 London, F., “The-phenomenon of liquid helium and the Bose-Einstein degeneracy”, Nature, 141, 643–644, (1938).
273 Lorenz, C.P., Dense Matter and the Compressible Liquid Drop Model, Ph.D. Thesis, (University of Illinois at Urbana-Champaign, Urbana-Champaign, U.S.A., 1991).
274 Lorenz, C.P., Ravenhall, D.G., and Pethick, C.J., “Neutron star crusts”, Phys. Rev. Lett., 70, 379–382, (1993).
275 Lyne, A.G., and Graham-Smith, F., Pulsar Astronomy, Cambridge Astrophysics Series, vol. 31, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1998), 2nd edition.
276 Lyne, A.G., Shemar, S.L., and Smith, F.G., “Statistical studies of pulsar glitches”, Mon. Not. R. Astron. Soc., 315, 534–542, (2000).
277 Mackie, F.D., and Baym, G., “Compressible liquid drop nuclear model and mass formula”, Nucl. Phys. A, 285, 332–348, (1977).
278 Magierski, P., and Heenen, P.-H., “Structure of the inner crust of neutron stars: Crystal lattice or disordered phase?”, Phys. Rev. C, 65, 045804, (2002). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/0112018.
279 Markwardt, C.B., Miller, J.M., and Wijnands, R., “Sax J1808.4-3658”, IAU Circ., 2002(7993), (2002). Related online version (cited on 23 June 2008):
External Linkhttp://www.cfa.harvard.edu/iauc/07900/07993.html.
280 Martínez-Pinedo, G., Liebendörfer, M., and Frekers, D., “Nuclear input for core-collapse models”, Nucl. Phys. A, 777, 395–423, (2006). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0412091.
281 Maruyama, T., Tatsumi, T., Endo, T., and Chiba, S., “Pasta structures in compact stars”, (2006). URL (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/0605075.
282 Maruyama, T., Tatsumi, T., Voskresensky, D.N., Tanigawa, T., and Chiba, S., “Nuclear ‘pasta’ structures and the charge screening effect”, Phys. Rev. C, 72, 015802, (2005). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/0503027.
283 Matsuo, M., “Spatial structure of neutron Cooper pair in low density uniform matter”, Phys. Rev. C, 73, 044309, (2006). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/0512021.
284 Matsuzaki, M., “Ordered bicontinuous double-diamond morphology in subsaturation nuclear matter”, Phys. Rev. C, 73, 028801, (2006). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/0510044.
285 McDermott, P.N., van Horn, M., and Hansen, C.J., “Nonradial oscillations of neutron stars”, Astrophys. J., 325, 725–748, (1988).
286 McKenna, J., and Lyne, A.G., “PSR1737–30 and period discontinuities in young pulsars”, Nature, 343, 349–350, (1990).
287 Medin, Z., and Lai, D., “Condensed surfaces of magnetic neutron stars, thermal surface emission, and particle acceleration above pulsar polar caps”, Mon. Not. R. Astron. Soc., 382, 1833–1852, (2007). Related online version (cited on 16 June 2008):
External Linkhttp://arXiv.org/abs/0708.3863.
288 Melatos, A., and Peralta, C., “Superfluid Turbulence and Pulsar Glitch Statistics”, Astrophys. J., 662, L99–L102, (2007).
289 Mendell, G., “Magnetic effects on the viscous boundary layer damping of the r-modes in neutron stars”, Phys. Rev. D, 64, 044009, (2001). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0102042.
290 Messios, N., Papadopoulos, D.B., and Stergioulas, N., “Torsional oscillations of magnetized relativistic stars”, Mon. Not. R. Astron. Soc., 328, 1161–1168, (2001). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0105175.
291 Migdal, A.B., “Superfluidity and the moments of inertia of nuclei”, Nucl. Phys., 13, 655, (1959).
292 Miralda-Escudé, J., Paczyński, B., and Haensel, P., “Thermal structure of accreting neutron stars and strange stars”, Astrophys. J., 362, 572–583, (1990).
293 Mochizuki, Y., Izuyama, T., and Tanihata, I., “Dynamics of Exotic Nuclear Rod Formation for the Origin of Neutron Star Glitches”, Astrophys. J., 521, 281–296, (1999).
294 Monrozeau, C., Margueron, J., and Sandulescu, N., “Nuclear superfluidity and cooling time of neutron star crusts”, Phys. Rev. C, 75(6), 065807, (2007). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/0703064.
295 Montani, F., May, C., and Müther, H., “Mean field and pairing properties in the crust of neutron stars”, Phys. Rev. C, 69, 065801, (2004). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/0401024.
296 Morii, M., Kawai, N., and Shibazaki, N., “A Pulse Profile Change Possibly Associated with a Glitch in the Anomalous X-Ray Pulsar 4U 0142+61”, Astrophys. J., 622, 544–548, (2005). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0412106.
297 Morsch, O., and Oberthaler, M., “Dynamics of Bose-Einstein condensates in optical lattices”, Rev. Mod. Phys., 78, 179–215, (2006).
298 Motokowa, M., “Physics in high magnetic fields”, Rep. Prog. Phys., 67, 1995–2052, (2004).
299 MPI for Gravitational Physics (Albert Einstein Institute), “GEO600: The German-British Gravitational Wave Detector”, project homepage. URL (cited on 20 August 2007):
External Linkhttp://geo600.aei.mpg.de/.
300 Nandkumar, R., and Pethick, C.J., “Transport coefficients of dense matter in the liquid metal regime”, Mon. Not. R. Astron. Soc., 209, 511–524, (1984).
301 National Astronomical Observatory, “TAMA300: The 300m Laser Interferometer Gravitational Wave Antenna”, project homepage. URL (cited on 20 August 2007):
External Linkhttp://tamago.mtk.nao.ac.jp/.
302 Negele, J.W., and Vautherin, D., “Density-Matrix Expansion for an Effective Nuclear Hamiltonian”, Phys. Rev. C, 5, 1472–1493, (1972).
303 Negele, J.W., and Vautherin, D., “Neutron star matter at sub-nuclear densities”, Nucl. Phys. A, 207, 298–320, (1973).
304 Newton, W.G., Stone, J.R., and Mezzacappa, A., “From microscales to macroscales in 3D: selfconsistent equation of state for supernova and neutron star models”, J. Phys.: Conf. Ser., 46, 408–412, (2006). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/0708.3197.
305 Nobel Foundation, “The Nobel Prize in Physics 1974”, institutional homepage, (1974). URL (cited on 6 September 2007):
External Linkhttp://nobelprize.org/nobel_prizes/physics/laureates/1974/.
306 Nobel Foundation, “The Nobel Prize in Physics 1993”, institutional homepage, (1993). URL (cited on 6 September 2007):
External Linkhttp://nobelprize.org/nobel_prizes/physics/laureates/1993/.
307 Nozières, P., “Is the Roton in Superfluid 4He the Ghost of a Bragg Spot?”, J. Low Temp. Phys., 137, 45–67, (2004).
308 Ogasawara, R., and Sato, K., “Nuclei in Neutrino-Degenerate Dense Matter. I – Cold Case –”, Prog. Theor. Phys., 68, 222–235, (1982).
ADS: External Linkhttp://adsabs.harvard.edu/abs/1982PThPh..68..222O.
309 Ogata, S., and Ichimaru, S., “First-principles calculations of shear moduli for Monte Carlo-simulated Coulomb solids”, Phys. Rev. A, 42, 4867–4870, (1990).
310 Onsager, L., “Statistical hydrodynamics”, Nuovo Cimento, 6, 249, (1949).
311 Onsi, M., Dutta, A.K., Chatri, H., Goriely, S., Chamel, N., and Pearson, J.M., “Semi-classical equation of state and specific-heat expressions with proton shell corrections for the inner crust of a neutron star”, Phys. Rev. C, 77, 065805, (2008). Related online version (cited on 8 December 2008):
External Linkhttp://arXiv.org/abs/0806.0296.
312 Onsi, M., Przysiezniak, H., and Pearson, J.M., “Equation of state of stellar nuclear matter in the temperature-dependent extended Thomas-Fermi formalism”, Phys. Rev. C, 55, 3139–3148, (1997).
313 Oppenheimer, J.R., and Volkoff, G.M., “On Massive Neutron Cores”, Phys. Rev., 55, 374–381, (1939).
314 Oyamatsu, K., “Nuclear shapes in the inner crust of a neutron star”, Nucl. Phys. A, 561, 431–452, (1993).
315 Oyamatsu, K., Hashimoto, M., and Yamada, M., “Further Study of the Nuclear Shape in High-Density Matter”, Prog. Theor. Phys., 72, 373–375, (1984).
316 Oyamatsu, K., and Yamada, M., “Shell energies of non-spherical nuclei in the inner crust of a neutron star”, Nucl. Phys. A, 578, 181–203, (1994).
317 Packard, R.E., “Pulsar speedups related to metastability of the superfluid neutron-star core.”, Phys. Rev. Lett., 28, 1080–1082, (1972).
318 Page, D., Geppert, U., and Weber, F., “The cooling of compact stars”, Nucl. Phys. A, 777, 497–530, (2006). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0508056.
319 Pandharipande, V.R., Pines, D., and Smith, R.A., “Neutron star structure: theory, observation, and speculation.”, Astrophys. J., 208, 550–566, (1976).
320 Pandharipande, V.R., and Ravenhall, D.G., “Hot Nuclear Matter”, in Soyeur, M., Flocard, H., Tamain, B., and Porneuf, M., eds., Nuclear Matter and Heavy Ion Collisions, Proceedings of a NATO Advanced Research Workshop, held February 7 – 16, 1989, in Les Houches, France, NATO ASI Series B, vol. 205, p. 103, (Plenum Press, New York, U.S.A., 1989).
321 Papenbrock, T., and Bertsch, G.F., “Pairing in low-density Fermi gases”, Phys. Rev. C, 59, 2052–2055, (1999). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/9811077.
322 Penrose, O., and Onsager, L., “Bose-Einstein Condensation and Liquid Helium”, Phys. Rev., 104, 576–584, (1956).
323 Peralta, C., Melatos, A., Giacobello, M., and Ooi, A., “Global Three-dimensional Flow of a Neutron Superfluid in a Spherical Shell in a Neutron Star”, Astrophys. J., 635, 1224–1232, (2005). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0509416.
324 Peralta, C., Melatos, A., Giacobello, M., and Ooi, A., “Transitions between Turbulent and Laminar Superfluid Vorticity States in the Outer Core of a Neutron Star”, Astrophys. J., 651, 1079–1091, (2006). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0607161.
325 Pethick, C.J., and Potekhin, A.Y., “Liquid crystals in the mantles of neutron stars”, Phys. Lett. B, 427, 7–12, (1998). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/9803154.
326 Pethick, C.J., and Ravenhall, D.G., “Matter at large neutron excess and the physics of neutron-star crusts”, Annu. Rev. Nucl. Part. Sci., 45, 429–484, (1995).
327 Pethick, C.J., Ravenhall, D.G., and Lattimer, J.M., “Effect of nuclear curvature energy on the transition between nuclei and bubbles in dense matter”, Phys. Lett. B, 128, 137–140, (1983).
328 Piro, A.L., “Shear Waves and Giant-Flare Oscillations from Soft Gamma-Ray Repeaters”, Astrophys. J. Lett., 634, L153–L156, (2005). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0510578.
329 Piro, A.L., and Bildsten, L., “Neutron Star Crustal Interface Waves”, Astrophys. J., 619, 1054–1063, (2005). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0410197.
330 Piro, A.L., and Bildsten, L., “Surface Modes on Bursting Neutron Stars and X-Ray Burst Oscillations”, Astrophys. J., 629, 438–450, (2005). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0502546.
331 Piro, A.L., and Bildsten, L., “The Energy Dependence of Neutron Star Surface Modes and X-Ray Burst Oscillations”, Astrophys. J., 638, 968–937, (2006). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0510663.
332 Pizzochero, P.M., Barranco, F., Vigezzi, E., and Broglia, R.A., “Nuclear Impurities in the Superfluid Crust of Neutron Stars: Quantum Calculation and Observable Effects on the Cooling”, Astrophys. J., 569, 381–394, (2002).
333 Pizzochero, P.M., Viverit, L., and Broglia, R.A., “Vortex-Nucleus Interaction and Pinning Forces in Neutron Stars”, Phys. Rev. Lett., 79, 3347–3350, (1997). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/9709060.
334 Pomeau, Y., and Rica, S., “Dynamics of a model of supersolid”, Phys. Rev. Lett., 72, 2426–2429, (1994).
335 Pontecorvo, B.M., Zh. Eksp. Teor. Fiz., 36, 1615, (1959).
336 Pontecorvo, B.M., Sov. Phys. JETP, 9, 1148, (1959).
337 Postnov, K.A., and Yungelson, L.R., “The Evolution of Compact Binary Star Systems”, Living Rev. Relativity, 9, lrr-2006-6, (2006). URL (cited on 2 October 2007):
http://www.livingreviews.org/lrr-2006-6.
338 Potekhin, A.Y., “Electron conduction in magnetized neutron star envelopes”, Astron. Astrophys., 351, 787–797, (1999). Related online version (cited on 12 June 2008):
External Linkhttp://arXiv.org/abs/astro-ph/9909100.
339 Potekhin, A.Y., Baiko, D.A., Haensel, P., and Yakovlev, D.G., “Transport properties of degenerate electrons in neutron star envelopes and white dwarf cores”, Astron. Astrophys., 346, 345–353, (1999). Related online version (cited on 26 May 2008):
External Linkhttp://arXiv.org/abs/astro-ph/9903127.
340 Prakash, M., Lattimer, J.M., and Ainsworth, T.L., “Equation of state and the maximum mass of neutron stars”, Phys. Rev. Lett., 61, 2518–2521, (1988).
341 Prigogine, I., Introduction to thermodynamics of irreversible processes, (Interscience Publishers, New York, U.S.A., 1960).
342 Prix, R., “Variational description of multifluid hydrodynamics: Uncharged fluids”, Phys. Rev. D, 69, 043001, (2004). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/physics/0209024.
343 Prix, R., “Variational description of multifluid hydrodynamics: Coupling to gauge fields”, Phys. Rev. D, 71, 083006, (2005). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/physics/0503217.
344 Ravenhall, D.G., Bennett, C.D., and Pethick, C.J., “Nuclear surface energy and neutron-star matter.”, Phys. Rev. Lett., 28, 978–981, (1972).
345 Ravenhall, D.G., Pethick, C.J., and Wilson, J.R., “Structure of Matter below Nuclear Saturation Density”, Phys. Rev. Lett., 50, 2066–2069, (1983).
346 Ring, P., and Schuck, P., The Nuclear Many-Body Problem, (Springer, Berlin, Germany; New York, U.S.A., 1980).
347 Ritus, V.I., “Photoproduction of neutrinos of electrons and the neutrino radiation from stars”, Zh. Eksp. Teor. Fiz., 41, 1285–1293, (1961). In Russian.
348 Ritus, V.I., “Photoproduction of neutrinos of electrons and the neutrino radiation from stars”, Sov. Phys. JETP, 14, 915, (1961).
349 Ruderman, M., “Neutron star quakes and pulsar periods”, Nature, 223, 597, (1969).
350 Ruderman, M., “Pulsars: Structure and Dynamics”, Annu. Rev. Astron. Astrophys., 10, 427, (1972).
351 Ruderman, M., “Crust-breaking by neutron superfluids and the VELA pulsar glitches”, Astrophys. J., 203, 213–222, (1976).
352 Ruderman, M., “Neutron star crustal plate tectonics. I. Magnetic dipole evolution in millisecond pulsars and low-mass X-ray binaries”, Astrophys. J., 366, 261–269, (1991).
ADS: External Linkhttp://adsabs.harvard.edu/abs/1991ApJ...366..261R.
353 Ruderman, M., “Neutron star crustal plate tectonics. III. Cracking, glitches, and gamma-ray bursts”, Astrophys. J., 382, 587–593, (1991).
ADS: External Linkhttp://adsabs.harvard.edu/abs/1991ApJ...382..587R.
354 Ruderman, M., Zhu, T., and Chen, K., “Neutron Star Magnetic Field Evolution, Crust Movement, and Glitches”, Astrophys. J., 492, 267, (1998).
355 Ruderman, M., Zhu, T., and Chen, K., “Neutron Star Magnetic Field Evolution, Crust Movement, and Glitches: Erratum”, Astrophys. J., 502, 1027, (1998).
356 Ruderman, R., “Neutron star crustal plate tectonics. II. Evolution of radio pulsar magnetic fields”, Astrophys. J., 382, 576–586, (1991).
ADS: External Linkhttp://adsabs.harvard.edu/abs/1991ApJ...382..576R.
357 Rüster, S.B., Hempel, M., and Schaffner-Bielich, J., “Outer crust of nonaccreting cold neutron stars”, Phys. Rev. C, 73, 035804, (2006).
358 Rutledge, R.E., Bildsten, L., Brown, E.F., Pavlov, G.G., Zavlin, V.E., and Ushomirsky, G., “Crustal Emission and the Quiescent Spectrum of the Neutron Star in KS 1731-260”, Astrophys. J., 580, 413–422, (2002). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0108125.
359 Samuelsson, L., and Andersson, N., “Neutron star asteroseismology. Axial crust oscillations in the Cowling approximation”, Mon. Not. R. Astron. Soc., 374, 256–268, (2007). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0609265.
360 Sandulescu, N., “Nuclear superfluidity and specific heat in the inner crust of neutron stars”, Phys. Rev. C, 70, 025801, (2004). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/0403019.
361 Sandulescu, N., van Giai, N., and Liotta, R.J., “Superfluid properties of the inner crust of neutron stars”, Phys. Rev. C, 69, 045802, (2004). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/0402032.
362 Sato, K., “Nuclear Compositions in the Inner Crust of Neutron Stars”, Prog. Theor. Phys., 62, 957–968, (1979).
363 Sauls, J.A., “Superfluidity in the Interiors of Neutrons Stars”, in Ögelman, H., and van den Heuvel, E.P.J., eds., Timing Neutron Stars, Proceedings of the NATO Advanced Study Institute on Timing Neutron Stars, Çesme, Izmir, Turkey, 4 – 15 April 1988, NATO ASI Series C, vol. 262, pp. 441–490, (Kluwer Academic Press, Dordrecht, Netherlands; Boston, U.S.A., 1989).
364 Schatz, H., Aprahamian, A., Barnard, V., Bildsten, L., Cumming, A., Ouellette, M., Rauscher, T., Thielemann, F.-K., and Wiescher, M., “End Point of the rp Process on Accreting Neutron Stars”, Phys. Rev. Lett., 86, 3471–3474, (2001). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0102418.
365 Schatz, H., Bildsten, L., Cumming, A., and Wiescher, M., “The Rapid Proton Process Ashes from Stable Nuclear Burning on an Accreting Neutron Star”, Astrophys. J., 524, 1014–1029, (1999). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/9905274.
366 Schwenk, A., Friman, B., and Brown, G.E., “Renormalization group approach to neutron matter: quasiparticle interactions, superfluid gaps and the equation of state”, Nucl. Phys. A, 713, 191–216, (2003). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/0207004.
367 Sedrakian, A., and Clark, J.W., “Nuclear Superconductivity in Compact Stars: BCS Theory and Beyond”, in Sedrakian, A., Clark, J.W., and Alford, M., eds., Pairing in Fermionic Systems: Basic Concepts and Modern Applications, Series on Advances in Quantum Many-Body Theory, vol. 8, pp. 135–174, (World Scientific, Singapore; Hackensack, U.S.A., 2006). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/0607028.
368 Sedrakian, A., Muether, H., and Schuck, P., “Vertex renormalization of weak interactions and Cooper-pair breaking in cooling compact stars”, Phys. Rev. C, 76, 055805, (2007).
369 Sedrakian, A.D., and Sedrakian, D.M., “Superfluid Core Rotation in Pulsars. I. Vortex Cluster Dynamics”, Astrophys. J., 447, 305, (1995).
370 Sedrakian, A.D., Sedrakian, D.M., Cordes, J.M., and Terzian, Y., “Superfluid Core Rotation in Pulsars. II. Postjump Relaxations”, Astrophys. J., 447, 324, (1995).
371 Shabanova, T.V., Lyne, A.G., and Urama, J.O., “Evidence for Free Precession in the Pulsar B1642-03”, Astrophys. J., 552, 321–325, (2001). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0101282.
372 Shaham, J., “Free precession of neutron stars: Role of possible vortex pinning”, Astrophys. J., 214, 251–260, (1977).
ADS: External Linkhttp://adsabs.harvard.edu/abs/1977ApJ...214..251S.
373 Shapiro, S.L., and Teukolsky, S.A., Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects, (Wiley, New York, U.S.A., 1983).
374 Shen, H., Toki, H., Oyamatsu, K., and Sumiyoshi, K., “Relativistic equation of state of nuclear matter for supernova and neutron star”, Nucl. Phys. A, 637, 435–450, (1998). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/9805035.
375 Shen, H., Toki, H., Oyamatsu, K., and Sumiyoshi, K., “Relativistic Equation of State of Nuclear Matter for Supernova Explosion”, Prog. Theor. Phys., 100, 1013–1031, (1998). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/9806095.
376 Shimizu, K., Kimura, T., Furomoto, S., Takeda, K., Kontani, K., Onuki, Y., and Amaya, K., “Superconductivity in the non-magnetic state of iron under pressure”, Nature, 412, 316–318, (2001).
377 Shternin, P.S., “Shear viscosity of degenerate electron matter”, J. Phys. A, 41, 205501, (2008). Related online version (cited on 12 June 2008):
External Linkhttp://arXiv.org/abs/0803.3893.
378 Shternin, P.S., and Yakovlev, D.G., “Electron thermal conductivity owing to collisions between degenerate electrons”, Phys. Rev. D, 74, 043004, (2006). Related online version (cited on 12 June 2008):
External Linkhttp://arXiv.org/abs/astro-ph/0608371.
379 Shternin, P.S., Yakovlev, D.G., Haensel, P., and Potekhin, A.Y., “Neutron star cooling after deep crustal heating in the X-ray transient KS 1731–260”, Mon. Not. R. Astron. Soc., 382, L43–L47, (2007). Related online version (cited on 16 June 2008):
External Linkhttp://arXiv.org/abs/0708.0086.
380 Slater, J.C., “A Simplification of the Hartree-Fock Method”, Phys. Rev., 81, 385–390, (1951).
381 Šlaus, I., Akaishi, Y., and Tanaka, H., “Neutron-neutron effective range parameters”, Phys. Rep., 173, 257–300, (1989).
382 Smoluchowski, R., “Frequency of pulsar starquakes”, Phys. Rev. Lett., 24, 923–925, (1970).
383 Sonin, E.B., “Vortex oscillations and hydrodynamics of rotating superfluids”, Rev. Mod. Phys., 59, 87–155, (1987).
384 Sonoda, H., Watanabe, G., Sato, K., Takiwaki, T., Yasuoka, K., and Ebisuzaki, T., “Impact of nuclear ‘pasta’ on neutrino transport in collapsing stellar cores”, Phys. Rev. C, 75, 042801, (2007). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0701364.
385 Sotani, H., Kokkotas, K.D., and Stergioulas, N., “Torsional oscillations of relativistic stars with dipole magnetic fields”, Mon. Not. R. Astron. Soc., 375, 261–277, (2007). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0608626.
386 Spitkovsky, A., Levin, Y., and Ushomirsky, G., “Propagation of Thermonuclear Flames on Rapidly Rotating Neutron Stars: Extreme Weather during Type I X-Ray Bursts”, Astrophys. J., 566, 1018–1038, (2002). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0108074.
387 Stairs, I.H., Lyne, A.G., and Shemar, S.L., “Evidence for free precession in a pulsar”, Nature, 406, 484–486, (2000).
388 Stergioulas, N., “Rapidly Rotating Neutron Star (RNS code)”, project homepage, University of Wisconsin-Milwaukee Center for Gravitation and Cosmology. URL (cited on 10 September 2007):
External Linkhttp://www.gravity.phys.uwm.edu/rns/.
389 Stergioulas, N., “Rotating Stars in Relativity”, Living Rev. Relativity, 6, lrr-2003-3, (2003). URL (cited on 2 October 2007):
http://www.livingreviews.org/lrr-2003-3.
390 Sterne, T.E., “The equilibrium theory of the abundance of the elements: a statistical investigation of assemblies in equilibrium in which transmutations occur”, Mon. Not. R. Astron. Soc., 93, 736–766, (1933).
391 Stone, J.R., and Reinhard, P.-G., “The Skyrme interaction in finite nuclei and nuclear matter”, Prog. Part. Nucl. Phys., 58, 587–657, (2007).
392 Strohmayer, T., and Bildsten, L., “New views of thermonuclear bursts”, in Lewin, W., and van der Klis, M., eds., Compact Stellar X-Ray Sources, Cambridge Astrophysics Series, vol. 39, pp. 113–156, (Cambridge University Press, Cambridge, U.K., 2006). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0301544.
393 Strohmayer, T., van Horn, H.M., Ogata, S., Iyetomi, H., and Ichimaru, S., “The shear modulus of the neutron star crust and nonradial oscillations of neutron stars”, Astrophys. J., 375, 679–686, (1991).
394 Strohmayer, T.E., and Markwardt, C.B., “Evidence for a Millisecond Pulsar in 4U 1636-53 during a Superburst”, Astrophys. J., 577, 337–345, (2002). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0205435.
395 Strohmayer, T.E., Markwardt, C.B., Swank, J.H., and in’t Zand, J., “X-Ray Bursts from the Accreting Millisecond Pulsar XTE J1814-338”, Astrophys. J., 596, L67–L70, (2003). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0308353.
396 Strohmayer, T.E., and Watts, A.L., “Discovery of Fast X-Ray Oscillations during the 1998 Giant Flare from SGR 1900+14”, Astrophys. J., 632, L111–L114, (2005). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0508206.
397 Strohmayer, T.E., and Watts, A.L., “The 2004 Hyperflare from SGR 1806-20: Further Evidence for Global Torsional Vibrations”, Astrophys. J., 653, 593–601, (2006). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0608463.
398 Strohmayer, T.E., Zhang, W., and Swank, J.H., “363 Hz Oscillations during the Rising Phase of Bursts from 4U 1728-34: Evidence for Rotational Modulation”, Astrophys. J. Lett., 487, L77–L80, (1997).
399 Strohmayer, T.E., Zhang, W., Swank, J.H., Smale, A., Titarchuk, L., Day, C., and Lee, U., “Millisecond X-Ray Variability from an Accreting Neutron Star System”, Astrophys. J. Lett., 469, L9, (1996).
400 Sumiyoshi, K., Oyamatsu, K., and Toki, H., “Neutron star profiles in the relativistic Brueckner-Hartree-Fock theory”, Nucl. Phys. A, 595, 327–345, (1995).
ADS: External Linkhttp://adsabs.harvard.edu/abs/1995NuPhA.595..327S.
401 Sumiyoshi, K., Yamada, S., Suzuki, H., and Hillebrandt, W., “The fate of a neutron star just below the minimum mass: does it explode?”, Astron. Astrophys., 334, 159–168, (1998). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/9707230.
402 Sumiyoshi, K., Yamada, S., Suzuki, H., Shen, H., Chiba, S., and Toki, H., “Postbounce Evolution of Core-Collapse Supernovae: Long-Term Effects of the Equation of State”, Astrophys. J., 629, 922–932, (2005). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0506620.
403 Tilley, D.R., and Tilley, J., Superfluidity and Superconductivity, (Wiley, New York, U.S.A., 1974).
404 Tisza, L., “Transport Phenomena in Helium II”, Nature, 141, 913, (1938).
405 Tkachenko, V.K., “On vortex lattices”, Zh. Eksp. Teor. Fiz., 49, 1875, (1965). In Russian.
406 Tkachenko, V.K., “On vortex lattices”, Sov. Phys. JETP, 22, 1282–1286, (1966).
407 Tolman, R.C., “Static Solutions of Einstein’s Field Equations for Spheres of Fluid”, Phys. Rev., 55, 364–373, (1939).
408 Tsakadze, D.S., and Tsakadze, S.D., “Simulation of pulsar behavior in a low-temperature laboratory (Review)”, Astrofizika, 15, 533–547, (1979). In Russian.
409 Tsakadze, J.S., and Tsakadze, S.J., “Properties of slowly rotating helium II and the superfluidity of pulsars”, J. Low Temp. Phys., 39, 649–688, (1980).
410 Vartanyan, Y.L., and Ovakimova, N.K., “Cold evaporation of neutrons from nuclei in superdense matter”, Biurakanskaia Obs. Soobshcheniia, 49, 87–95, (1976). In Russian.
411 Vavoulidis, M., Stavridis, A., Kokkotas, K.D., and Beyer, H., “Torsional oscillations of slowly rotating relativistic stars”, Mon. Not. R. Astron. Soc., 377, 1553–1556, (2007). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0703039.
412 Ventura, J., and Potekhin, A., “Neutron Star Envelopes and Thermal Radiation from the Magnetic Surface”, in Kouveliotou, C., Ventura, J., and van den Heuvel, E., eds., The Neutron Star–Black Hole Connection, Proceedings of the NATO Advanced Study Institute, Elounda, Crete, Greece, 7 – 18 June 1999, NATO Science Series C, vol. 567, pp. 393–414, (Kluwer Academic Publishers, Dordrecht, Netherlands; Boston, U.S.A., 2001).
413 Vigezzi, E., Barranco, F., Broglia, R.A., Colò, G., Gori, G., and Ramponi, F., “Pairing correlations in the inner crust of neutron stars”, Nucl. Phys. A, 752, 600–603, (2005).
414 Villain, L., and Haensel, P., “Non-equilibrium beta processes in superfluid neutron star cores”, Astron. Astrophys., 444, 539–548, (2005). Related online version (cited on 24 April 2008):
External Linkhttp://arxiv.org/abs/astro-ph/0504572.
415 Vinen, W.F., “The Detection of Single Quanta of Circulation in Liquid Helium II”, Proc. R. Soc. London, Ser. A, 260, 218–236, (1961).
416 Wang, N., Manchester, R.N., Pace, R.T., Bailes, M., Kaspi, V.M., Stappers, B.W., and Lyne, A.G., “Glitches in southern pulsars”, Mon. Not. R. Astron. Soc., 317, 843–860, (2000).
417 Watanabe, G., “Understanding nuclear ‘pasta’: current status and future prospects”, (2006). URL (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/0610116.
418 Watanabe, G., and Iida, K., “Electron screening in the liquid-gas mixed phases of nuclear matter”, Phys. Rev. C, 68, 045801, (2003). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/nucl-th/0308071.
419 Watanabe, G., Iida, K., and Sato, K., “Thermodynamic properties of nuclear ‘pasta’ in neutron star crusts”, Nucl. Phys. A, 676, 455–473, (2000). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0001273.
420 Watanabe, G., Iida, K., and Sato, K., “Erratum to: I. ‘Thermodynamic properties of nuclear ‘pasta’ in neutron star crusts’ [Nucl. Phys. A 676 (2000) 455]”, Nucl. Phys. A, 726, 357–365, (2003).
421 Watts, A.L., and Strohmayer, T.E., “Detection with RHESSI of High-Frequency X-Ray Oscillations in the Tail of the 2004 Hyperflare from SGR 1806-20”, Astrophys. J., 637, L117–L120, (2006). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0512630.
422 Wigner, E., and Seitz, F., “On the Constitution of Metallic Sodium”, Phys. Rev., 43, 804–810, (1933).
423 Williams, G.A., and Packard, R.E., “Photographs of Quantized Vortex Lines in Rotating He II”, Phys. Rev. Lett., 33, 280–283, (1974).
424 Wolf, R.A., “Some Effects of the Strong Interactions on the Properties of Neutron-Star Matter”, Astrophys. J., 145, 834, (1966).
425 Wong, T., Backer, D.C., and Lyne, A.G., “Observations of a Series of Six Recent Glitches in the Crab Pulsar”, Astrophys. J., 548, 447–459, (2001). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0010010.
426 Woods, P.M., and Thompson, C., “Soft gamma repeaters and anomalous X-ray pulsars: magnetar candidates”, in Lewin, W., and van der Klis, M., eds., Compact Stellar X-Ray Sources, Cambridge Astrophysics Series, vol. 39, pp. 547–586, (Cambridge University Press, Cambridge, U.K., 2006). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0406133.
427 Yakovlev, D.G., Gasques, L., and Wiescher, M., “Pycnonuclear burning of 34Ne in accreting neutron stars”, Mon. Not. R. Astron. Soc., 371, 1322–1326, (2006).
428 Yakovlev, D.G., Kaminker, A.D., Gnedin, O.Y., and Haensel, P., “Neutrino emission from neutron stars”, Phys. Rep., 354, 1–155, (2001). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0012122.
429 Yakovlev, D.G., Levenfish, K.P., and Haensel, P., “Thermal state of transiently accreting neutron stars”, Astron. Astrophys., 407, 265–271, (2003). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0209027.
430 Yakovlev, D.G., Levenfish, K.P., Potekhin, A.Y., Gnedin, O.Y., and Chabrier, G., “Thermal states of coldest and hottest neutron stars in soft X-ray transients”, Astron. Astrophys., 417, 169–179, (2004). Related online version (cited on 2 October 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0310259.