1  Adler, S.L., Lieberman, J., and Ng, Y.J., “Regularization of the stress energy tensor for vector and scalar particles propagating in a general background metric”, Ann. Phys. (N.Y.), 106, 279–321, (1977).  
2  Albrecht, A., and Steinhardt, P.J., “Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking”, Phys. Rev. Lett., 48, 1220–1223, (1982).  
3  Anderson, P.R., “Effects of quantum fields on singularities and particle horizons in the early universe”, Phys. Rev. D, 28, 271–285, (1983).  
4  Anderson, P.R., “Effects of quantum fields on singularities and particle horizons in the early universe. II”, Phys. Rev. D, 29, 615–627, (1984).  
5  Anderson, P.R., Binkley, M., Calderon, H., Hiscock, W.A., Mottola, E., and Vaulin, R., “Effects
of quantized fields on the spacetime geometries of static spherically symmetric black holes”,
(2007). URL (cited on 22 January 2008):
http://arXiv.org/abs/arXiv:0709.4457. 

6  Anderson, P.R., Hiscock, W.A., and Loranz, D.J., “Semiclassical stability of the extreme
Reissner–Nordström black hole”, Phys. Rev. Lett., 74, 4365–4368, (1995). Related online
version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9504019. 

7  Anderson, P.R., Hiscock, W.A., and Samuel, D.A., “Stress energy tensor of quantized scalar fields in static black hole spacetimes”, Phys. Rev. Lett., 70, 1739–1742, (1993).  
8  Anderson, P.R., Hiscock, W.A., and Samuel, D.A., “Stressenergy tensor of quantized scalar fields in static spherically symmetric spacetimes”, Phys. Rev. D, 51, 4337–4358, (1995).  
9  Anderson, P.R., Hiscock, W.A., Whitesell, J., and York Jr, J.W., “Semiclassical black hole in thermal equilibrium with a nonconformal scalar field”, Phys. Rev. D, 50, 6427–6434, (1994).  
10  Anderson, P.R., MolinaParis, C., and Mottola, E., “Linear response, validity of semiclassical
gravity, and the stability of flat space”, Phys. Rev. D, 67, 024026, 1–19, (2003). Related online
version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/0209075. 

11  Anderson, P.R., MolinaParis, C., and Mottola, E., “Linear response and the validity of the
semiclassical approximation in gravity”, (April 2004). URL (cited on 31 March 2003):
http://arXiv.org/abs/grqc/0204083. 

12  Anglin, J.R., Laflamme, R., Zurek, W.H., and Paz, J.P., “Decoherence, recoherence, and the
black hole information paradox”, Phys. Rev. D, 52, 2221–2231, (1995). Related online version
(cited on 22 January 2008):
http://arXiv.org/abs/grqc/9411073. 

13  Ashtekar, A., “Large quantum gravity effects: Unforseen limitations of the classical theory”,
Phys. Rev. Lett., 77, 4864–4867, (1996). Related online version (cited on 22 January 2008):
http://arXiv.org/abs/grqc/9610008. 

14  Bakshi, P.M., and Mahanthappa, K.T., “Expectation value formalism in quantum field theory. 1”, J. Math. Phys., 4, 1–11, (1963).  
15  Balbinot, R., Fabbri, A., Fagnocchi, S., and Parentani, R., “Hawking radiation from acoustic
black holes, short distance and backreaction effects”, Riv. Nuovo Cimento, 28(03), 1–55,
(2005). Related online version (cited on 22 January 2008):
http://arXiv.org/abs/grqc/0601079. 

16  Barceló, C., Liberati, S., and Visser, M., “Analogue Gravity”, Living Rev. Relativity, 8,
lrr200512, (2005). Related online version (cited on 22 January 2008):
http://www.livingreviews.org/lrr200512. 

17  Bardeen, J.M., “Gauge invariant cosmological perturbations”, Phys. Rev. D, 22, 1882–1905, (1980).  
18  Bardeen, J.M., “Black holes do evaporate thermally”, Phys. Rev. Lett., 46, 382–385, (1981).  
19  Bardeen, J.M., Steinhardt, P.J., and Turner, M.S., “Spontaneous Creation of Almost Scale  Free Density Perturbations in an Inflationary Universe”, Phys. Rev. D, 28, 679, (1983).  
20  Barrabès, C., Frolov, V.P., and Parentani, R., “Metric fluctuation corrections to Hawking
radiation”, Phys. Rev. D, 59, 124010, 1–14, (1999). Related online version (cited on 31 March
2003):
http://arXiv.org/abs/grqc/9812076. 

21  Barrabès, C., Frolov, V.P., and Parentani, R., “Stochastically fluctuating blackhole geometry,
Hawking radiation and the transPlanckian problem”, Phys. Rev. D, 62, 044020, 1–19, (2000).
Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/0001102. 

22  Beetle, C., “Midisuperspace quantization of noncompact toroidally symmetric gravity”, Adv.
Theor. Math. Phys., 2, 471–495, (1998). Related online version (cited on 22 January 2008):
http://arXiv.org/abs/grqc/9801107. 

23  Bekenstein, J.D., “Black Holes and Entropy”, Phys. Rev. D, 7, 2333–2346, (1973).  
24  Bekenstein, J.D., “Black hole fluctuations”, in Christensen, S.M., ed., Quantum Theory of Gravity: Essays in Honor of the 60th Birthday of Bryce S. DeWitt, pp. 148–159, (Adam Hilger, Bristol, U.K., 1984).  
25  Bekenstein, J.D., “Do We Understand Black Hole Entropy?”, in Jantzen, R.T., and
Mac Keiser, G., eds., The Seventh Marcel Grossmann Meeting on Recent Developments in
Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories,
Proceedings of the meeting held at Stanford University, 24 – 30 July 1994, pp. 39–58, (World
Scientific, Singapore; River Edge, U.S.A., 1994). Related online version (cited on 31 March
2003):
http://arXiv.org/abs/grqc/9409015. 

26  Bekenstein, J.D., and Mukhanov, V.F., “Spectroscopy of the quantum black hole”, Phys. Lett.
B, 360, 7–12, (1995). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9505012. 

27  Belinskii, V.A., Khalatnikov, I.M., and Lifshitz, E.M., “Oscillatory approach to a singular point in the relativistic cosmology”, Adv. Phys., 19, 525–573, (1970).  
28  Belinskii, V.A., Khalatnikov, I.M., and Lifshitz, E.M., “A general solution of the Einstein equations with a time singularity”, Adv. Phys., 13, 639–667, (1982).  
29  Berger, B.K., “Quantum graviton creation in a model universe”, Ann. Phys. (N.Y.), 83, 458–490, (1974).  
30  Berger, B.K., “Quantum cosmology: Exact solution for the Gowdy T3 model”, Phys. Rev. D, 11, 2770–2780, (1975).  
31  Berger, B.K., “Scalar particle creation in an anisotropic universe”, Phys. Rev. D, 12, 368–375, (1975).  
32  Bernadotte, S., and Klinkhamer, F.R., “Bounds on length scales of spacetime foam models”,
Phys. Rev. D, 75, 024028, (2007). Related online version (cited on 22 January 2008):
http://arXiv.org/abs/hepph/0610216. 

33  Bernard, W., and Callen, H.B., “Irreversible thermodynamics of nonlinear processes and noise in driven systems”, Rev. Mod. Phys., 31, 1017–1044, (1959).  
34  Birrell, N.D., and Davies, P.C.W., Quantum fields in curved space, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1982).  
35  Borgman, J., and Ford, L.H., “Effects of quantum stress tensor fluctuations with compact extra
dimensions”, Phys. Rev. D, 70, 127701, (2004). Related online version (cited on 22 January
2008):
http://arXiv.org/abs/grqc/0406066. 

36  Borgman, J., and Ford, L.H., “The effects of stress tensor fluctuations upon focusing”, Phys.
Rev. D, 70, 064032, (2004). Related online version (cited on 22 January 2008):
http://arXiv.org/abs/grqc/0307043. 

37  Borgman, J., and Ford, L.H., “Stochastic gravity and the LangevinRaychaudhuri equation”, Int. J. Mod. Phys. A, 20, 2364–2373, (2005).  
38  Boyanovsky, D., de Vega, H.J., Holman, R., Lee, D.S., and Singh, A., “Dissipation via particle
production in scalar field theories”, Phys. Rev. D, 51, 4419–4444, (1995). Related online version
(cited on 31 March 2003):
http://arXiv.org/abs/hepph/9408214. 

39  Brandt, F.T., and Frenkel, J., “The structure of the graviton selfenergy at finite temperature”,
Phys. Rev. D, 58, 085012, 1–11, (1998). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/hepth/9803155. 

40  Braunstein, S.L., and Pati, A.K., “Quantum information cannot be completely hidden in
correlations: Implications for the blackhole information paradox”, Phys. Rev. Lett., 98, 080502,
(2007). Related online version (cited on 22 January 2008):
http://arXiv.org/abs/grqc/0603046. 

41  Brown, M.R., and Ottewill, A.C., “Effective actions and conformal transformations”, Phys. Rev. D, 31, 2514–2520, (1985).  
42  Brown, M.R., Ottewill, A.C., and Page, D.N., “Conformally invariant quantum field theory in static Einstein spacetimes”, Phys. Rev. D, 33, 2840–2850, (1986).  
43  Brun, T.A., “Quasiclassical equations of motion for nonlinear Brownian systems”, Phys. Rev.
D, 47, 3383–3393, (1993). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9306013. 

44  Bunch, T.S., “On the renormalization of the quantum stress tensor in curved spacetime by dimensional regularization”, J. Phys. A, 12, 517–531, (1979).  
45  Caldeira, A.O., and Leggett, A.J., “Path integral approach to quantum Brownian motion”, Physica A, 121, 587–616, (1983).  
46  Caldeira, A.O., and Leggett, A.J., “Influence of damping on quantum interference: An exactly soluble model”, Phys. Rev. A, 31, 1059–1066, (1985).  
47  Callan Jr, C.G., Giddings, S.B., Harvey, J.A., and Strominger, A., “Evanescent black holes”,
Phys. Rev. D, 45, 1005–1009, (1992). Related online version (cited on 22 January 2008):
http://arXiv.org/abs/hepth/9111056. 

48  Callen, H.B., and Greene, R.F., “On a theorem of irreversible thermodynamics”, Phys. Rev., 86, 702–710, (1952).  
49  Callen, H.B., and Welton, T.A., “Irreversibility and generalized noise”, Phys. Rev., 83, 34–40, (1951).  
50  Calzetta, E., “Memory loss and asymptotic behavior in minisuperspace cosmological models”, Class. Quantum Grav., 6, L227–L231, (1989).  
51  Calzetta, E., “Anisotropy dissipation in quantum cosmology”, Phys. Rev. D, 43, 2498–2509, (1991).  
52  Calzetta, E.A., Campos, A., and Verdaguer, E., “Stochastic semiclassical cosmological models”,
Phys. Rev. D, 56, 2163–2172, (1997). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9704010. 

53  Calzetta, E.A., and Gonorazky, S., “Primordial fluctuations from nonlinear couplings”, Phys.
Rev. D, 55, 1812–1821, (1997). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9608057. 

54  Calzetta, E.A., and Hu, B.L., “Closed time path functional formalism in curved spacetime: application to cosmological backreaction problems”, Phys. Rev. D, 35, 495–509, (1987).  
55  Calzetta, E.A., and Hu, B.L., “Nonequilibrium quantum fields: closed time path effective action Wigner function and Boltzmann equation”, Phys. Rev. D, 37, 2878–2900, (1988).  
56  Calzetta, E.A., and Hu, B.L., “Dissipation of quantum fields from particle creation”, Phys. Rev. D, 40, 656–659, (1989).  
57  Calzetta, E.A., and Hu, B.L., “Decoherence of Correlation Histories”, in Hu, B.L., and
Jacobson, T.A., eds., Directions in General Relativity, Vol. 2, Proceedings of the 1993
International Symposium, Maryland: Papers in honor of Dieter Brill, pp. 38–65, (Cambridge
University Press, Cambridge, U.K.; New York, U.S.A., 1993). Related online version (cited on
3 May 2005):
http://arxiv.org/abs/grqc/9302013. 

58  Calzetta, E.A., and Hu, B.L., “Noise and fluctuations in semiclassical gravity”, Phys. Rev. D,
49, 6636–6655, (1994). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9312036. 

59  Calzetta, E.A., and Hu, B.L., “Correlations, Decoherence, Dissipation, and Noise in Quantum Field Theory”, in Fulling, S.A., ed., Heat Kernel Techniques and Quantum Gravity, Discourses in Mathematics and Its Applications, vol. 4, pp. 261–302, (Texas A&M University, College Station, U.S.A., 1995).  
60  Calzetta, E.A., and Hu, B.L., “Quantum fluctuations, decoherence of the mean field, and
structure formation in the early universe”, Phys. Rev. D, 52, 6770–6788, (1995). Related online
version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9505046. 

61  Calzetta, E.A., and Hu, B.L., “Stochastic dynamics of correlations in quantum field theory:
From Schwinger–Dyson to Boltzmann–Langevin equation”, Phys. Rev. D, 61, 025012, 1–22,
(2000). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/hepph/9903291. 

62  Calzetta, E.A., and Hu, B.L., Nonequilibrium Quantum Field Theory, (Cambridge University Press, Cambridge, England, U.K., 2008).  
63  Calzetta, E.A., and Kandus, A., “Spherically symmetric nonlinear structures”, Phys. Rev. D,
55, 1795–1811, (1997). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/astroph/9603125. 

64  Calzetta, E.A., Roura, A., and Verdaguer, E., “Vacuum decay in quantum field theory”, Phys.
Rev. D, 64, 105008, 1–21, (2001). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/hepph/0106091. 

65  Calzetta, E.A., Roura, A., and Verdaguer, E., “Dissipation, Noise, and Vacuum Decay in
Quantum Field Theory”, Phys. Rev. Lett., 88, 010403, 1–4, (2002). Related online version
(cited on 31 March 2003):
http://arXiv.org/abs/hepph/0101052. 

66  Calzetta, E.A., Roura, A., and Verdaguer, E., “Stochastic description for open quantum
systems”, Physica A, 319, 188–212, (2003). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/quantph/0011097. 

67  Calzetta, E.A., and Verdaguer, E., “Noise induced transitions in semiclassical cosmology”,
Phys. Rev. D, 59, 083513, 1–24, (1999). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9807024. 

68  Camporesi, R., “Harmonic analysis and propagators on homogeneous spaces”, Phys. Rep., 196, 1–134, (1990).  
69  Campos, A., and Hu, B.L., “Nonequilibrium dynamics of a thermal plasma in a gravitational
field”, Phys. Rev. D, 58, 125021, 1–15, (1998). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/hepph/9805485. 

70  Campos, A., and Hu, B.L., “Fluctuations in a thermal field and dissipation of a black hole
spacetime: Farfield limit”, Int. J. Theor. Phys., 38, 1253–1271, (1999). Related online version
(cited on 31 March 2003):
http://arXiv.org/abs/grqc/9812034. 

71  Campos, A., Martín, R., and Verdaguer, E., “Back reaction in the formation of a straight
cosmic string”, Phys. Rev. D, 52, 4319–4336, (1995). Related online version (cited on 31 March
2003):
http://arXiv.org/abs/grqc/9505003. 

72  Campos, A., and Verdaguer, E., “Semiclassical equations for weakly inhomogeneous
cosmologies”, Phys. Rev. D, 49, 1861–1880, (1994). Related online version (cited on 31 March
2003):
http://arXiv.org/abs/grqc/9307027. 

73  Campos, A., and Verdaguer, E., “Stochastic semiclassical equations for weakly inhomogeneous
cosmologies”, Phys. Rev. D, 53, 1927–1937, (1996). Related online version (cited on 31 March
2003):
http://arXiv.org/abs/grqc/9511078. 

74  Campos, A., and Verdaguer, E., “Backreaction equations for isotropic cosmologies when nonconformal particles are created”, Int. J. Theor. Phys., 36, 2525–2543, (1997).  
75  Candelas, P., “Vacuum Polarization in Schwarzschild SpaceTime”, Phys. Rev. D, 21, 2185–2202, (1980).  
76  Candelas, P., and Sciama, D.W., “Irreversible thermodynamics of black holes”, Phys. Rev. Lett., 38, 1372–1375, (1977).  
77  Capper, D.M., and Duff, M.J., “Trace anomalies in dimensional regularization”, Nuovo Cimento A, 23, 173–183, (1974).  
78  Carlip, S., “Spacetime Foam and the Cosmological Constant”, Phys. Rev. Lett., 79, 4071–4074,
(1997). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9708026. 

79  Carlip, S., “Dominant topologies in Euclidean quantum gravity”, Class. Quantum Grav., 15,
2629–2638, (1998). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9710114. 

80  Casher, A., Englert, F., Itzhaki, N., Massar, S., and Parentani, R., “Black hole horizon
fluctuations”, Nucl. Phys. B, 484, 419–434, (1997). Related online version (cited on 31 March
2003):
http://arXiv.org/abs/hepth/9606106. 

81  Cespedes, J., and Verdaguer, E., “Particle production in inhomogeneous cosmologies”, Phys. Rev. D, 41, 1022–1033, (1990).  
82  Chou, K., Su, Z., Hao, B., and Yu, L., “Equilibrium and non equilibrium formalisms made unified”, Phys. Rep., 118, 1–131, (1985).  
83  Christensen, S.M., “Vacuum expectation value of the stress tensor in an arbitrary curved background: The covariant point separation method”, Phys. Rev. D, 14, 2490–2501, (1976).  
84  Christensen, S.M., “Regularization, renormalization, and covariant geodesic point separation”, Phys. Rev. D, 17, 946–963, (1978).  
85  Christiansen, W.A., Ng, Y.J., and van Dam, H., “Probing spacetime foam with extragalactic
sources”, Phys. Rev. Lett., 96, 051301, (2006). Related online version (cited on 22 January
2008):
http://arXiv.org/abs/grqc/0508121. 

86  Cognola, G., Elizalde, E., and Zerbini, S., “Fluctuations of quantum fields via zeta function
regularization”, Phys. Rev. D, 65, 085031, 1–8, (2002). Related online version (cited on 31
March 2003):
http://arXiv.org/abs/hepth/0201152. 

87  Cooper, F., Habib, S., Kluger, Y., Mottola, E., Paz, J.P., and Anderson, P.R., “Nonequilibrium
quantum fields in the largeN expansion”, Phys. Rev. D, 50, 2848–2869, (1994). Related online
version (cited on 31 March 2003):
http://arXiv.org/abs/hepph/9405352. 

88  Davies, E.B., Quantum Theory of Open Systems, (Academic Press, London, U.K.; New York, U.S.A., 1976).  
89  de Almeida, A.P., Brandt, F.T., and Frenkel, J., “Thermal matter and radiation in a
gravitational field”, Phys. Rev. D, 49, 4196–4208, (1994). Related online version (cited on 31
March 2003):
http://arXiv.org/abs/hepth/9309098. 

90  Décanini, Y., and Folacci, A., “Offdiagonal coefficients of the DeWittSchwinger and
Hadamard representations of the Feynman propagator”, Phys. Rev. D, 73, 044027, 1–38, (2006).
Related online version (cited on 15 April 2008):
http://arXiv.org/abs/grqc/0511115. 

91  Deser, S., “Plane waves do not polarize the vacuum”, J. Phys. A, 8, 1972–1974, (1975).  
92  DeWitt, B.S., Dynamical Theory of Groups and Fields, (Gordon and Breach, New York, U.S.A., 1965).  
93  DeWitt, B.S., “Quantum field theory in curved spacetime”, Phys. Rep., 19, 295–357, (1975).  
94  DeWitt, B.S., “Effective action for expectation values”, in Penrose, R., and Isham, C.J., eds., Quantum concepts in space and time, (Clarendon Press; Oxford University Press, Oxford, U.K.; New York, U.S.A., 1986).  
95  Donoghue, J.F., “General relativity as an effective field theory: The leading quantum
corrections”, Phys. Rev. D, 50, 3874–3888, (1994). Related online version (cited on 31 March
2003):
http://arXiv.org/abs/grqc/9405057. 

96  Donoghue, J.F., “Leading quantum correction to the Newtonian potential”, Phys. Rev. Lett.,
72, 2996–2999, (1994). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9310024. 

97  Donoghue, J.F., “The quantum theory of general relativity at low energies”, Helv. Phys. Acta,
69, 269–275, (1996). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9607039. 

98  Donoghue, J.F., “Introduction to the Effective Field Theory Description of Gravity”, in
Cornet, F., and Herrero, M.J., eds., Advanced School on Effective Theories, Proceedings of the
conference held in Almuñecar, Granada, Spain, 26 June – 1 July 1995, pp. 217–240, (World
Scientific, Singapore, 1997). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9512024. 

99  Dowker, F., and Kent, A., “Properties of consistent histories”, Phys. Rev. Lett., 75, 3038–3041,
(1995). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9409037. 

100  Dowker, F., and Kent, A., “On the consistent histories approach to quantum mechanics”, J.
Stat. Phys., 82, 1575–1646, (1996). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9412067. 

101  Dowker, H.F., and Halliwell, J.J., “The Quantum mechanics of history: The Decoherence functional in quantum mechanics”, Phys. Rev. D, 46, 1580–1609, (1992).  
102  Duff, M.J., “Covariant Quantization of Gravity”, in Isham, C.J., Penrose, R., and Sciama, D.W., eds., Quantum Gravity: An Oxford Symposium, Symposium held at the Rutherford Laboratory on February 15 – 16, 1974, (Clarendon Press, Oxford, U.K., 1975).  
103  Einstein, A., “Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen”, Ann. Phys. (Leipzig), 17, 549–560, (1905).  
104  Einstein, A., “Zur Theorie der Brownschen Bewegung”, Ann. Phys. (Leipzig), 19, 371–381, (1906).  
105  Eling, C., Guedens, R., and Jacobson, T.A., “Nonequilibrium Thermodynamics of Spacetime”,
Phys. Rev. Lett., 96, 121301, (2006). Related online version (cited on 22 January 2008):
http://arXiv.org/abs/grqc/0602001. 

106  Elizalde, E., Odintsov, S.D., Romeo, A., Bytsenko, A.A., and Zerbini, S., Zeta Regularization Techniques with Applications, (World Scientific, Singapore; River Edge, U.S.A., 1994).  
107  Feynman, R.P., and Hibbs, A.R., Quantum Mechanics and Path Integrals, International Series in Pure and Applied Physics, (McGrawHill, New York, U.S.A., 1965).  
108  Feynman, R.P., and Vernon Jr, F.L., “The theory of a general quantum system interacting with a linear dissipative system”, Ann. Phys. (N.Y.), 24, 118–173, (1963).  
109  Fischetti, M.V., Hartle, J.B., and Hu, B.L., “Quantum fields in the early universe. I. Influence of trace anomalies on homogeneous, isotropic, classical geometries”, Phys. Rev. D, 20, 1757–1771, (1979).  
110  Flanagan, É.É., and Wald, R.M., “Does back reaction enforce the averaged null energy
condition in semiclassical gravity?”, Phys. Rev. D, 54, 6233–6283, (1996). Related online version
(cited on 31 March 2003):
http://arXiv.org/abs/grqc/9602052. 

111  Ford, L.H., “Gravitational radiation by quantum systems”, Ann. Phys. (N.Y.), 144, 238–248, (1982).  
112  Ford, L.H., “Spacetime metric and lightcone fluctuations”, Int. J. Theor. Phys., 38, 2941–2958, (1999).  
113  Ford, L.H., “Stress tensor fluctuations and stochastic spacetimes”, Int. J. Theor. Phys., 39, 1803–1815, (2000).  
114  Ford, L.H., and Svaiter, N.F., “Cosmological and black hole horizon fluctuations”, Phys. Rev.
D, 56, 2226–2235, (1997). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9704050. 

115  Ford, L.H., and Wu, C.H., “Stress Tensor Fluctuations and Passive Quantum Gravity”, Int.
J. Theor. Phys., 42, 15–26, (2003). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/0102063. 

116  Freidel, L., and Krasnov, K., “A New Spin Foam Model for 4d Gravity”, (2007). URL (cited
on 22 January 2008):
http://arXiv.org/abs/arXiv:0708.1595. 

117  Frieman, J.A., “Particle creation in inhomogeneous spacetimes”, Phys. Rev. D, 39, 389–398, (1989).  
118  Frolov, V.P., and Zel’nikov, A.I., “Vacuum polarization by a massive scalar field in Schwarzschild spacetime”, Phys. Lett. B, 115, 372–374, (1982).  
119  Frolov, V.P., and Zel’nikov, A.I., “Vacuum polarization of massive fields near rotating black holes”, Phys. Rev. D, 29, 1057–1066, (1984).  
120  Frolov, V.P., and Zel’nikov, A.I., “Killing approximation for vacuum and thermal stressenergy tensor in static spacetimes”, Phys. Rev., D35, 3031–3044, (1987).  
121  Fulling, S.A., Aspects of Quantum Field Theory in Curved SpaceTime, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1989).  
122  Garay, L.J., “Spacetime foam as a quantum thermal bath”, Phys. Rev. Lett., 80, 2508–2511,
(1998). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9801024. 

123  Garay, L.J., “Thermal properties of spacetime foam”, Phys. Rev. D, 58, 124015, 1–11, (1998).
Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9806047. 

124  Garay, L.J., “Quantum evolution in spacetime foam”, Int. J. Mod. Phys. A, 14, 4079–4120,
(1999). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9911002. 

125  Garriga, J., and Verdaguer, E., “Scattering of quantum particles by gravitational plane waves”, Phys. Rev. D, 43, 391–401, (1991).  
126  GellMann, M., and Hartle, J.B., “Quantum mechanics in the light of quantum cosmology”, in Zurek, W.H., ed., Complexity, Entropy and the Physics of Information, Proceedings of the workshop, held May – June, 1989, in Santa Fe, New Mexico, Santa Fe Institute Studies in the Sciences of Complexity, vol. 8, pp. 425–458, (AddisonWesley, Redwood City, U.S.A., 1990).  
127  GellMann, M., and Hartle, J.B., “Classical equations for quantum systems”, Phys. Rev. D,
47, 3345–3382, (1993). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9210010. 

128  Gibbons, G.W., “Quantized fields propagating in plane wave spacetimes”, Commun. Math. Phys., 45, 191–202, (1975).  
129  Gibbons, G.W., and Perry, M.J., “Black holes and thermal Green functions”, Proc. R. Soc. London, Ser. A, 358, 467–494, (1978).  
130  Giddings, S.B., “(Non)perturbative gravity, nonlocality, and nice slices”, Phys. Rev. D, 74,
106009, (2006). Related online version (cited on 22 January 2008):
http://arXiv.org/abs/hepth/0606146. 

131  Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, I.O., Zeh, H.D., Stamatescu, I.O., and Zeh, H.D., Decoherence and the Appearance of a Classical World in Quantum Theory, (Springer, Berlin, Germany; New York, U.S.A., 1996).  
132  Gleiser, M., and Ramos, R.O., “Microphysical approach to nonequilibrium dynamics of
quantum fields”, Phys. Rev. D, 50, 2441–2455, (1994). Related online version (cited on 31
March 2003):
http://arXiv.org/abs/hepph/9311278. 

133  Grabert, H., Schramm, P., and Ingold, G.L., “Quantum Brownian motion: the functional integral approach”, Phys. Rep., 168, 115–207, (1988).  
134  Greiner, C., and Müller, B., “Classical Fields Near Thermal Equilibrium”, Phys. Rev. D, 55,
1026–1046, (1997). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/hepth/9605048. 

135  Grib, A.A., Mamayev, S.G., and Mostepanenko, V.M., Vacuum quantum effects in strong fields, (Friedmann Laboratory Publishing, St. Petersburg, Russia, 1994).  
136  Griffiths, R.B., “Consistent histories and the interpretation of quantum mechanics”, J. Stat. Phys., 36, 219–272, (1984).  
137  Grishchuk, L.P., “Graviton creation in the early universe”, Ann. N.Y. Acad. Sci., 302, 439–444, (1976).  
138  Gross, D.J., Perry, M.J., and Yaffe, L.G., “Instability of flat space at finite temperature”, Phys. Rev. D, 25, 330–355, (1982).  
139  Gu, Z.C., and Wen, X.G., “A lattice bosonic model as a quantum theory of gravity”, (2006).
URL (cited on 22 January 2008):
http://arXiv.org/abs/grqc/0606100. 

140  Guth, A.H., “The inflationary universe: A possible solution to the horizon and flatness problems”, Phys. Rev. D, 23, 347–356, (1981).  
141  Guth, A.H., and Pi, S.Y., “Fluctuations in the New Inflationary Universe”, Phys. Rev. Lett., 49, 1110–1113, (1982).  
142  Hájíček, P., and Israel, W., “What, no black hole evaporation?”, Phys. Lett. A, 80, 9–10, (1980).  
143  Halliwell, J.J., “Decoherence in quantum cosmology”, Phys. Rev. D, 39, 2912–2923, (1989).  
144  Halliwell, J.J., “Quantum mechanical histories and the uncertainty principle. 2. Fluctuations
about classical predictability”, Phys. Rev. D, 48, 4785–4799, (1993). Related online version
(cited on 31 March 2003):
http://arXiv.org/abs/grqc/9307013. 

145  Halliwell, J.J., “A Review of the decoherent histories approach to quantum mechanics”, Ann.
N.Y. Acad. Sci., 755, 726–740, (1995). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9407040. 

146  Halliwell, J.J., “Effective theories of coupled classical and quantum variables from decoherent
histories: A new approach to the backreaction problem”, Phys. Rev. D, 57, 2337–2348, (1998).
Related online version (cited on 31 March 2003):
http://arXiv.org/abs/quantph/9705005. 

147  Hartle, J.B., “Effective potential approach to graviton production in the early universe”, Phys. Rev. Lett., 39, 1373–1376, (1977).  
148  Hartle, J.B., “Quantum effects in the early universe. 5. Finite particle production without trace anomalies”, Phys. Rev. D, 23, 2121–2128, (1981).  
149  Hartle, J.B., “The Quantum Mechanics of Closed Systems”, in Hu, B.L., Ryan Jr, M.P., and Vishveswara, C.V., eds., Directions in General Relativity, Vol. 1, Proceedings of the 1993 International Symposium, Maryland: Papers in honor of Charles Misner, pp. 104–124, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1993).  
150  Hartle, J.B., “Spacetime quantum mechanics and the quantum mechanics of spacetime”, in Julia, B., and ZinnJustin, J., eds., Gravitation and Quantizations, Proceedings of the Les Houches Summer School, Session LVII, 5 July – 1 August 1992, (Elsevier, Amsterdam, Netherlands, New York, U.S.A., 1995).  
151  Hartle, J.B., and Hawking, S.W., “Pathintegral derivation of blackhole radiance”, Phys. Rev. D, 13, 2188–2203, (1976).  
152  Hartle, J.B., and Horowitz, G.T., “Ground state expectation value of the metric in the 1∕N or semiclassical approximation to quantum gravity”, Phys. Rev. D, 24, 257–274, (1981).  
153  Hartle, J.B., and Hu, B.L., “Quantum effects in the early universe. II. Effective action for scalar fields in homogeneous cosmologies with small anisotropy”, Phys. Rev. D, 20, 1772–1782, (1979).  
154  Hartle, J.B., and Hu, B.L., “Quantum effects in the early universe. III. Dissipation of anisotropy by scalar particle production”, Phys. Rev. D, 21, 2756–2769, (1980).  
155  Hawking, S.W., “Black hole explosions?”, Nature, 248, 30–31, (1974).  
156  Hawking, S.W., “Particle creation by black holes”, Commun. Math. Phys., 43, 199–220, (1975).  
157  Hawking, S.W., “Black Holes and Thermodynamics”, Phys. Rev. D, 13, 191–197, (1976).  
158  Hawking, S.W., “Breakdown of Predictability in Gravitational Collapse”, Phys. Rev. D, 14, 2460–2473, (1976).  
159  Hawking, S.W., “The Development of Irregularities in a Single Bubble Inflationary Universe”, Phys. Lett. B, 115, 295, (1982).  
160  Hawking, S.W., “Information loss in black holes”, Phys. Rev. D, 72, 084013, (2005). Related
online version (cited on 22 January 2008):
http://arXiv.org/abs/hepth/0507171. 

161  Hawking, S.W., and Hertog, T., “Living with ghosts”, Phys. Rev. D, 65, 103515, (2002).
Related online version (cited on 22 January 2008):
http://arXiv.org/abs/hepth/0107088. 

162  Hawking, S.W., Hertog, T., and Reall, H.S., “Trace anomaly driven inflation”, Phys. Rev. D,
63, 083504, 1–23, (2001). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/hepth/0010232. 

163  Hawking, S.W., and Page, D.N., “Thermodynamics of Black Holes in Antide Sitter Space”, Commun. Math. Phys., 87, 577–588, (1983).  
164  Herzog, C.P., “The hydrodynamics of Mtheory”, J. High Energy Phys., 2002(12), 026, (2002).
Related online version (cited on 22 January 2008):
http://arXiv.org/abs/hepth/0210126. 

165  Hiscock, W.A., Larson, S.L., and Anderson, P.R., “Semiclassical effects in black hole interiors”,
Phys. Rev. D, 56, 3571–3581, (1997). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9701004. 

166  Hochberg, D., and Kephart, T.W., “Gauge field back reaction on a black hole”, Phys. Rev. D,
47, 1465–1470, (1993). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9211008. 

167  Hochberg, D., Kephart, T.W., and York Jr, J.W., “Positivity of entropy in the semiclassical
theory of black holes and radiation”, Phys. Rev. D, 48, 479–484, (1993). Related online version
(cited on 31 March 2003):
http://arXiv.org/abs/grqc/9211009. 

168  Holzhey, C.F.E., and Wilczek, F., “Black holes as elementary particles”, Nucl. Phys. B, 380,
447–477, (1992). Related online version (cited on 22 January 2008):
http://arXiv.org/abs/hepth/9202014. 

169  Horowitz, G.T., “Semiclassical relativity: The weak field limit”, Phys. Rev. D, 21, 1445–1461, (1980).  
170  Horowitz, G.T., “Is flat spacetime unstable?”, in Isham, C.J., Penrose, R., and Sciama, D.W., eds., Quantum Gravity 2: A Second Oxford Symposium, Proceedings of the Second Oxford Symposium on Quantum Gravity, held in April 1980 in Oxford, pp. 106–130, (Clarendon Press; Oxford University Press, Oxford, U.K.; New York, U.S.A., 1981).  
171  Horowitz, G.T., “The Origin of Black Hole Entropy in String Theory”, in Cho, Y.M.,
Lee, C.H., and Kim, S.W., eds., Gravitation and Cosmology, Proceedings of the Pacific
Conference, February 1 – 6, 1996, Sheraton WalkerHill, Seoul, Korea, pp. 46–63, (World
Scientific, Singapore; River Edge, U.S.A., 1999). Related online version (cited on 31 March
2003):
http://arXiv.org/abs/grqc/9604051. 

172  Horowitz, G.T., and Polchinski, J., “A correspondence principle for black holes and strings”,
Phys. Rev. D, 55, 6189–6197, (1997). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/hepth/9612146. 

173  Horowitz, G.T., and Polchinski, J., “Gauge/gravity duality”, (2006). URL (cited on 22 January
2008):
http://arXiv.org/abs/grqc/0602037. 

174  Horowitz, G.T., and Wald, R.M., “Dynamics of Einstein’s equations modified by a higher order derivative term”, Phys. Rev. D, 17, 414–416, (1978).  
175  Horowitz, G.T., and Wald, R.M., “Quantum stress energy in nearly conformally flat spacetimes”, Phys. Rev. D, 21, 1462–1465, (1980).  
176  Horowitz, G.T., and Wald, R.M., “Quantum stress energy in nearly conformally flat spacetimes. II. Correction of formula”, Phys. Rev. D, 25, 3408–3409, (1982).  
177  Howard, K.W., “Vacuum in Schwarzschild spacetime”, Phys. Rev. D, 30, 2532–2547, (1984).  
178  Howard, K.W., and Candelas, P., “Quantum stress tensor in Schwarzschild spacetime”, Phys. Rev. Lett., 53, 403–406, (1984).  
179  Hu, B.L., “Scalar waves in the mixmaster universe. II. Particle creation”, Phys. Rev. D, 9, 3263–3281, (1974).  
180  Hu, B.L., “Effect of finite temperature quantum fields on the early universe”, Phys. Lett. B, 103, 331–337, (1981).  
181  Hu, B.L., “Disspation in quantum fields and semiclassical gravity”, Physica A, 158, 399–424, (1989).  
182  Hu, B.L., “Quantum and statistical effects in superspace cosmology”, in Audretsch, J., and De Sabbata, V., eds., Quantum Mechanics in Curved SpaceTime, Proceedings of a NATO Advanced Research Workshop, held May 2 – 12, 1989, in Erice, Sicily, Italy, NATO ASI Series B, vol. 230, (Plenum Press, New York, U.S.A., 1990).  
183  Hu, B.L., “Quantum statistical fields in gravitation and cosmology”, in Kobes, R., and Kunstatter, G., eds., Third International Workshop on Thermal Field Theory and Applications, CNRS Summer Institute, Banff, 1993, (World Scientific, Singapore, 1994).  
184  Hu, B.L., “Correlation dynamics of quantum fields and black hole information paradox”, in Sánchez, N., and Zichichi, A., eds., String Gravity and Physics at the Planck Energy Scale, Proceedings of the NATO Advanced Study Institute, Erice, Italy, 8 – 19,September, 1995, NATO ASI Series C, vol. 476, (Kluwer, Dordrecht, Netherlands; Boston, U.S.A., 1996).  
185  Hu, B.L., “General Relativity as GeometroHydrodynamics”, (July 1996). URL (cited on 31
March 2003):
http://arXiv.org/abs/grqc/9607070. 

186  Hu, B.L., “Semiclassical gravity and mesoscopic physics”, in Feng, D.S., and Hu, B.L., eds., Quantum Classical Correspondence, Proceedings of the 4th Drexel Symposium on Quantum Nonintegrability, Drexel University, Philadelphia, USA, September 8 – 11, 1994, (International Press, Cambridge, U.S.A., 1997).  
187  Hu, B.L., “Stochastic gravity”, Int. J. Theor. Phys., 38, 2987–3037, (1999). Related online
version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9902064. 

188  Hu, B.L., “A kinetic theory approach to quantum gravity”, Int. J. Theor. Phys., 41, 2091–2119,
(2002). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/0204069. 

189  Hu, B.L., “Can spacetime be a condensate?”, Int. J. Theor. Phys., 44, 1785–1806, (2005).
Related online version (cited on 22 January 2008):
http://arXiv.org/abs/grqc/0503067. 

190  Hu, B.L., “New View on Quantum Gravity and the Origin of the Universe”, in Where Do We
Come From? On the Origin of the Universe, (Commercial Press, Hong Kong, 2007). Related
online version (cited on 22 January 2008):
http://arXiv.org/abs/grqc/0611058. In Chinese. 

191  Hu, B.L., and Matacz, A., “Quantum Brownian motion in a bath of parametric oscillators:
A Model for system–field interactions”, Phys. Rev. D, 49, 6612–6635, (1994). Related online
version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9312035. 

192  Hu, B.L., and Matacz, A., “Back reaction in semiclassical cosmology: The Einstein–Langevin
equation”, Phys. Rev. D, 51, 1577–1586, (1995). Related online version (cited on 31 March
2003):
http://arXiv.org/abs/grqc/9403043. 

193  Hu, B.L., and Parker, L., “Effect of graviton creation in isotropically expanding universes”, Phys. Lett. A, 63, 217–220, (1977).  
194  Hu, B.L., and Parker, L., “Anisotropy damping through quantum effects in the early universe”, Phys. Rev. D, 17, 933–945, (1978).  
195  Hu, B.L., Paz, J.P., and Sinha, S., “Minisuperspace as a Quantum Open System”, in Hu, B.L., Ryan, M.P., and Vishveswara, C.V., eds., Directions in General Relativity, Vol. 1, Proceedings of the 1993 International Symposium, Maryland: Papers in honor of Charles Misner, pp. 145–165, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1993).  
196  Hu, B.L., Paz, J.P., and Zhang, Y., “Quantum Brownian motion in a general environment: 1. Exact master equation with nonlocal dissipation and colored noise”, Phys. Rev. D, 45, 2843–2861, (1992).  
197  Hu, B.L., Paz, J.P., and Zhang, Y., “Quantum Brownian motion in a general environment. 2: Nonlinear coupling and perturbative approach”, Phys. Rev. D, 47, 1576–1594, (1993).  
198  Hu, B.L., and Phillips, N.G., “Fluctuations of energy density and validity of semiclassical
gravity”, Int. J. Theor. Phys., 39, 1817–1830, (2000). Related online version (cited on 31 March
2003):
http://arXiv.org/abs/grqc/0004006. 

199  Hu, B.L., Raval, A., and Sinha, S., “Notes on black hole fluctuations and backreaction”, in Bhawal, B., and Iyer, B.R., eds., Black Holes, Gravitational Radiation and the Universe: Essays in Honour of C.V. Vishveshwara, Fundamental Theories of Physics, (Kluwer, Dordrecht, Netherlands; Boston, U.S.A., 1999).  
200  Hu, B.L., and Roura, A., “Black Hole Fluctuations and Dynamics from BackReaction of Hawking Radiation: Current Work and Further Studies Based on Stochastic Gravity”, in Nester, J.M., Chen, C.M., and Hsu, J.P., eds., Gravitation and Astrophysics: On the Occasion of the 90th Year of General Relativity, Proceedings of the VII AsiaPacific International Conference, National Central University, Taiwan, 23 – 26 November 2005, pp. 236–250, (World Scientific, Singapore; Hackensack, U.S.A., 2007).  
201  Hu, B.L., and Roura, A., “Fluctuations of an evaporating black hole from back reaction of its
Hawking radiation: Questioning a premise in earlier work”, Int. J. Theor. Phys., 46, 2204–2217,
(2007). Related online version (cited on 22 January 2008):
http://arXiv.org/abs/grqc/0601088. 

202  Hu, B.L., and Roura, A., “Metric fluctuations of an evaporating black hole from back reaction
of stress tensor fluctuations”, Phys. Rev. D, 76, 124018, (2007). Related online version (cited
on 22 January 2008):
http://arXiv.org/abs/arXiv:0708.3046. 

203  Hu, B.L., Roura, A., and Verdaguer, E., “Induced quantum metric fluctuations and the validity
of semiclassical gravity”, Phys. Rev. D, 70, 044002, 1–24, (2004). Related online version (cited
on 31 March 2003):
http://arXiv.org/abs/grqc/0402029. 

204  Hu, B.L., Roura, A., and Verdaguer, E., “Stability of semiclassical gravity solutions with
respect to quantum metric fluctuations”, Int. J. Theor. Phys., 43, 749–766, (2004). Related
online version (cited on 22 January 2008):
http://arXiv.org/abs/grqc/0508010. 

205  Hu, B.L., and Shiokawa, K., “Wave propagation in stochastic spacetimes: Localization,
amplification and particle creation”, Phys. Rev. D, 57, 3474–3483, (1998). Related online
version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9708023. 

206  Hu, B.L., and Sinha, S., “A fluctuation–dissipation relation for semiclassical cosmology”, Phys.
Rev. D, 51, 1587–1606, (1995). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9403054. 

207  Hu, B.L., and Verdaguer, E., “Recent Advances in Stochastic Gravity: Theory and Issues”,
in Bergmann, P.G., and De Sabbata, V., eds., Advances in the interplay between quantum
and gravity physics, Proceedings of the NATO Advanced Study Institute, held in Erice, Italy,
April 30 – May 10, 2001, NATO Science Series II, vol. 60, pp. 133–218, (Kluwer, Dordrecht,
Netherlands; Boston, U.S.A., 2002). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/0110092. 

208  Hu, B.L., and Verdaguer, E., “Stochastic gravity: A primer with applications”, Class. Quantum
Grav., 20, R1–R42, (2003). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/0211090. 

209  Isham, C.J., “Quantum logic and the histories approach to quantum theory”, J. Math. Phys.,
35, 2157–2185, (1994). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9308006. 

210  Isham, C.J., and Linden, N., “Quantum temporal logic and decoherence functionals in the
histories approach to generalized quantum theory”, J. Math. Phys., 35, 5452–5476, (1994).
Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9405029. 

211  Isham, C.J., and Linden, N., “Continuous histories and the history group in generalized
quantum theory”, J. Math. Phys., 36, 5392–5408, (1995). Related online version (cited on 31
March 2003):
http://arXiv.org/abs/grqc/9503063. 

212  Isham, C.J., Linden, N., Savvidou, K., and Schreckenberg, S., “Continuous time and consistent
histories”, J. Math. Phys., 39, 1818–1834, (1998). Related online version (cited on 31 March
2003):
http://arXiv.org/abs/quantph/9711031. 

213  Israel, W., “Thermo field dynamics of black holes”, Phys. Lett. A, 57, 107–110, (1976).  
214  Jacobson, T., “On the nature of black hole entropy”, in Burgess, C.P., and Myers, R.C., eds., General Relativity and Relativistic Astrophysics, Eight Canadian Conference, Montréal, Québec June 1999, AIP Conference Proceedings, vol. 493, (American Institute of Physics, Melville, U.S.A., 1999).  
215  Jacobson, T.A., “Black hole radiation in the presence of a short distance cutoff”, Phys. Rev.
D, 48, 728–741, (1993). Related online version (cited on 22 January 2008):
http://arXiv.org/abs/hepth/9303103. 

216  Jacobson, T.A., “Thermodynamics of spacetime: The Einstein equation of state”, Phys. Rev.
Lett., 75, 1260–1263, (1995). Related online version (cited on 22 January 2008):
http://arXiv.org/abs/grqc/9504004. 

217  Jensen, B.P., McLaughlin, J.G., and Ottewill, A.C., “One loop quantum gravity in
Schwarzschild spacetime”, Phys. Rev. D, 51, 5676–5697, (1995). Related online version (cited
on 31 March 2003):
http://arXiv.org/abs/grqc/9412075. 

218  Jensen, B.P., and Ottewill, A.C., “Renormalized electromagnetic stress tensor in Schwarzschild spacetime”, Phys. Rev. D, 39, 1130–1138, (1989).  
219  Johnson, P.R., and Hu, B.L., “Stochastic theory of relativistic particles moving in a quantum
field: Scalar Abraham–Lorentz–Dirac–Langevin equation, radiation reaction, and vacuum
fluctuations”, Phys. Rev. D, 65, 065015, 1–24, (2002). Related online version (cited on 31 March
2003):
http://arXiv.org/abs/quantph/0101001. 

220  Jones, D.S., Generalised Functions, European Mathematics Series, (McGrawHill, London, U.K.; New York, U.S.A., 1966).  
221  Joos, E., and Zeh, H.D., “The Emergence of classical properties through interaction with the environment”, Z. Phys. B, 59, 223–243, (1985).  
222  Jordan, R.D., “Effective field equations for expectation values”, Phys. Rev. D, 33, 444–454, (1986).  
223  Jordan, R.D., “Stability of flat spacetime in quantum gravity”, Phys. Rev. D, 36, 3593–3603, (1987).  
224  Kabat, D., Shenker, S.H., and Strassler, M.J., “Black hole entropy in the O(N) model”, Phys.
Rev. D, 52, 7027–7036, (1995). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/hepth/9506182. 

225  Kahya, E.O., and Woodard, R.P., “Quantum Gravity Corrections to the One Loop Scalar
SelfMass during Inflation”, Phys. Rev., 76, 124005, (2007). Related online version (cited on
22 January 2008):
http://arXiv.org/abs/arXiv:0709.0536. 

226  Kahya, E.O., and Woodard, R.P., “Scalar Field Equations from Quantum Gravity during
Inflation”, (2007). URL (cited on 22 January 2008):
http://arXiv.org/abs/arXiv:0710.5282. 

227  Keldysh, L.V., “Diagram technique for nonequilibrium processes”, Zh. Eksp. Teor. Fiz., 47, 1515–1527, (1964).  
228  Kent, A., “Quasiclassical Dynamics in a Closed Quantum System”, Phys. Rev. A, 54,
4670–4675, (1996). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9512023. 

229  Kent, A., “Consistent sets contradict”, Phys. Rev. Lett., 78, 2874–2877, (1997). Related online
version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9604012. 

230  Kent, A., “Consistent Sets and Contrary Inferences in Quantum Theory: Reply to Griffiths
and Hartle”, Phys. Rev. Lett., 81, 1982, (1998). Related online version (cited on 31 March
2003):
http://arXiv.org/abs/grqc/9808016. 

231  Kiefer, C., “Continuous measurement of minisuperspace variables by higher multipoles”, Class. Quantum Grav., 4, 1369–1382, (1987).  
232  Kirsten, K., Spectral Functions in Mathematics and Physics, (Chapman and Hall/CRC, Boca Raton, U.S.A., 2001).  
233  Kolb, E.W., and Turner, M.S., The Early Universe, Frontiers in Physics, vol. 69, (AddisonWesley, Reading, U.S.A., 1990).  
234  Kubo, R., “Statisticalmechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems”, J. Phys. Soc. Jpn., 12, 570–586, (1957).  
235  Kubo, R., “The fluctuationdissipation theorem”, Rep. Prog. Phys., 29, 255–284, (1966).  
236  Kubo, R., Toda, M., and Hashitsume, N., Statistical Physics, (Springer, Berlin, Germany, 1985).  
237  Kuo, C., and Ford, L.H., “Semiclassical gravity theory and quantum fluctuations”, Phys. Rev.
D, 47, 4510–4519, (1993). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9304008. 

238  Landau, L.D., Lifshitz, E.M., and Pitaevskii, L.P., Statistical Physics, Part 2, Course of Theoretical Physics, vol. 9, (Pergamon Press, Oxford, U.K.; New York, U.S.A., 1980).  
239  Lee, D.S., and Boyanovsky, D., “Dynamics of phase transitions induced by a heat bath”,
Nucl. Phys. B, 406, 631–654, (1993). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/hepph/9304272. 

240  Levin, M.A., and Wen, X.G., “Photons and electrons as emergent phenomena”, Rev. Mod.
Phys., 77, 871–879, (2005). Related online version (cited on 22 January 2008):
http://arXiv.org/abs/condmat/0407140. 

241  Lifshitz, E., “On the gravitational stability of the expanding universe”, J. Phys. (Moscow), 10, 116, (1946).  
242  Lifshitz, E. M., and Khalatnikov, I. M., “Investigations in relativistic cosmology”, Adv. Phys., 12, 185–249, (1963).  
243  Linde, A.D., “Coleman–Weinberg theory and a new inflationary universe scenario”, Phys. Lett. B, 114, 431–435, (1982).  
244  Linde, A.D., “Initial conditions for inflation”, Phys. Lett. B, 162, 281–286, (1985).  
245  Linde, A.D., Particle Physics and Inflationary Cosmology, Contemporary Concepts in Physics, vol. 5, (Harwood, Chur, Switzerland; New York, U.S.A., 1990).  
246  Lindenberg, K., and West, B.J., The Nonequilibrium Statistical Mechanics of Open and Closed Systems, (VCH Publishers, New York, U.S.A., 1990).  
247  Lombardo, F.C., and Mazzitelli, F.D., “Coarse graining and decoherence in quantum field
theory”, Phys. Rev. D, 53, 2001–2011, (1996). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/hepth/9508052. 

248  Lombardo, F.C., and Mazzitelli, F.D., “Einstein–Langevin equations from running coupling
constants”, Phys. Rev. D, 55, 3889–3892, (1997). Related online version (cited on 31 March
2003):
http://arXiv.org/abs/grqc/9609073. 

249  Lombardo, F.C., Mazzitelli, F.D., and Russo, J.G., “Energymomentum tensor for scalar fields
coupled to the dilaton in two dimensions”, Phys. Rev. D, 59, 064007, (1999). Related online
version (cited on 22 January 2008):
http://arXiv.org/abs/grqc/9808048. 

250  Lowe, D.A., and Thorlacius, L., “Comments on the black hole information problem”, Phys.
Rev. D, 73, 104027, (2006). Related online version (cited on 22 January 2008):
http://arXiv.org/abs/hepth/0601059. 

251  Lukash, V.N., and Starobinsky, A.A., “Isotropization of cosmological expansion due to particle creation effect”, Sov. Phys. JETP, 39, 742, (1974).  
252  Maia, C., and Schützhold, R., “Quantum toy model for blackhole backreaction”, Phys. Rev.
D, 76, 101502, (2007). Related online version (cited on 22 January 2008):
http://arXiv.org/abs/arXiv:0706.4010. 

253  Maldacena, J.M., “Black holes and Dbranes”, Nucl. Phys. A (Proc. Suppl.), 61, 111–123,
(1998). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/hepth/9705078. 

254  Maldacena, J.M., Strominger, A., and Witten, E., “Black hole entropy in MTheory”, J. High
Energy Phys., 1997(12), 002, (1997). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/hepth/9711053. 

255  Marolf, D., “On the Quantum Width of a Black Hole Horizon”, in Trampetić, J., and
Wess, J., eds., Particle Physics and the Universe, Proceedings of the 9th Adriatic Meeting,
September 2003, Dubrovnik, Springer Proceedings in Physics, vol. 98, pp. 99–112, (Springer,
Berlin, Germany; New York, U.S.A., 2005). Related online version (cited on 22 January 2008):
http://arXiv.org/abs/hepth/0312059. 

256  Martín, R., and Verdaguer, E., “An effective stochastic semiclassical theory for the
gravitational field”, Int. J. Theor. Phys., 38, 3049–3089, (1999). Related online version (cited
on 31 March 2003):
http://arXiv.org/abs/grqc/9812063. 

257  Martín, R., and Verdaguer, E., “On the semiclassical Einstein–Langevin equation”, Phys.
Lett. B, 465, 113–118, (1999). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9811070. 

258  Martín, R., and Verdaguer, E., “Stochastic semiclassical gravity”, Phys. Rev. D, 60, 084008,
1–24, (1999). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9904021. 

259  Martín, R., and Verdaguer, E., “Stochastic semiclassical fluctuations in Minkowski
spacetime”, Phys. Rev. D, 61, 124024, 1–26, (2000). Related online version (cited on 31 March
2003):
http://arXiv.org/abs/grqc/0001098. 

260  Massar, S., “The semiclassical back reaction to black hole evaporation”, Phys. Rev. D, 52,
5857–5864, (1995). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9411039. 

261  Massar, S., and Parentani, R., “How the change in horizon area drives black hole evaporation”,
Nucl. Phys. B, 575, 333–356, (2000). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9903027. 

262  Matacz, A., “Inflation and the finetuning problem”, Phys. Rev. D, 56, 1836–1840, (1997).
Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9611063. 

263  Matacz, A., “A New Theory of Stochastic Inflation”, Phys. Rev. D, 55, 1860–1874, (1997).
Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9604022. 

264  Mazur, P.O., and Mottola, E., “Gravitational vacuum condensate stars”, Proc. Natl. Acad.
Sci. USA, 101, 9545–9550, (2004). Related online version (cited on 22 January 2008):
http://arXiv.org/abs/grqc/0407075. 

265  Misner, C.W., “Mixmaster Universe”, Phys. Rev. Lett., 22, 1071–1074, (1969).  
266  Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, U.S.A., 1973).  
267  Morikawa, M., “Classical fluctuations in dissipative quantum systems”, Phys. Rev. D, 33, 3607–3612, (1986).  
268  Mottola, E., “Quantum fluctuationdissipation theorem for general relativity”, Phys. Rev. D, 33, 2136–2146, (1986).  
269  Mukhanov, V., Physical Foundations of Cosmology, (Cambridge University Press, Cambridge, U.K., 2005).  
270  Mukhanov, V.F., Feldman, H.A., and Brandenberger, R.H., “Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions”, Phys. Rep., 215, 203–333, (1992).  
271  Ng, Y.J., “Selected topics in Planckscale physics”, Mod. Phys. Lett. A, 18, 1073–1098, (2003).
Related online version (cited on 22 January 2008):
http://arXiv.org/abs/grqc/0305019. 

272  Nicolai, H., and Peeters, K., “Loop and Spin Foam Quantum Gravity: A Brief Guide for
Beginners”, in Stamatescu, I.O., and Seiler, E., eds., Approaches to Fundamental Physics:
An Assessment of Current Theoretical Ideas, Lecture Notes in Physics, vol. 721, pp. 151–184,
(Springer, Berlin, Germany; New York, U.S.A., 2007). Related online version (cited on 22
January 2008):
http://arXiv.org/abs/hepth/0601129. 

273  Niemeyer, J.C., and Parentani, R., “TransPlanckian dispersion and scale invariance of
inflationary perturbations”, Phys. Rev. D, 64, 101301, 1–4, (2001). Related online version (cited
on 31 March 2003):
http://arXiv.org/abs/astroph/0101451. 

274  Nyquist, H., “Thermal agitation of electric charge in conductors”, Phys. Rev., 32, 110–113, (1928).  
275  Omnès, R., “Logical reformulation of quantum mechanics. 1. Foundations”, J. Stat. Phys., 53, 893–932, (1988).  
276  Omnès, R., “Logical reformulation of quantum mechanics. 2. Interferences and the Einstein–Podolsky–Rosen experiment”, J. Stat. Phys., 53, 933–955, (1988).  
277  Omnès, R., “Logical reformulation of quantum mechanics. 3. Classical limit and irreversibility”, J. Stat. Phys., 53, 957–975, (1988).  
278  Omnès, R., “From Hilbert space to common sense: A synthesis of recent progress in the interpretation of quantum mechanics”, Ann. Phys. (N.Y.), 201, 354–447, (1990).  
279  Omnès, R., “Consistent interpretations of quantum mechanics”, Rev. Mod. Phys., 64, 339–382, (1992).  
280  Omnès, R., The Interpretation of Quantum Mechanics, (Princeton University Press, Princeton, U.S.A., 1994).  
281  Oriti, D., Approaches to Quantum Gravity: Toward a New Understanding of Space, Time, and Matter, (Cambridge University Press, Cambridge, England, U.K., 2008).  
282  Osborn, H., and Shore, G.M., “Correlation functions of the energy momentum tensor on spaces
of constant curvature”, Nucl. Phys. B, 571, 287–357, (2000). Related online version (cited on
31 March 2003):
http://arXiv.org/abs/hepth/9909043. 

283  Padmanabhan, T., “Decoherence in the density matrix describing quantum three geometries and the emergence of classical spacetime”, Phys. Rev. D, 39, 2924–2932, (1989).  
284  Padmanabhan, T., Structure Formation in the Universe, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1993).  
285  Page, D.N., “Particle Emission Rates from a Black Hole: Massless Particles from an Uncharged, Nonrotating Hole”, Phys. Rev. D, 13, 198–206, (1976).  
286  Page, D.N., “Is black hole evaporation predictable?”, Phys. Rev. Lett., 44, 301–304, (1980).  
287  Page, D.N., “Thermal stress tensors in static Einstein spaces”, Phys. Rev. D, 25, 1499–1509, (1982).  
288  Page, D.N., “Black hole information”, in Mann, R.B., and McLenhagan, R.G., eds., General
Relativity and Relativistic Astrophysics, Proceedings of the 5th Canadian Conference on
General Relativity and Relativistic Astrophysics, University of Waterloo, 13 – 15 May, 1993,
(World Scientific, Singapore; River Edge, U.S.A., 1994). Related online version (cited on 9 May
2005):
http://arxiv.org/abs/hepth/9305040. 

289  Parentani, R., “Quantum metric fluctuations and Hawking radiation”, Phys. Rev. D, 63,
041503, 1–4, (2001). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/0009011. 

290  Parentani, R., “Toward a collective treatment of quantum gravitational interactions”, Int. J. Theor. Phys., 40, 2201–2216, (2001).  
291  Parentani, R., “Beyond the semiclassical description of black hole evaporation”, Int. J. Theor.
Phys., 41, 2175–2200, (2002). Related online version (cited on 22 January 2008):
http://arXiv.org/abs/arXiv:0704.2563. 

292  Parentani, R., and Piran, T., “The internal geometry of an evaporating black hole”, Phys.
Rev. Lett., 73, 2805–2808, (1994). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/hepth/9405007. 

293  Parker, L., “Quantized Fields and Particle Creation in Expanding Universes. I”, Phys. Rev., 183, 1057–1068, (1969).  
294  Parker, L., “Probability distribution of particles created by a black hole”, Phys. Rev. D, 12, 1519–1525, (1975).  
295  Parker, L., and Simon, J.Z., “Einstein equation with quantum corrections reduced to second
order”, Phys. Rev. D, 47, 1339–1355, (1993). Related online version (cited on 22 January 2008):
http://arXiv.org/abs/grqc/9211002. 

296  Paz, J.P., “Anisotropy dissipation in the early Universe: Finitetemperature effects reexamined”, Phys. Rev. D, 41, 1054–1066, (1990).  
297  Paz, J.P., “Decoherence and back reaction: The origin of the semiclassical Einstein equations”, Phys. Rev. D, 44, 1038–1049, (1991).  
298  Paz, J.P., and Sinha, S., “Decoherence and back reaction in quantum cosmology: Multidimensional minisuperspace examples”, Phys. Rev. D, 45, 2823–2842, (1992).  
299  Paz, J.P., and Zurek, W.H., “Environment induced decoherence, classicality and consistency
of quantum histories”, Phys. Rev. D, 48, 2728–2738, (1993). Related online version (cited on
31 March 2003):
http://arXiv.org/abs/grqc/9304031. 

300  Peebles, P.J.E., Large Scale Structure of the Universe, (Princeton University Press, Princeton, U.S.A., 1980).  
301  Phillips, N.G., “Symbolic computation of higher order correlation functions of quantum fields in curved spacetimes”, unknown status. in preparation.  
302  Phillips, N.G., and Hu, B.L., “Fluctuations of the vacuum energy density of quantum fields in
curved spacetime via generalized zeta functions”, Phys. Rev. D, 55, 6123–6134, (1997). Related
online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9611012. 

303  Phillips, N.G., and Hu, B.L., “Vacuum energy density fluctuations in Minkowski and Casimir
states via smeared quantum fields and point separation”, Phys. Rev. D, 62, 084017, 1–18,
(2000). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/0005133. 

304  Phillips, N.G., and Hu, B.L., “Noise kernel in stochastic gravity and stress energy bitensor of
quantum fields in curved spacetimes”, Phys. Rev. D, 63, 104001, 1–16, (2001). Related online
version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/0010019. 

305  Phillips, N.G., and Hu, B.L., “Noise kernel and the stress energy bitensor of quantum fields
in hot flat space and the Schwarzschild black hole under the Gaussian approximation”, Phys.
Rev. D, 67, 104002, 1–26, (2003). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/0209056. 

306  Polchinski, J., and Strominger, A., “A Possible resolution of the black hole information puzzle”,
Phys. Rev. D, 50, 7403–7409, (1994). Related online version (cited on 22 January 2008):
http://arXiv.org/abs/hepth/9407008. 

307  Preskil, J., “Do black holes destroy information?”, in Kalara, S., and Nanopoulos, D.V.,
eds., Black Holes, Membranes, Wormholes and Superstrings, Proceedings of the International
Symposium, Houston Advanced Research Center, USA, 16 – 18 January 1992, (World Scientific,
Singapore; River Edge, U.S.A., 1993). Related online version (cited on 22 January 2008):
http://arXiv.org/abs/hepth/9209058. 

308  Ramsey, S.A., Hu, B.L., and Stylianopoulos, A.M., “Nonequilibrium inflaton dynamics and
reheating. II: Fermion production, noise, and stochasticity”, Phys. Rev. D, 57, 6003–6021,
(1998). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/hepph/9709267. 

309  RandjbarDaemi, S., “Stability of the Minskowski vacuum in the renormalized semiclassical theory of gravity”, J. Phys. A, 14, L229–L233, (1981).  
310  RandjbarDaemi, S., “A recursive formula for the evaluation of the diagonal matrix elements of the stress energy tensor operator and its application in the semiclassical theory of gravity”, J. Phys. A, 15, 2209–2219, (1982).  
311  Rebhan, A., “Collective phenomena and instabilities of perturbative quantum gravity at nonzero temperature”, Nucl. Phys. B, 351, 706–734, (1991).  
312  Rebhan, A., “Analytical solutions for cosmological perturbations with relativistic collisionless matter”, Nucl. Phys. B, 368, 479–508, (1992).  
313  Roura, A., and Verdaguer, E., “Mode decomposition and renormalization in semiclassical
gravity”, Phys. Rev. D, 60, 107503, 1–4, (1999). Related online version (cited on 31 March
2003):
http://arXiv.org/abs/grqc/9906036. 

314  Roura, A., and Verdaguer, E., “Spacelike fluctuations of the stress tensor for de Sitter vacuum”,
Int. J. Theor. Phys., 38, 3123–3133, (1999). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9904039. 

315  Roura, A., and Verdaguer, E., “Semiclassical cosmological perturbations generated during inflation”, Int. J. Theor. Phys., 39, 1831–1839, (2000).  
316  Roura, A., and Verdaguer, E., “Cosmological perturbations from stochastic gravity”, (2007).
URL (cited on 22 January 2008):
http://arXiv.org/abs/arXiv:0709.1940. 

317  Roura, A., and Verdaguer, E., “Stochastic gravity as the large N limit for quantum metric fluctuations”, unknown status, (2008). in preparation.  
318  Russo, J.G., Susskind, L., and Thorlacius, L., “Black hole evaporation in 1 + 1 dimensions”,
Phys. Lett. B, 292, 13–18, (1992). Related online version (cited on 22 January 2008):
http://arXiv.org/abs/hepth/9201074. 

319  Russo, J.G., Susskind, L., and Thorlacius, L., “The Endpoint of Hawking radiation”, Phys.
Rev. D, 46, 3444–3449, (1992). Related online version (cited on 22 January 2008):
http://arXiv.org/abs/hepth/9206070. 

320  Schützhold, R., “Effective horizons in the laboratory”, in Unruh, W.G., and Schützhold, R., eds., Quantum Analogues: From Phase Transitions to Black Holes and Cosmology, Selected lectures from the international workshop on “Quantum Simulations via Analogues”, held at the Max Planck Institute for the Physics of Complex Systems in Dresden, Germany, July 25 – 28, 2005, Lecture Notes in Physics, vol. 718, pp. 5–30, (Springer, Berlin, Germany; New York, U.S.A., 2007).  
321  Schützhold, R., Uhlmann, M., Petersen, L., Schmitz, H., Friedenauer, A., and Schutz, T.,
“Analogue of cosmological particle creation in an ion trap”, Phys. Rev. Lett., 99, 201301,
(2007). Related online version (cited on 22 January 2008):
http://arXiv.org/abs/arXiv:0705.3755. 

322  Schwartz, L., Théorie des distributions, (Hermann, Paris, France, 1978).  
323  Schwinger, J.S., “Brownian motion of a quantum oscillator”, J. Math. Phys., 2, 407–432, (1961).  
324  Sciama, D.W., “Thermal and quantum fluctuations in special and general relativity: an Einstein Synthesis”, in de Finis, F., ed., Centenario di Einstein: Relativity, quanta, and cosmology in the development of the scientific thought of Albert Einstein, (Editrici Giunti Barbera Universitaria, Florence, Italy, 1979).  
325  Sciama, D.W., Candelas, P., and Deutsch, D., “Quantum field theory, horizons and thermodynamics”, Adv. Phys., 30, 327–366, (1981).  
326  Seiberg, N., “Emergent spacetime”, in Gross, D., Henneaux, M., and Sevrin, A., eds., The
Quantum Structure Of Space And Time, Proceedings of the 23rd Solvay Conference on Physics,
Brussels, Belgium, 1 – 3 December, 2005, (World Scientific, Singapore; Hackensack, U.S.A.,
2007). Related online version (cited on 22 January 2008):
http://arXiv.org/abs/hepth/0601234. 

327  Sexl, R.U., and Urbantke, H.K., “Production of particles by gravitational fields”, Phys. Rev., 179, 1247–1250, (1969).  
328  Shiokawa, K., “Mesoscopic fluctuations in stochastic spacetime”, Phys. Rev. D, 62, 024002,
1–14, (2000). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/hepth/0001088. 

329  Simon, J.Z., “Higher derivative Lagrangians, nonlocality, problems and solutions”, Phys. Rev. D, 41, 3720–3733, (1990).  
330  Simon, J.Z., “Stability of flat space, semiclassical gravity, and higher derivatives”, Phys. Rev. D, 43, 3308–3316, (1991).  
331  Sinha, S., and Hu, B.L., “Validity of the minisuperspace approximation: An Example from interacting quantum field theory”, Phys. Rev. D, 44, 1028–1037, (1991).  
332  Sinha, S., Raval, A., and Hu, B.L., “Black Hole Fluctuations and Backreaction in Stochastic Gravity”, Found. Phys., 33, 37–64, (2003).  
333  Smolin, J.A., and Oppenheim, J., “Information locking in black holes”, Phys. Rev. Lett., 96,
081302, (2006). Related online version (cited on 22 January 2008):
http://arXiv.org/abs/hepth/0507287. 

334  Smoot, G.F., Bennett, C.L., Kogut, A., Wright, E.L., Aymon, J., Boggess, N.W., Cheng, E.S., de Amici, G., Gulkis, S., Hauser, M.G., Hinshaw, G., Jackson, P.D., Janssen, M., Kaita, E., Kelsall, T., Keegstra, P., Lineweaver, C.H., Loewenstein, K., Lubin, P., Mather, J., Meyer, S.S., Moseley, S.H., Murdock, T., Rokke, L., Silverberg, R.F., Tenorio, L., Weiss, R., and Wilkinson, D.T., “Structure in the COBE differential microwave radiometer firstyear maps”, Astrophys. J. Lett., 396, L1–L5, (1992).  
335  Sorkin, R.D., “Two Topics concerning Black Holes: Extremality of the Energy, Fractality of
the Horizon”, in Fulling, S.A., ed., Heat Kernel Techniques and Quantum Gravity, Winnipeg,
Canada, August, 1994, Discourses Math. Appl., vol. 4, pp. 387–407, (University of Texas Press,
College Station, U.S.A., 1995). Related online version (cited on 22 January 2008):
http://arXiv.org/abs/grqc/9508002. 

336  Sorkin, R.D., “How Wrinkled is the Surface of a Black Hole?”, in Wiltshire, D., ed., First
Australasian Conference on General Relativity and Gravitation, Proceedings of the conference
held at the Institute for Theoretical Physics, University of Adelaide, 12 – 17 February 1996, pp.
163–174, (University of Adelaide, Adelaide, Australia, 1996). Related online version (cited on
3 May 2005):
http://arxiv.org/abs/grqc/9701056. 

337  Sorkin, R.D., “The Statistical Mechanics of Black Hole Thermodynamics”, in Wald, R.M.,
ed., Black Holes and Relativistic Stars, pp. 177–194, (University of Chicago Press, Chicago,
U.S.A., 1998). Related online version (cited on 4 May 2005):
http://arxiv.org/abs/grqc/9705006. 

338  Sorkin, R.D., and Sudarsky, D., “Large fluctuations in the horizon area and what they can
tell us about entropy and quantum gravity”, Class. Quantum Grav., 16, 3835–3857, (1999).
Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9902051. 

339  Starobinsky, A.A., “A new type of isotropic cosmological models without singularity”, Phys. Lett. B, 91, 99–102, (1980).  
340  Starobinsky, A.A., “Evolution of small excitation of isotropic cosmological models with one loop quantum gravitational corrections”, Zh. Eksp. Teor. Fiz., 34, 460–463, (1981). English translation: JETP Lett. 34 (1981) 438.  
341  Strominger, A., and Trivedi, S.P., “Information consumption by ReissnerNordstrom black
holes”, Phys. Rev. D, 48, 5778–5783, (1993). Related online version (cited on 22 January 2008):
http://arXiv.org/abs/hepth/9302080. 

342  Strominger, A., and Vafa, G., “Microscopic origin of the Bekenstein–Hawking entropy”, Phys.
Lett. B, 379, 99–104, (1996). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/hepth/9601029. 

343  Su, Z., Chen, L., Yu, X., and Chou, K., “Influence functional, closed time path Green’s function and quasidistribution function”, Phys. Rev. B, 37, 9810–9812, (1988).  
344  Suen, W.M., “Minkowski spacetime is unstable in semiclassical gravity”, Phys. Rev. Lett., 62, 2217–2220, (1989).  
345  Suen, W.M., “Stability of the semiclassical Einstein equation”, Phys. Rev. D, 40, 315–326, (1989).  
346  Susskind, L., and Uglum, J., “Black hole entropy in canonical quantum gravity and superstring
theory”, Phys. Rev. D, 50, 2700–2711, (1994). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/hepth/9401070. 

347  Tichy, W., and Flanagan, É.É., “How unique is the expected stressenergy tensor of a massive
scalar field?”, Phys. Rev. D, 58, 124007, 1–18, (1998). Related online version (cited on 31
March 2003):
http://arXiv.org/abs/grqc/9807015. 

348  Tomboulis, E., “1∕N expansion and renormalization in quantum gravity”, Phys. Lett. B, 70, 361–364, (1977).  
349  Trivedi, S.P., “Semiclassical extremal black holes”, Phys. Rev. D, 47, 4233–4238, (1993).
Related online version (cited on 22 January 2008):
http://arXiv.org/abs/hepth/9211011. 

350  Twamley, J., “Phase space decoherence: A comparison between consistent histories and
environment induced superselection”, Phys. Rev. D, 48, 5730–5745, (1993). Related online
version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9306004. 

351  Unruh, W.G., “Experimental black hole evaporation”, Phys. Rev. Lett., 46, 1351–1353, (1981).  
352  Unruh, W.G., and Zurek, W.H., “Reduction of the wave packet in quantum Brownian motion”, Phys. Rev. D, 40, 1071–1094, (1989).  
353  Urakawa, Y., and Maeda, K., “Cosmological Density Fluctuations in Stochastic Gravity:
Formalism and Linear Analysis”, (2007). URL (cited on 22 January 2008):
http://arXiv.org/abs/arXiv:0710.5342. 

354  Urakawa, Y., and Maeda, K., “Oneloop Corrections to Scalar and Tensor Perturbations during
Inflation in Stochastic Gravity”, (2008). URL (cited on 22 January 2008):
http://arXiv.org/abs/arXiv:0801.0126. 

355  Vilenkin, A., “Classical and quantum cosmology of the Starobinsky inflationary model”, Phys. Rev. D, 32, 2511–2512, (1985).  
356  Volovik, G.E., The Universe in a Helium Droplet, International Series of Monographs on Physics, vol. 117, (Oxford University Press, Oxford, U.K., New York, U.S.A., 2003).  
357  Volovik, G.E., “Fermipoint scenario for emergent gravity”, (2007). URL (cited on 22 January
2008):
http://arXiv.org/abs/arXiv:0709.1258. To be published in proceedings of workshop “From Quantum To Emergent Gravity: Theory And Phenomenology”, Trieste, Italy, June 11 – 15, 2007. 

358  Wald, R.M., “On particle creation by black holes”, Commun. Math. Phys., 45, 9–34, (1975).  
359  Wald, R.M., “The backreaction effect in particle creation in curved spacetime”, Commun. Math. Phys., 54, 1–19, (1977).  
360  Wald, R.M., “Trace anomaly of a conformally invariant quantum field in curved spacetime”, Phys. Rev. D, 17, 1477–1484, (1978).  
361  Wald, R.M., General Relativity, (University of Chicago Press, Chicago, U.S.A., 1984).  
362  Wald, R.M., Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics, Chicago Lectures in Physics, (University of Chicago Press, Chicago, U.S.A., 1994).  
363  Wald, R.M., “The Thermodynamics of Black Holes”, Living Rev. Relativity, 4, lrr20016,
(2001). URL (cited on 31 March 2003):
http://www.livingreviews.org/lrr20016. 

364  Wald, R.M., “The Thermodynamics of Black Holes”, in Bergman, P., and De Sabbata, V., eds., Advances in the Interplay Between Quantum and Gravity Physics, NATO Science Series II, vol. 60, pp. 523–544, (Kluwer, Dordrecht, Netherlands; Boston, U.S.A., 2002).  
365  Weber, J., “Fluctuation dissipation theorem”, Phys. Rev., 101, 1620–1626, (1956).  
366  Weinberg, S., The Quantum Theory of Fields, Vol. 1: Foundations, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1995).  
367  Weinberg, S., The Quantum Theory of Fields, Vol. 2: Modern Applications, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1996).  
368  Weinberg, S., “Quantum contributions to cosmological correlations”, Phys. Rev. D, 72, 043514,
(2005). Related online version (cited on 22 January 2008):
http://arXiv.org/abs/hepth/0506236. 

369  Weinberg, S., “Quantum contributions to cosmological correlations. II: Can these corrections
become large?”, Phys. Rev. D, 74, 023508, (2006). Related online version (cited on 22 January
2008):
http://arXiv.org/abs/hepth/0605244. 

370  Weiss, U., Quantum Dissipative Systems, Series in Modern Condensed Matter Physics, vol. 2, (World Scientific, Singapore; River Edge, U.S.A., 1993).  
371  Weldon, H.A., “Covariant calculations at finite temperature: The relativistic plasma”, Phys. Rev. D, 26, 1394–1407, (1982).  
372  Wen, X.G., Quantum Field Theory of ManyBody Systems: From the Origin of Sound to an Origin of Light and Electron, (Oxford University Press, Oxford, U.K.; New York, U.S.A., 2004).  
373  Wen, X.G., “An introduction to quantum order, stringnet condensation, and emergence of
light and fermions”, Ann. Phys. (N.Y.), 316, 1–29, (2005). Related online version (cited on 22
January 2008):
http://arXiv.org/abs/condmat/0406441. 

374  Whelan, J.T., “Modelling the decoherence of spacetime”, Phys. Rev. D, 57, 768–797, (1998).
Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9612028. 

375  Wilczek, F., “Quantum purity at a small price: Easing a black hole paradox”, in Kalara, S., and
Nanopoulos, D.V., eds., Black Holes, Membranes, Wormholes and Superstrings, Proceedings
of the International Symposium, Houston Advanced Research Center, USA, 16 – 18 January
1992, (World Scientific, Singapore; River Edge, U.S.A., 1993). Related online version (cited on
22 January 2008):
http://arXiv.org/abs/hepth/9302096. 

376  Witten, E., “On string theory and black holes”, Phys. Rev. D, 44, 314–324, (1991).  
377  Wu, C.H., and Ford, L.H., “Fluctuations of the Hawking flux”, Phys. Rev. D, 60, 104013,
1–14, (1999). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/grqc/9905012. 

378  Wu, C.H., and Ford, L.H., “Quantum fluctuations of radiation pressure”, Phys. Rev. D, 64,
045010, 1–12, (2001). Related online version (cited on 31 March 2003):
http://arXiv.org/abs/quantph/0012144. 

379  Yamaguchi, M., and Yokoyama, J., “Numerical approach to the onset of the electroweak phase
transition”, Phys. Rev. D, 56, 4544–4561, (1997). Related online version (cited on 31 March
2003):
http://arXiv.org/abs/hepph/9707502. 

380  York Jr, J.W., “Dynamical origin of blackhole radiance”, Phys. Rev. D, 28(12), 2929–2945, (1983).  
381  York Jr, J.W., “Black hole in thermal equilibrium with a scalar field: The backreaction”, Phys. Rev. D, 31, 775–784, (1985).  
382  York Jr, J.W., “Black hole thermodynamics and the Euclidean Einstein action”, Phys. Rev. D, 33, 2092–2099, (1986).  
383  York Jr, J.W., and Schmekel, B.S., “Path integral over black hole fluctuations”, Phys. Rev.
D, 72, 024022, (2005). Related online version (cited on 22 January 2008):
http://arXiv.org/abs/hepth/0505125. 

384  Yu, Hongwei, and Ford, L.H., “Lightcone fluctuations in flat spacetimes with nontrivial
topology”, Phys. Rev. D, 60, 084023, (1999). Related online version (cited on 22 January 2008):
http://arXiv.org/abs/grqc/9904082. 

385  Yu, Hongwei, and Ford, L.H., “Lightcone fluctuations in quantum gravity and extra
dimensions”, Phys. Lett. B, 496, 107–112, (2000). Related online version (cited on 22 January
2008):
http://arXiv.org/abs/grqc/9907037. 

386  Zel’dovich, Y.B., “Particle production in cosmology”, Pis. Zh. Eksp. Teor. Fiz., 12, 443–447, (1970). English translation: JETP Lett. 12 (1970) 307–311.  
387  Zel’dovich, Y.B., and Starobinsky, A.A., “Particle Production and Vacuum Polarization in an Anisotropic Gravitational Field”, Zh. Eksp. Teor. Fiz., 61, 2161–2175, (1971). English translation: Sov. Phys. JETP 34 (1971) 1159–1166.  
388  Zemanian, A.H., Distribution Theory and Transform Analysis: An Introduction to Generalized Functions, with Applications, (Dover, New York, U.S.A., 1987). Reprint, slightly corrected, Originally published: New York, McGrawHill, 1965.  
389  Zurek, W.H., “Pointer basis of quantum apparatus: into what mixture does the wave packet collapse?”, Phys. Rev. D, 24, 1516–1525, (1981).  
390  Zurek, W.H., “Environment induced superselection rules”, Phys. Rev. D, 26, 1862–1880, (1982).  
391  Zurek, W.H., “Reduction of the wave packet: How long does it take?”, in Moore, G.T., and Scully, M.O., eds., Frontiers of Nonequilibrium Statistical Physics, Proceedings of a NATO Advanced Study Institute, held June 3 – 16, 1984, in Santa Fe, New Mexico, NATO Science Series B, vol. 135, pp. 145–149, (Plenum Press, New York, U.S.A., 1986).  
392  Zurek, W.H., “Decoherence and the transition from quantum to classical”, Phys. Today, 44, 36–44, (1991).  
393  Zurek, W.H., “Preferred states, predictability, classicality and the environmentinduced decoherence”, Prog. Theor. Phys., 89, 281–312, (1993). 
http://www.livingreviews.org/lrr20083 
This work is licensed under a Creative Commons AttributionNoncommercialNo Derivative Works 2.0 Germany License. Problems/comments to 