1 Adler, S.L., Lieberman, J., and Ng, Y.J., “Regularization of the stress energy tensor for vector and scalar particles propagating in a general background metric”, Ann. Phys. (N.Y.), 106, 279–321, (1977).
2 Albrecht, A., and Steinhardt, P.J., “Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking”, Phys. Rev. Lett., 48, 1220–1223, (1982).
3 Anderson, P.R., “Effects of quantum fields on singularities and particle horizons in the early universe”, Phys. Rev. D, 28, 271–285, (1983).
4 Anderson, P.R., “Effects of quantum fields on singularities and particle horizons in the early universe. II”, Phys. Rev. D, 29, 615–627, (1984).
5 Anderson, P.R., Binkley, M., Calderon, H., Hiscock, W.A., Mottola, E., and Vaulin, R., “Effects of quantized fields on the spacetime geometries of static spherically symmetric black holes”, (2007). URL (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/arXiv:0709.4457.
6 Anderson, P.R., Hiscock, W.A., and Loranz, D.J., “Semiclassical stability of the extreme Reissner–Nordström black hole”, Phys. Rev. Lett., 74, 4365–4368, (1995). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9504019.
7 Anderson, P.R., Hiscock, W.A., and Samuel, D.A., “Stress energy tensor of quantized scalar fields in static black hole space-times”, Phys. Rev. Lett., 70, 1739–1742, (1993).
8 Anderson, P.R., Hiscock, W.A., and Samuel, D.A., “Stress-energy tensor of quantized scalar fields in static spherically symmetric space-times”, Phys. Rev. D, 51, 4337–4358, (1995).
9 Anderson, P.R., Hiscock, W.A., Whitesell, J., and York Jr, J.W., “Semiclassical black hole in thermal equilibrium with a nonconformal scalar field”, Phys. Rev. D, 50, 6427–6434, (1994).
10 Anderson, P.R., Molina-Paris, C., and Mottola, E., “Linear response, validity of semiclassical gravity, and the stability of flat space”, Phys. Rev. D, 67, 024026, 1–19, (2003). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/0209075.
11 Anderson, P.R., Molina-Paris, C., and Mottola, E., “Linear response and the validity of the semi-classical approximation in gravity”, (April 2004). URL (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/0204083.
12 Anglin, J.R., Laflamme, R., Zurek, W.H., and Paz, J.P., “Decoherence, recoherence, and the black hole information paradox”, Phys. Rev. D, 52, 2221–2231, (1995). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/gr-qc/9411073.
13 Ashtekar, A., “Large quantum gravity effects: Unforseen limitations of the classical theory”, Phys. Rev. Lett., 77, 4864–4867, (1996). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/gr-qc/9610008.
14 Bakshi, P.M., and Mahanthappa, K.T., “Expectation value formalism in quantum field theory. 1”, J. Math. Phys., 4, 1–11, (1963).
15 Balbinot, R., Fabbri, A., Fagnocchi, S., and Parentani, R., “Hawking radiation from acoustic black holes, short distance and back-reaction effects”, Riv. Nuovo Cimento, 28(03), 1–55, (2005). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0601079.
16 Barceló, C., Liberati, S., and Visser, M., “Analogue Gravity”, Living Rev. Relativity, 8, lrr-2005-12, (2005). Related online version (cited on 22 January 2008):
http://www.livingreviews.org/lrr-2005-12.
17 Bardeen, J.M., “Gauge invariant cosmological perturbations”, Phys. Rev. D, 22, 1882–1905, (1980).
18 Bardeen, J.M., “Black holes do evaporate thermally”, Phys. Rev. Lett., 46, 382–385, (1981).
19 Bardeen, J.M., Steinhardt, P.J., and Turner, M.S., “Spontaneous Creation of Almost Scale - Free Density Perturbations in an Inflationary Universe”, Phys. Rev. D, 28, 679, (1983).
20 Barrabès, C., Frolov, V.P., and Parentani, R., “Metric fluctuation corrections to Hawking radiation”, Phys. Rev. D, 59, 124010, 1–14, (1999). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9812076.
21 Barrabès, C., Frolov, V.P., and Parentani, R., “Stochastically fluctuating black-hole geometry, Hawking radiation and the trans-Planckian problem”, Phys. Rev. D, 62, 044020, 1–19, (2000). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/0001102.
22 Beetle, C., “Midi-superspace quantization of non-compact toroidally symmetric gravity”, Adv. Theor. Math. Phys., 2, 471–495, (1998). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/gr-qc/9801107.
23 Bekenstein, J.D., “Black Holes and Entropy”, Phys. Rev. D, 7, 2333–2346, (1973).
24 Bekenstein, J.D., “Black hole fluctuations”, in Christensen, S.M., ed., Quantum Theory of Gravity: Essays in Honor of the 60th Birthday of Bryce S. DeWitt, pp. 148–159, (Adam Hilger, Bristol, U.K., 1984).
25 Bekenstein, J.D., “Do We Understand Black Hole Entropy?”, in Jantzen, R.T., and Mac Keiser, G., eds., The Seventh Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, Proceedings of the meeting held at Stanford University, 24 – 30 July 1994, pp. 39–58, (World Scientific, Singapore; River Edge, U.S.A., 1994). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9409015.
26 Bekenstein, J.D., and Mukhanov, V.F., “Spectroscopy of the quantum black hole”, Phys. Lett. B, 360, 7–12, (1995). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9505012.
27 Belinskii, V.A., Khalatnikov, I.M., and Lifshitz, E.M., “Oscillatory approach to a singular point in the relativistic cosmology”, Adv. Phys., 19, 525–573, (1970).
28 Belinskii, V.A., Khalatnikov, I.M., and Lifshitz, E.M., “A general solution of the Einstein equations with a time singularity”, Adv. Phys., 13, 639–667, (1982).
29 Berger, B.K., “Quantum graviton creation in a model universe”, Ann. Phys. (N.Y.), 83, 458–490, (1974).
30 Berger, B.K., “Quantum cosmology: Exact solution for the Gowdy T3 model”, Phys. Rev. D, 11, 2770–2780, (1975).
31 Berger, B.K., “Scalar particle creation in an anisotropic universe”, Phys. Rev. D, 12, 368–375, (1975).
32 Bernadotte, S., and Klinkhamer, F.R., “Bounds on length scales of spacetime foam models”, Phys. Rev. D, 75, 024028, (2007). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/hep-ph/0610216.
33 Bernard, W., and Callen, H.B., “Irreversible thermodynamics of nonlinear processes and noise in driven systems”, Rev. Mod. Phys., 31, 1017–1044, (1959).
34 Birrell, N.D., and Davies, P.C.W., Quantum fields in curved space, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1982).
35 Borgman, J., and Ford, L.H., “Effects of quantum stress tensor fluctuations with compact extra dimensions”, Phys. Rev. D, 70, 127701, (2004). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0406066.
36 Borgman, J., and Ford, L.H., “The effects of stress tensor fluctuations upon focusing”, Phys. Rev. D, 70, 064032, (2004). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0307043.
37 Borgman, J., and Ford, L.H., “Stochastic gravity and the Langevin-Raychaudhuri equation”, Int. J. Mod. Phys. A, 20, 2364–2373, (2005).
38 Boyanovsky, D., de Vega, H.J., Holman, R., Lee, D.S., and Singh, A., “Dissipation via particle production in scalar field theories”, Phys. Rev. D, 51, 4419–4444, (1995). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-ph/9408214.
39 Brandt, F.T., and Frenkel, J., “The structure of the graviton self-energy at finite temperature”, Phys. Rev. D, 58, 085012, 1–11, (1998). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-th/9803155.
40 Braunstein, S.L., and Pati, A.K., “Quantum information cannot be completely hidden in correlations: Implications for the black-hole information paradox”, Phys. Rev. Lett., 98, 080502, (2007). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0603046.
41 Brown, M.R., and Ottewill, A.C., “Effective actions and conformal transformations”, Phys. Rev. D, 31, 2514–2520, (1985).
42 Brown, M.R., Ottewill, A.C., and Page, D.N., “Conformally invariant quantum field theory in static Einstein space-times”, Phys. Rev. D, 33, 2840–2850, (1986).
43 Brun, T.A., “Quasiclassical equations of motion for nonlinear Brownian systems”, Phys. Rev. D, 47, 3383–3393, (1993). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9306013.
44 Bunch, T.S., “On the renormalization of the quantum stress tensor in curved space-time by dimensional regularization”, J. Phys. A, 12, 517–531, (1979).
45 Caldeira, A.O., and Leggett, A.J., “Path integral approach to quantum Brownian motion”, Physica A, 121, 587–616, (1983).
46 Caldeira, A.O., and Leggett, A.J., “Influence of damping on quantum interference: An exactly soluble model”, Phys. Rev. A, 31, 1059–1066, (1985).
47 Callan Jr, C.G., Giddings, S.B., Harvey, J.A., and Strominger, A., “Evanescent black holes”, Phys. Rev. D, 45, 1005–1009, (1992). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/hep-th/9111056.
48 Callen, H.B., and Greene, R.F., “On a theorem of irreversible thermodynamics”, Phys. Rev., 86, 702–710, (1952).
49 Callen, H.B., and Welton, T.A., “Irreversibility and generalized noise”, Phys. Rev., 83, 34–40, (1951).
50 Calzetta, E., “Memory loss and asymptotic behavior in minisuperspace cosmological models”, Class. Quantum Grav., 6, L227–L231, (1989).
51 Calzetta, E., “Anisotropy dissipation in quantum cosmology”, Phys. Rev. D, 43, 2498–2509, (1991).
52 Calzetta, E.A., Campos, A., and Verdaguer, E., “Stochastic semiclassical cosmological models”, Phys. Rev. D, 56, 2163–2172, (1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9704010.
53 Calzetta, E.A., and Gonorazky, S., “Primordial fluctuations from nonlinear couplings”, Phys. Rev. D, 55, 1812–1821, (1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9608057.
54 Calzetta, E.A., and Hu, B.L., “Closed time path functional formalism in curved space-time: application to cosmological backreaction problems”, Phys. Rev. D, 35, 495–509, (1987).
55 Calzetta, E.A., and Hu, B.L., “Nonequilibrium quantum fields: closed time path effective action Wigner function and Boltzmann equation”, Phys. Rev. D, 37, 2878–2900, (1988).
56 Calzetta, E.A., and Hu, B.L., “Dissipation of quantum fields from particle creation”, Phys. Rev. D, 40, 656–659, (1989).
57 Calzetta, E.A., and Hu, B.L., “Decoherence of Correlation Histories”, in Hu, B.L., and Jacobson, T.A., eds., Directions in General Relativity, Vol. 2, Proceedings of the 1993 International Symposium, Maryland: Papers in honor of Dieter Brill, pp. 38–65, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1993). Related online version (cited on 3 May 2005):
External Linkhttp://arxiv.org/abs/gr-qc/9302013.
58 Calzetta, E.A., and Hu, B.L., “Noise and fluctuations in semiclassical gravity”, Phys. Rev. D, 49, 6636–6655, (1994). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9312036.
59 Calzetta, E.A., and Hu, B.L., “Correlations, Decoherence, Dissipation, and Noise in Quantum Field Theory”, in Fulling, S.A., ed., Heat Kernel Techniques and Quantum Gravity, Discourses in Mathematics and Its Applications, vol. 4, pp. 261–302, (Texas A&M University, College Station, U.S.A., 1995).
60 Calzetta, E.A., and Hu, B.L., “Quantum fluctuations, decoherence of the mean field, and structure formation in the early universe”, Phys. Rev. D, 52, 6770–6788, (1995). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9505046.
61 Calzetta, E.A., and Hu, B.L., “Stochastic dynamics of correlations in quantum field theory: From Schwinger–Dyson to Boltzmann–Langevin equation”, Phys. Rev. D, 61, 025012, 1–22, (2000). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-ph/9903291.
62 Calzetta, E.A., and Hu, B.L., Nonequilibrium Quantum Field Theory, (Cambridge University Press, Cambridge, England, U.K., 2008).
63 Calzetta, E.A., and Kandus, A., “Spherically symmetric nonlinear structures”, Phys. Rev. D, 55, 1795–1811, (1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/astro-ph/9603125.
64 Calzetta, E.A., Roura, A., and Verdaguer, E., “Vacuum decay in quantum field theory”, Phys. Rev. D, 64, 105008, 1–21, (2001). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-ph/0106091.
65 Calzetta, E.A., Roura, A., and Verdaguer, E., “Dissipation, Noise, and Vacuum Decay in Quantum Field Theory”, Phys. Rev. Lett., 88, 010403, 1–4, (2002). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-ph/0101052.
66 Calzetta, E.A., Roura, A., and Verdaguer, E., “Stochastic description for open quantum systems”, Physica A, 319, 188–212, (2003). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/quant-ph/0011097.
67 Calzetta, E.A., and Verdaguer, E., “Noise induced transitions in semiclassical cosmology”, Phys. Rev. D, 59, 083513, 1–24, (1999). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9807024.
68 Camporesi, R., “Harmonic analysis and propagators on homogeneous spaces”, Phys. Rep., 196, 1–134, (1990).
69 Campos, A., and Hu, B.L., “Nonequilibrium dynamics of a thermal plasma in a gravitational field”, Phys. Rev. D, 58, 125021, 1–15, (1998). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-ph/9805485.
70 Campos, A., and Hu, B.L., “Fluctuations in a thermal field and dissipation of a black hole spacetime: Far-field limit”, Int. J. Theor. Phys., 38, 1253–1271, (1999). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9812034.
71 Campos, A., Martín, R., and Verdaguer, E., “Back reaction in the formation of a straight cosmic string”, Phys. Rev. D, 52, 4319–4336, (1995). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9505003.
72 Campos, A., and Verdaguer, E., “Semiclassical equations for weakly inhomogeneous cosmologies”, Phys. Rev. D, 49, 1861–1880, (1994). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9307027.
73 Campos, A., and Verdaguer, E., “Stochastic semiclassical equations for weakly inhomogeneous cosmologies”, Phys. Rev. D, 53, 1927–1937, (1996). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9511078.
74 Campos, A., and Verdaguer, E., “Back-reaction equations for isotropic cosmologies when nonconformal particles are created”, Int. J. Theor. Phys., 36, 2525–2543, (1997).
75 Candelas, P., “Vacuum Polarization in Schwarzschild Space-Time”, Phys. Rev. D, 21, 2185–2202, (1980).
76 Candelas, P., and Sciama, D.W., “Irreversible thermodynamics of black holes”, Phys. Rev. Lett., 38, 1372–1375, (1977).
77 Capper, D.M., and Duff, M.J., “Trace anomalies in dimensional regularization”, Nuovo Cimento A, 23, 173–183, (1974).
78 Carlip, S., “Spacetime Foam and the Cosmological Constant”, Phys. Rev. Lett., 79, 4071–4074, (1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9708026.
79 Carlip, S., “Dominant topologies in Euclidean quantum gravity”, Class. Quantum Grav., 15, 2629–2638, (1998). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9710114.
80 Casher, A., Englert, F., Itzhaki, N., Massar, S., and Parentani, R., “Black hole horizon fluctuations”, Nucl. Phys. B, 484, 419–434, (1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-th/9606106.
81 Cespedes, J., and Verdaguer, E., “Particle production in inhomogeneous cosmologies”, Phys. Rev. D, 41, 1022–1033, (1990).
82 Chou, K., Su, Z., Hao, B., and Yu, L., “Equilibrium and non equilibrium formalisms made unified”, Phys. Rep., 118, 1–131, (1985).
83 Christensen, S.M., “Vacuum expectation value of the stress tensor in an arbitrary curved background: The covariant point separation method”, Phys. Rev. D, 14, 2490–2501, (1976).
84 Christensen, S.M., “Regularization, renormalization, and covariant geodesic point separation”, Phys. Rev. D, 17, 946–963, (1978).
85 Christiansen, W.A., Ng, Y.J., and van Dam, H., “Probing spacetime foam with extragalactic sources”, Phys. Rev. Lett., 96, 051301, (2006). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0508121.
86 Cognola, G., Elizalde, E., and Zerbini, S., “Fluctuations of quantum fields via zeta function regularization”, Phys. Rev. D, 65, 085031, 1–8, (2002). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-th/0201152.
87 Cooper, F., Habib, S., Kluger, Y., Mottola, E., Paz, J.P., and Anderson, P.R., “Nonequilibrium quantum fields in the large-N expansion”, Phys. Rev. D, 50, 2848–2869, (1994). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-ph/9405352.
88 Davies, E.B., Quantum Theory of Open Systems, (Academic Press, London, U.K.; New York, U.S.A., 1976).
89 de Almeida, A.P., Brandt, F.T., and Frenkel, J., “Thermal matter and radiation in a gravitational field”, Phys. Rev. D, 49, 4196–4208, (1994). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-th/9309098.
90 Décanini, Y., and Folacci, A., “Off-diagonal coefficients of the DeWitt-Schwinger and Hadamard representations of the Feynman propagator”, Phys. Rev. D, 73, 044027, 1–38, (2006). Related online version (cited on 15 April 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0511115.
91 Deser, S., “Plane waves do not polarize the vacuum”, J. Phys. A, 8, 1972–1974, (1975).
92 DeWitt, B.S., Dynamical Theory of Groups and Fields, (Gordon and Breach, New York, U.S.A., 1965).
93 DeWitt, B.S., “Quantum field theory in curved space-time”, Phys. Rep., 19, 295–357, (1975).
94 DeWitt, B.S., “Effective action for expectation values”, in Penrose, R., and Isham, C.J., eds., Quantum concepts in space and time, (Clarendon Press; Oxford University Press, Oxford, U.K.; New York, U.S.A., 1986).
95 Donoghue, J.F., “General relativity as an effective field theory: The leading quantum corrections”, Phys. Rev. D, 50, 3874–3888, (1994). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9405057.
96 Donoghue, J.F., “Leading quantum correction to the Newtonian potential”, Phys. Rev. Lett., 72, 2996–2999, (1994). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9310024.
97 Donoghue, J.F., “The quantum theory of general relativity at low energies”, Helv. Phys. Acta, 69, 269–275, (1996). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9607039.
98 Donoghue, J.F., “Introduction to the Effective Field Theory Description of Gravity”, in Cornet, F., and Herrero, M.J., eds., Advanced School on Effective Theories, Proceedings of the conference held in Almuñecar, Granada, Spain, 26 June – 1 July 1995, pp. 217–240, (World Scientific, Singapore, 1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9512024.
99 Dowker, F., and Kent, A., “Properties of consistent histories”, Phys. Rev. Lett., 75, 3038–3041, (1995). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9409037.
100 Dowker, F., and Kent, A., “On the consistent histories approach to quantum mechanics”, J. Stat. Phys., 82, 1575–1646, (1996). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9412067.
101 Dowker, H.F., and Halliwell, J.J., “The Quantum mechanics of history: The Decoherence functional in quantum mechanics”, Phys. Rev. D, 46, 1580–1609, (1992).
102 Duff, M.J., “Covariant Quantization of Gravity”, in Isham, C.J., Penrose, R., and Sciama, D.W., eds., Quantum Gravity: An Oxford Symposium, Symposium held at the Rutherford Laboratory on February 15 – 16, 1974, (Clarendon Press, Oxford, U.K., 1975).
103 Einstein, A., “Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen”, Ann. Phys. (Leipzig), 17, 549–560, (1905).
104 Einstein, A., “Zur Theorie der Brownschen Bewegung”, Ann. Phys. (Leipzig), 19, 371–381, (1906).
105 Eling, C., Guedens, R., and Jacobson, T.A., “Nonequilibrium Thermodynamics of Spacetime”, Phys. Rev. Lett., 96, 121301, (2006). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0602001.
106 Elizalde, E., Odintsov, S.D., Romeo, A., Bytsenko, A.A., and Zerbini, S., Zeta Regularization Techniques with Applications, (World Scientific, Singapore; River Edge, U.S.A., 1994).
107 Feynman, R.P., and Hibbs, A.R., Quantum Mechanics and Path Integrals, International Series in Pure and Applied Physics, (McGraw-Hill, New York, U.S.A., 1965).
108 Feynman, R.P., and Vernon Jr, F.L., “The theory of a general quantum system interacting with a linear dissipative system”, Ann. Phys. (N.Y.), 24, 118–173, (1963).
109 Fischetti, M.V., Hartle, J.B., and Hu, B.L., “Quantum fields in the early universe. I. Influence of trace anomalies on homogeneous, isotropic, classical geometries”, Phys. Rev. D, 20, 1757–1771, (1979).
110 Flanagan, É.É., and Wald, R.M., “Does back reaction enforce the averaged null energy condition in semiclassical gravity?”, Phys. Rev. D, 54, 6233–6283, (1996). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9602052.
111 Ford, L.H., “Gravitational radiation by quantum systems”, Ann. Phys. (N.Y.), 144, 238–248, (1982).
112 Ford, L.H., “Spacetime metric and lightcone fluctuations”, Int. J. Theor. Phys., 38, 2941–2958, (1999).
113 Ford, L.H., “Stress tensor fluctuations and stochastic space-times”, Int. J. Theor. Phys., 39, 1803–1815, (2000).
114 Ford, L.H., and Svaiter, N.F., “Cosmological and black hole horizon fluctuations”, Phys. Rev. D, 56, 2226–2235, (1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9704050.
115 Ford, L.H., and Wu, C.-H., “Stress Tensor Fluctuations and Passive Quantum Gravity”, Int. J. Theor. Phys., 42, 15–26, (2003). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/0102063.
116 Freidel, L., and Krasnov, K., “A New Spin Foam Model for 4d Gravity”, (2007). URL (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/arXiv:0708.1595.
117 Frieman, J.A., “Particle creation in inhomogeneous spacetimes”, Phys. Rev. D, 39, 389–398, (1989).
118 Frolov, V.P., and Zel’nikov, A.I., “Vacuum polarization by a massive scalar field in Schwarzschild space-time”, Phys. Lett. B, 115, 372–374, (1982).
119 Frolov, V.P., and Zel’nikov, A.I., “Vacuum polarization of massive fields near rotating black holes”, Phys. Rev. D, 29, 1057–1066, (1984).
120 Frolov, V.P., and Zel’nikov, A.I., “Killing approximation for vacuum and thermal stress-energy tensor in static space-times”, Phys. Rev., D35, 3031–3044, (1987).
121 Fulling, S.A., Aspects of Quantum Field Theory in Curved Space-Time, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1989).
122 Garay, L.J., “Spacetime foam as a quantum thermal bath”, Phys. Rev. Lett., 80, 2508–2511, (1998). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9801024.
123 Garay, L.J., “Thermal properties of spacetime foam”, Phys. Rev. D, 58, 124015, 1–11, (1998). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9806047.
124 Garay, L.J., “Quantum evolution in spacetime foam”, Int. J. Mod. Phys. A, 14, 4079–4120, (1999). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9911002.
125 Garriga, J., and Verdaguer, E., “Scattering of quantum particles by gravitational plane waves”, Phys. Rev. D, 43, 391–401, (1991).
126 Gell-Mann, M., and Hartle, J.B., “Quantum mechanics in the light of quantum cosmology”, in Zurek, W.H., ed., Complexity, Entropy and the Physics of Information, Proceedings of the workshop, held May – June, 1989, in Santa Fe, New Mexico, Santa Fe Institute Studies in the Sciences of Complexity, vol. 8, pp. 425–458, (Addison-Wesley, Redwood City, U.S.A., 1990).
127 Gell-Mann, M., and Hartle, J.B., “Classical equations for quantum systems”, Phys. Rev. D, 47, 3345–3382, (1993). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9210010.
128 Gibbons, G.W., “Quantized fields propagating in plane wave spacetimes”, Commun. Math. Phys., 45, 191–202, (1975).
129 Gibbons, G.W., and Perry, M.J., “Black holes and thermal Green functions”, Proc. R. Soc. London, Ser. A, 358, 467–494, (1978).
130 Giddings, S.B., “(Non)perturbative gravity, nonlocality, and nice slices”, Phys. Rev. D, 74, 106009, (2006). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/hep-th/0606146.
131 Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, I.O., Zeh, H.D., Stamatescu, I.-O., and Zeh, H.-D., Decoherence and the Appearance of a Classical World in Quantum Theory, (Springer, Berlin, Germany; New York, U.S.A., 1996).
132 Gleiser, M., and Ramos, R.O., “Microphysical approach to nonequilibrium dynamics of quantum fields”, Phys. Rev. D, 50, 2441–2455, (1994). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-ph/9311278.
133 Grabert, H., Schramm, P., and Ingold, G.L., “Quantum Brownian motion: the functional integral approach”, Phys. Rep., 168, 115–207, (1988).
134 Greiner, C., and Müller, B., “Classical Fields Near Thermal Equilibrium”, Phys. Rev. D, 55, 1026–1046, (1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-th/9605048.
135 Grib, A.A., Mamayev, S.G., and Mostepanenko, V.M., Vacuum quantum effects in strong fields, (Friedmann Laboratory Publishing, St. Petersburg, Russia, 1994).
136 Griffiths, R.B., “Consistent histories and the interpretation of quantum mechanics”, J. Stat. Phys., 36, 219–272, (1984).
137 Grishchuk, L.P., “Graviton creation in the early universe”, Ann. N.Y. Acad. Sci., 302, 439–444, (1976).
138 Gross, D.J., Perry, M.J., and Yaffe, L.G., “Instability of flat space at finite temperature”, Phys. Rev. D, 25, 330–355, (1982).
139 Gu, Z.-C., and Wen, X.-G., “A lattice bosonic model as a quantum theory of gravity”, (2006). URL (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0606100.
140 Guth, A.H., “The inflationary universe: A possible solution to the horizon and flatness problems”, Phys. Rev. D, 23, 347–356, (1981).
141 Guth, A.H., and Pi, S.Y., “Fluctuations in the New Inflationary Universe”, Phys. Rev. Lett., 49, 1110–1113, (1982).
142 Hájíček, P., and Israel, W., “What, no black hole evaporation?”, Phys. Lett. A, 80, 9–10, (1980).
143 Halliwell, J.J., “Decoherence in quantum cosmology”, Phys. Rev. D, 39, 2912–2923, (1989).
144 Halliwell, J.J., “Quantum mechanical histories and the uncertainty principle. 2. Fluctuations about classical predictability”, Phys. Rev. D, 48, 4785–4799, (1993). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9307013.
145 Halliwell, J.J., “A Review of the decoherent histories approach to quantum mechanics”, Ann. N.Y. Acad. Sci., 755, 726–740, (1995). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9407040.
146 Halliwell, J.J., “Effective theories of coupled classical and quantum variables from decoherent histories: A new approach to the backreaction problem”, Phys. Rev. D, 57, 2337–2348, (1998). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/quant-ph/9705005.
147 Hartle, J.B., “Effective potential approach to graviton production in the early universe”, Phys. Rev. Lett., 39, 1373–1376, (1977).
148 Hartle, J.B., “Quantum effects in the early universe. 5. Finite particle production without trace anomalies”, Phys. Rev. D, 23, 2121–2128, (1981).
149 Hartle, J.B., “The Quantum Mechanics of Closed Systems”, in Hu, B.L., Ryan Jr, M.P., and Vishveswara, C.V., eds., Directions in General Relativity, Vol. 1, Proceedings of the 1993 International Symposium, Maryland: Papers in honor of Charles Misner, pp. 104–124, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1993).
150 Hartle, J.B., “Spacetime quantum mechanics and the quantum mechanics of spacetime”, in Julia, B., and Zinn-Justin, J., eds., Gravitation and Quantizations, Proceedings of the Les Houches Summer School, Session LVII, 5 July – 1 August 1992, (Elsevier, Amsterdam, Netherlands, New York, U.S.A., 1995).
151 Hartle, J.B., and Hawking, S.W., “Path-integral derivation of black-hole radiance”, Phys. Rev. D, 13, 2188–2203, (1976).
152 Hartle, J.B., and Horowitz, G.T., “Ground state expectation value of the metric in the 1∕N or semiclassical approximation to quantum gravity”, Phys. Rev. D, 24, 257–274, (1981).
153 Hartle, J.B., and Hu, B.L., “Quantum effects in the early universe. II. Effective action for scalar fields in homogeneous cosmologies with small anisotropy”, Phys. Rev. D, 20, 1772–1782, (1979).
154 Hartle, J.B., and Hu, B.L., “Quantum effects in the early universe. III. Dissipation of anisotropy by scalar particle production”, Phys. Rev. D, 21, 2756–2769, (1980).
155 Hawking, S.W., “Black hole explosions?”, Nature, 248, 30–31, (1974).
156 Hawking, S.W., “Particle creation by black holes”, Commun. Math. Phys., 43, 199–220, (1975).
157 Hawking, S.W., “Black Holes and Thermodynamics”, Phys. Rev. D, 13, 191–197, (1976).
158 Hawking, S.W., “Breakdown of Predictability in Gravitational Collapse”, Phys. Rev. D, 14, 2460–2473, (1976).
159 Hawking, S.W., “The Development of Irregularities in a Single Bubble Inflationary Universe”, Phys. Lett. B, 115, 295, (1982).
160 Hawking, S.W., “Information loss in black holes”, Phys. Rev. D, 72, 084013, (2005). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/hep-th/0507171.
161 Hawking, S.W., and Hertog, T., “Living with ghosts”, Phys. Rev. D, 65, 103515, (2002). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/hep-th/0107088.
162 Hawking, S.W., Hertog, T., and Reall, H.S., “Trace anomaly driven inflation”, Phys. Rev. D, 63, 083504, 1–23, (2001). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-th/0010232.
163 Hawking, S.W., and Page, D.N., “Thermodynamics of Black Holes in Anti-de Sitter Space”, Commun. Math. Phys., 87, 577–588, (1983).
164 Herzog, C.P., “The hydrodynamics of M-theory”, J. High Energy Phys., 2002(12), 026, (2002). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/hep-th/0210126.
165 Hiscock, W.A., Larson, S.L., and Anderson, P.R., “Semiclassical effects in black hole interiors”, Phys. Rev. D, 56, 3571–3581, (1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9701004.
166 Hochberg, D., and Kephart, T.W., “Gauge field back reaction on a black hole”, Phys. Rev. D, 47, 1465–1470, (1993). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9211008.
167 Hochberg, D., Kephart, T.W., and York Jr, J.W., “Positivity of entropy in the semiclassical theory of black holes and radiation”, Phys. Rev. D, 48, 479–484, (1993). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9211009.
168 Holzhey, C.F.E., and Wilczek, F., “Black holes as elementary particles”, Nucl. Phys. B, 380, 447–477, (1992). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/hep-th/9202014.
169 Horowitz, G.T., “Semiclassical relativity: The weak field limit”, Phys. Rev. D, 21, 1445–1461, (1980).
170 Horowitz, G.T., “Is flat space-time unstable?”, in Isham, C.J., Penrose, R., and Sciama, D.W., eds., Quantum Gravity 2: A Second Oxford Symposium, Proceedings of the Second Oxford Symposium on Quantum Gravity, held in April 1980 in Oxford, pp. 106–130, (Clarendon Press; Oxford University Press, Oxford, U.K.; New York, U.S.A., 1981).
171 Horowitz, G.T., “The Origin of Black Hole Entropy in String Theory”, in Cho, Y.M., Lee, C.H., and Kim, S.-W., eds., Gravitation and Cosmology, Proceedings of the Pacific Conference, February 1 – 6, 1996, Sheraton Walker-Hill, Seoul, Korea, pp. 46–63, (World Scientific, Singapore; River Edge, U.S.A., 1999). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9604051.
172 Horowitz, G.T., and Polchinski, J., “A correspondence principle for black holes and strings”, Phys. Rev. D, 55, 6189–6197, (1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-th/9612146.
173 Horowitz, G.T., and Polchinski, J., “Gauge/gravity duality”, (2006). URL (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0602037.
174 Horowitz, G.T., and Wald, R.M., “Dynamics of Einstein’s equations modified by a higher order derivative term”, Phys. Rev. D, 17, 414–416, (1978).
175 Horowitz, G.T., and Wald, R.M., “Quantum stress energy in nearly conformally flat space-times”, Phys. Rev. D, 21, 1462–1465, (1980).
176 Horowitz, G.T., and Wald, R.M., “Quantum stress energy in nearly conformally flat space-times. II. Correction of formula”, Phys. Rev. D, 25, 3408–3409, (1982).
177 Howard, K.W., “Vacuum in Schwarzschild space-time”, Phys. Rev. D, 30, 2532–2547, (1984).
178 Howard, K.W., and Candelas, P., “Quantum stress tensor in Schwarzschild space-time”, Phys. Rev. Lett., 53, 403–406, (1984).
179 Hu, B.L., “Scalar waves in the mixmaster universe. II. Particle creation”, Phys. Rev. D, 9, 3263–3281, (1974).
180 Hu, B.L., “Effect of finite temperature quantum fields on the early universe”, Phys. Lett. B, 103, 331–337, (1981).
181 Hu, B.L., “Disspation in quantum fields and semiclassical gravity”, Physica A, 158, 399–424, (1989).
182 Hu, B.L., “Quantum and statistical effects in superspace cosmology”, in Audretsch, J., and De Sabbata, V., eds., Quantum Mechanics in Curved Space-Time, Proceedings of a NATO Advanced Research Workshop, held May 2 – 12, 1989, in Erice, Sicily, Italy, NATO ASI Series B, vol. 230, (Plenum Press, New York, U.S.A., 1990).
183 Hu, B.L., “Quantum statistical fields in gravitation and cosmology”, in Kobes, R., and Kunstatter, G., eds., Third International Workshop on Thermal Field Theory and Applications, CNRS Summer Institute, Banff, 1993, (World Scientific, Singapore, 1994).
184 Hu, B.L., “Correlation dynamics of quantum fields and black hole information paradox”, in Sánchez, N., and Zichichi, A., eds., String Gravity and Physics at the Planck Energy Scale, Proceedings of the NATO Advanced Study Institute, Erice, Italy, 8 – 19,September, 1995, NATO ASI Series C, vol. 476, (Kluwer, Dordrecht, Netherlands; Boston, U.S.A., 1996).
185 Hu, B.L., “General Relativity as Geometro-Hydrodynamics”, (July 1996). URL (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9607070.
186 Hu, B.L., “Semiclassical gravity and mesoscopic physics”, in Feng, D.S., and Hu, B.L., eds., Quantum Classical Correspondence, Proceedings of the 4th Drexel Symposium on Quantum Nonintegrability, Drexel University, Philadelphia, USA, September 8 – 11, 1994, (International Press, Cambridge, U.S.A., 1997).
187 Hu, B.L., “Stochastic gravity”, Int. J. Theor. Phys., 38, 2987–3037, (1999). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9902064.
188 Hu, B.L., “A kinetic theory approach to quantum gravity”, Int. J. Theor. Phys., 41, 2091–2119, (2002). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/0204069.
189 Hu, B.L., “Can spacetime be a condensate?”, Int. J. Theor. Phys., 44, 1785–1806, (2005). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0503067.
190 Hu, B.L., “New View on Quantum Gravity and the Origin of the Universe”, in Where Do We Come From? On the Origin of the Universe, (Commercial Press, Hong Kong, 2007). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0611058. In Chinese.
191 Hu, B.L., and Matacz, A., “Quantum Brownian motion in a bath of parametric oscillators: A Model for system–field interactions”, Phys. Rev. D, 49, 6612–6635, (1994). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9312035.
192 Hu, B.L., and Matacz, A., “Back reaction in semiclassical cosmology: The Einstein–Langevin equation”, Phys. Rev. D, 51, 1577–1586, (1995). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9403043.
193 Hu, B.L., and Parker, L., “Effect of graviton creation in isotropically expanding universes”, Phys. Lett. A, 63, 217–220, (1977).
194 Hu, B.L., and Parker, L., “Anisotropy damping through quantum effects in the early universe”, Phys. Rev. D, 17, 933–945, (1978).
195 Hu, B.L., Paz, J.P., and Sinha, S., “Minisuperspace as a Quantum Open System”, in Hu, B.L., Ryan, M.P., and Vishveswara, C.V., eds., Directions in General Relativity, Vol. 1, Proceedings of the 1993 International Symposium, Maryland: Papers in honor of Charles Misner, pp. 145–165, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1993).
196 Hu, B.L., Paz, J.P., and Zhang, Y., “Quantum Brownian motion in a general environment: 1. Exact master equation with nonlocal dissipation and colored noise”, Phys. Rev. D, 45, 2843–2861, (1992).
197 Hu, B.L., Paz, J.P., and Zhang, Y., “Quantum Brownian motion in a general environment. 2: Nonlinear coupling and perturbative approach”, Phys. Rev. D, 47, 1576–1594, (1993).
198 Hu, B.L., and Phillips, N.G., “Fluctuations of energy density and validity of semiclassical gravity”, Int. J. Theor. Phys., 39, 1817–1830, (2000). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/0004006.
199 Hu, B.L., Raval, A., and Sinha, S., “Notes on black hole fluctuations and backreaction”, in Bhawal, B., and Iyer, B.R., eds., Black Holes, Gravitational Radiation and the Universe: Essays in Honour of C.V. Vishveshwara, Fundamental Theories of Physics, (Kluwer, Dordrecht, Netherlands; Boston, U.S.A., 1999).
200 Hu, B.L., and Roura, A., “Black Hole Fluctuations and Dynamics from Back-Reaction of Hawking Radiation: Current Work and Further Studies Based on Stochastic Gravity”, in Nester, J.M., Chen, C.-M., and Hsu, J.P., eds., Gravitation and Astrophysics: On the Occasion of the 90th Year of General Relativity, Proceedings of the VII Asia-Pacific International Conference, National Central University, Taiwan, 23 – 26 November 2005, pp. 236–250, (World Scientific, Singapore; Hackensack, U.S.A., 2007).
201 Hu, B.L., and Roura, A., “Fluctuations of an evaporating black hole from back reaction of its Hawking radiation: Questioning a premise in earlier work”, Int. J. Theor. Phys., 46, 2204–2217, (2007). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0601088.
202 Hu, B.L., and Roura, A., “Metric fluctuations of an evaporating black hole from back reaction of stress tensor fluctuations”, Phys. Rev. D, 76, 124018, (2007). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/arXiv:0708.3046.
203 Hu, B.L., Roura, A., and Verdaguer, E., “Induced quantum metric fluctuations and the validity of semiclassical gravity”, Phys. Rev. D, 70, 044002, 1–24, (2004). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/0402029.
204 Hu, B.L., Roura, A., and Verdaguer, E., “Stability of semiclassical gravity solutions with respect to quantum metric fluctuations”, Int. J. Theor. Phys., 43, 749–766, (2004). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0508010.
205 Hu, B.L., and Shiokawa, K., “Wave propagation in stochastic spacetimes: Localization, amplification and particle creation”, Phys. Rev. D, 57, 3474–3483, (1998). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9708023.
206 Hu, B.L., and Sinha, S., “A fluctuation–dissipation relation for semiclassical cosmology”, Phys. Rev. D, 51, 1587–1606, (1995). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9403054.
207 Hu, B.L., and Verdaguer, E., “Recent Advances in Stochastic Gravity: Theory and Issues”, in Bergmann, P.G., and De Sabbata, V., eds., Advances in the interplay between quantum and gravity physics, Proceedings of the NATO Advanced Study Institute, held in Erice, Italy, April 30 – May 10, 2001, NATO Science Series II, vol. 60, pp. 133–218, (Kluwer, Dordrecht, Netherlands; Boston, U.S.A., 2002). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/0110092.
208 Hu, B.L., and Verdaguer, E., “Stochastic gravity: A primer with applications”, Class. Quantum Grav., 20, R1–R42, (2003). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/0211090.
209 Isham, C.J., “Quantum logic and the histories approach to quantum theory”, J. Math. Phys., 35, 2157–2185, (1994). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9308006.
210 Isham, C.J., and Linden, N., “Quantum temporal logic and decoherence functionals in the histories approach to generalized quantum theory”, J. Math. Phys., 35, 5452–5476, (1994). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9405029.
211 Isham, C.J., and Linden, N., “Continuous histories and the history group in generalized quantum theory”, J. Math. Phys., 36, 5392–5408, (1995). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9503063.
212 Isham, C.J., Linden, N., Savvidou, K., and Schreckenberg, S., “Continuous time and consistent histories”, J. Math. Phys., 39, 1818–1834, (1998). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/quant-ph/9711031.
213 Israel, W., “Thermo field dynamics of black holes”, Phys. Lett. A, 57, 107–110, (1976).
214 Jacobson, T., “On the nature of black hole entropy”, in Burgess, C.P., and Myers, R.C., eds., General Relativity and Relativistic Astrophysics, Eight Canadian Conference, Montréal, Québec June 1999, AIP Conference Proceedings, vol. 493, (American Institute of Physics, Melville, U.S.A., 1999).
215 Jacobson, T.A., “Black hole radiation in the presence of a short distance cutoff”, Phys. Rev. D, 48, 728–741, (1993). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/hep-th/9303103.
216 Jacobson, T.A., “Thermodynamics of space-time: The Einstein equation of state”, Phys. Rev. Lett., 75, 1260–1263, (1995). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/gr-qc/9504004.
217 Jensen, B.P., McLaughlin, J.G., and Ottewill, A.C., “One loop quantum gravity in Schwarzschild space-time”, Phys. Rev. D, 51, 5676–5697, (1995). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9412075.
218 Jensen, B.P., and Ottewill, A.C., “Renormalized electromagnetic stress tensor in Schwarzschild space-time”, Phys. Rev. D, 39, 1130–1138, (1989).
219 Johnson, P.R., and Hu, B.L., “Stochastic theory of relativistic particles moving in a quantum field: Scalar Abraham–Lorentz–Dirac–Langevin equation, radiation reaction, and vacuum fluctuations”, Phys. Rev. D, 65, 065015, 1–24, (2002). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/quant-ph/0101001.
220 Jones, D.S., Generalised Functions, European Mathematics Series, (McGraw-Hill, London, U.K.; New York, U.S.A., 1966).
221 Joos, E., and Zeh, H.D., “The Emergence of classical properties through interaction with the environment”, Z. Phys. B, 59, 223–243, (1985).
222 Jordan, R.D., “Effective field equations for expectation values”, Phys. Rev. D, 33, 444–454, (1986).
223 Jordan, R.D., “Stability of flat space-time in quantum gravity”, Phys. Rev. D, 36, 3593–3603, (1987).
224 Kabat, D., Shenker, S.H., and Strassler, M.J., “Black hole entropy in the O(N) model”, Phys. Rev. D, 52, 7027–7036, (1995). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-th/9506182.
225 Kahya, E.O., and Woodard, R.P., “Quantum Gravity Corrections to the One Loop Scalar Self-Mass during Inflation”, Phys. Rev., 76, 124005, (2007). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/arXiv:0709.0536.
226 Kahya, E.O., and Woodard, R.P., “Scalar Field Equations from Quantum Gravity during Inflation”, (2007). URL (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/arXiv:0710.5282.
227 Keldysh, L.V., “Diagram technique for nonequilibrium processes”, Zh. Eksp. Teor. Fiz., 47, 1515–1527, (1964).
228 Kent, A., “Quasiclassical Dynamics in a Closed Quantum System”, Phys. Rev. A, 54, 4670–4675, (1996). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9512023.
229 Kent, A., “Consistent sets contradict”, Phys. Rev. Lett., 78, 2874–2877, (1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9604012.
230 Kent, A., “Consistent Sets and Contrary Inferences in Quantum Theory: Reply to Griffiths and Hartle”, Phys. Rev. Lett., 81, 1982, (1998). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9808016.
231 Kiefer, C., “Continuous measurement of mini-superspace variables by higher multipoles”, Class. Quantum Grav., 4, 1369–1382, (1987).
232 Kirsten, K., Spectral Functions in Mathematics and Physics, (Chapman and Hall/CRC, Boca Raton, U.S.A., 2001).
233 Kolb, E.W., and Turner, M.S., The Early Universe, Frontiers in Physics, vol. 69, (Addison-Wesley, Reading, U.S.A., 1990).
234 Kubo, R., “Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems”, J. Phys. Soc. Jpn., 12, 570–586, (1957).
235 Kubo, R., “The fluctuation-dissipation theorem”, Rep. Prog. Phys., 29, 255–284, (1966).
236 Kubo, R., Toda, M., and Hashitsume, N., Statistical Physics, (Springer, Berlin, Germany, 1985).
237 Kuo, C., and Ford, L.H., “Semiclassical gravity theory and quantum fluctuations”, Phys. Rev. D, 47, 4510–4519, (1993). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9304008.
238 Landau, L.D., Lifshitz, E.M., and Pitaevskii, L.P., Statistical Physics, Part 2, Course of Theoretical Physics, vol. 9, (Pergamon Press, Oxford, U.K.; New York, U.S.A., 1980).
239 Lee, D.-S., and Boyanovsky, D., “Dynamics of phase transitions induced by a heat bath”, Nucl. Phys. B, 406, 631–654, (1993). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-ph/9304272.
240 Levin, M.A., and Wen, X.-G., “Photons and electrons as emergent phenomena”, Rev. Mod. Phys., 77, 871–879, (2005). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/cond-mat/0407140.
241 Lifshitz, E., “On the gravitational stability of the expanding universe”, J. Phys. (Moscow), 10, 116, (1946).
242 Lifshitz, E. M., and Khalatnikov, I. M., “Investigations in relativistic cosmology”, Adv. Phys., 12, 185–249, (1963).
243 Linde, A.D., “Coleman–Weinberg theory and a new inflationary universe scenario”, Phys. Lett. B, 114, 431–435, (1982).
244 Linde, A.D., “Initial conditions for inflation”, Phys. Lett. B, 162, 281–286, (1985).
245 Linde, A.D., Particle Physics and Inflationary Cosmology, Contemporary Concepts in Physics, vol. 5, (Harwood, Chur, Switzerland; New York, U.S.A., 1990).
246 Lindenberg, K., and West, B.J., The Nonequilibrium Statistical Mechanics of Open and Closed Systems, (VCH Publishers, New York, U.S.A., 1990).
247 Lombardo, F.C., and Mazzitelli, F.D., “Coarse graining and decoherence in quantum field theory”, Phys. Rev. D, 53, 2001–2011, (1996). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-th/9508052.
248 Lombardo, F.C., and Mazzitelli, F.D., “Einstein–Langevin equations from running coupling constants”, Phys. Rev. D, 55, 3889–3892, (1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9609073.
249 Lombardo, F.C., Mazzitelli, F.D., and Russo, J.G., “Energy-momentum tensor for scalar fields coupled to the dilaton in two dimensions”, Phys. Rev. D, 59, 064007, (1999). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/gr-qc/9808048.
250 Lowe, D.A., and Thorlacius, L., “Comments on the black hole information problem”, Phys. Rev. D, 73, 104027, (2006). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/hep-th/0601059.
251 Lukash, V.N., and Starobinsky, A.A., “Isotropization of cosmological expansion due to particle creation effect”, Sov. Phys. JETP, 39, 742, (1974).
252 Maia, C., and Schützhold, R., “Quantum toy model for black-hole back-reaction”, Phys. Rev. D, 76, 101502, (2007). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/arXiv:0706.4010.
253 Maldacena, J.M., “Black holes and D-branes”, Nucl. Phys. A (Proc. Suppl.), 61, 111–123, (1998). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-th/9705078.
254 Maldacena, J.M., Strominger, A., and Witten, E., “Black hole entropy in M-Theory”, J. High Energy Phys., 1997(12), 002, (1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-th/9711053.
255 Marolf, D., “On the Quantum Width of a Black Hole Horizon”, in Trampetić, J., and Wess, J., eds., Particle Physics and the Universe, Proceedings of the 9th Adriatic Meeting, September 2003, Dubrovnik, Springer Proceedings in Physics, vol. 98, pp. 99–112, (Springer, Berlin, Germany; New York, U.S.A., 2005). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/hep-th/0312059.
256 Martín, R., and Verdaguer, E., “An effective stochastic semiclassical theory for the gravitational field”, Int. J. Theor. Phys., 38, 3049–3089, (1999). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9812063.
257 Martín, R., and Verdaguer, E., “On the semiclassical Einstein–Langevin equation”, Phys. Lett. B, 465, 113–118, (1999). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9811070.
258 Martín, R., and Verdaguer, E., “Stochastic semiclassical gravity”, Phys. Rev. D, 60, 084008, 1–24, (1999). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9904021.
259 Martín, R., and Verdaguer, E., “Stochastic semiclassical fluctuations in Minkowski spacetime”, Phys. Rev. D, 61, 124024, 1–26, (2000). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/0001098.
260 Massar, S., “The semiclassical back reaction to black hole evaporation”, Phys. Rev. D, 52, 5857–5864, (1995). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9411039.
261 Massar, S., and Parentani, R., “How the change in horizon area drives black hole evaporation”, Nucl. Phys. B, 575, 333–356, (2000). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9903027.
262 Matacz, A., “Inflation and the fine-tuning problem”, Phys. Rev. D, 56, 1836–1840, (1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9611063.
263 Matacz, A., “A New Theory of Stochastic Inflation”, Phys. Rev. D, 55, 1860–1874, (1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9604022.
264 Mazur, P.O., and Mottola, E., “Gravitational vacuum condensate stars”, Proc. Natl. Acad. Sci. USA, 101, 9545–9550, (2004). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0407075.
265 Misner, C.W., “Mixmaster Universe”, Phys. Rev. Lett., 22, 1071–1074, (1969).
266 Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, U.S.A., 1973).
267 Morikawa, M., “Classical fluctuations in dissipative quantum systems”, Phys. Rev. D, 33, 3607–3612, (1986).
268 Mottola, E., “Quantum fluctuation-dissipation theorem for general relativity”, Phys. Rev. D, 33, 2136–2146, (1986).
269 Mukhanov, V., Physical Foundations of Cosmology, (Cambridge University Press, Cambridge, U.K., 2005).
270 Mukhanov, V.F., Feldman, H.A., and Brandenberger, R.H., “Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions”, Phys. Rep., 215, 203–333, (1992).
271 Ng, Y.J., “Selected topics in Planck-scale physics”, Mod. Phys. Lett. A, 18, 1073–1098, (2003). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/gr-qc/0305019.
272 Nicolai, H., and Peeters, K., “Loop and Spin Foam Quantum Gravity: A Brief Guide for Beginners”, in Stamatescu, I.-O., and Seiler, E., eds., Approaches to Fundamental Physics: An Assessment of Current Theoretical Ideas, Lecture Notes in Physics, vol. 721, pp. 151–184, (Springer, Berlin, Germany; New York, U.S.A., 2007). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/hep-th/0601129.
273 Niemeyer, J.C., and Parentani, R., “Trans-Planckian dispersion and scale invariance of inflationary perturbations”, Phys. Rev. D, 64, 101301, 1–4, (2001). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/astro-ph/0101451.
274 Nyquist, H., “Thermal agitation of electric charge in conductors”, Phys. Rev., 32, 110–113, (1928).
275 Omnès, R., “Logical reformulation of quantum mechanics. 1. Foundations”, J. Stat. Phys., 53, 893–932, (1988).
276 Omnès, R., “Logical reformulation of quantum mechanics. 2. Interferences and the Einstein–Podolsky–Rosen experiment”, J. Stat. Phys., 53, 933–955, (1988).
277 Omnès, R., “Logical reformulation of quantum mechanics. 3. Classical limit and irreversibility”, J. Stat. Phys., 53, 957–975, (1988).
278 Omnès, R., “From Hilbert space to common sense: A synthesis of recent progress in the interpretation of quantum mechanics”, Ann. Phys. (N.Y.), 201, 354–447, (1990).
279 Omnès, R., “Consistent interpretations of quantum mechanics”, Rev. Mod. Phys., 64, 339–382, (1992).
280 Omnès, R., The Interpretation of Quantum Mechanics, (Princeton University Press, Princeton, U.S.A., 1994).
281 Oriti, D., Approaches to Quantum Gravity: Toward a New Understanding of Space, Time, and Matter, (Cambridge University Press, Cambridge, England, U.K., 2008).
282 Osborn, H., and Shore, G.M., “Correlation functions of the energy momentum tensor on spaces of constant curvature”, Nucl. Phys. B, 571, 287–357, (2000). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-th/9909043.
283 Padmanabhan, T., “Decoherence in the density matrix describing quantum three geometries and the emergence of classical space-time”, Phys. Rev. D, 39, 2924–2932, (1989).
284 Padmanabhan, T., Structure Formation in the Universe, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1993).
285 Page, D.N., “Particle Emission Rates from a Black Hole: Massless Particles from an Uncharged, Nonrotating Hole”, Phys. Rev. D, 13, 198–206, (1976).
286 Page, D.N., “Is black hole evaporation predictable?”, Phys. Rev. Lett., 44, 301–304, (1980).
287 Page, D.N., “Thermal stress tensors in static Einstein spaces”, Phys. Rev. D, 25, 1499–1509, (1982).
288 Page, D.N., “Black hole information”, in Mann, R.B., and McLenhagan, R.G., eds., General Relativity and Relativistic Astrophysics, Proceedings of the 5th Canadian Conference on General Relativity and Relativistic Astrophysics, University of Waterloo, 13 – 15 May, 1993, (World Scientific, Singapore; River Edge, U.S.A., 1994). Related online version (cited on 9 May 2005):
External Linkhttp://arxiv.org/abs/hep-th/9305040.
289 Parentani, R., “Quantum metric fluctuations and Hawking radiation”, Phys. Rev. D, 63, 041503, 1–4, (2001). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/0009011.
290 Parentani, R., “Toward a collective treatment of quantum gravitational interactions”, Int. J. Theor. Phys., 40, 2201–2216, (2001).
291 Parentani, R., “Beyond the semi-classical description of black hole evaporation”, Int. J. Theor. Phys., 41, 2175–2200, (2002). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/arXiv:0704.2563.
292 Parentani, R., and Piran, T., “The internal geometry of an evaporating black hole”, Phys. Rev. Lett., 73, 2805–2808, (1994). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-th/9405007.
293 Parker, L., “Quantized Fields and Particle Creation in Expanding Universes. I”, Phys. Rev., 183, 1057–1068, (1969).
294 Parker, L., “Probability distribution of particles created by a black hole”, Phys. Rev. D, 12, 1519–1525, (1975).
295 Parker, L., and Simon, J.Z., “Einstein equation with quantum corrections reduced to second order”, Phys. Rev. D, 47, 1339–1355, (1993). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/gr-qc/9211002.
296 Paz, J.P., “Anisotropy dissipation in the early Universe: Finite-temperature effects reexamined”, Phys. Rev. D, 41, 1054–1066, (1990).
297 Paz, J.P., “Decoherence and back reaction: The origin of the semiclassical Einstein equations”, Phys. Rev. D, 44, 1038–1049, (1991).
298 Paz, J.P., and Sinha, S., “Decoherence and back reaction in quantum cosmology: Multidimensional minisuperspace examples”, Phys. Rev. D, 45, 2823–2842, (1992).
299 Paz, J.P., and Zurek, W.H., “Environment induced decoherence, classicality and consistency of quantum histories”, Phys. Rev. D, 48, 2728–2738, (1993). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9304031.
300 Peebles, P.J.E., Large Scale Structure of the Universe, (Princeton University Press, Princeton, U.S.A., 1980).
301 Phillips, N.G., “Symbolic computation of higher order correlation functions of quantum fields in curved spacetimes”, unknown status. in preparation.
302 Phillips, N.G., and Hu, B.L., “Fluctuations of the vacuum energy density of quantum fields in curved spacetime via generalized zeta functions”, Phys. Rev. D, 55, 6123–6134, (1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9611012.
303 Phillips, N.G., and Hu, B.L., “Vacuum energy density fluctuations in Minkowski and Casimir states via smeared quantum fields and point separation”, Phys. Rev. D, 62, 084017, 1–18, (2000). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/0005133.
304 Phillips, N.G., and Hu, B.L., “Noise kernel in stochastic gravity and stress energy bitensor of quantum fields in curved spacetimes”, Phys. Rev. D, 63, 104001, 1–16, (2001). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/0010019.
305 Phillips, N.G., and Hu, B.L., “Noise kernel and the stress energy bitensor of quantum fields in hot flat space and the Schwarzschild black hole under the Gaussian approximation”, Phys. Rev. D, 67, 104002, 1–26, (2003). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/0209056.
306 Polchinski, J., and Strominger, A., “A Possible resolution of the black hole information puzzle”, Phys. Rev. D, 50, 7403–7409, (1994). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/hep-th/9407008.
307 Preskil, J., “Do black holes destroy information?”, in Kalara, S., and Nanopoulos, D.V., eds., Black Holes, Membranes, Wormholes and Superstrings, Proceedings of the International Symposium, Houston Advanced Research Center, USA, 16 – 18 January 1992, (World Scientific, Singapore; River Edge, U.S.A., 1993). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/hep-th/9209058.
308 Ramsey, S.A., Hu, B.L., and Stylianopoulos, A.M., “Nonequilibrium inflaton dynamics and reheating. II: Fermion production, noise, and stochasticity”, Phys. Rev. D, 57, 6003–6021, (1998). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-ph/9709267.
309 Randjbar-Daemi, S., “Stability of the Minskowski vacuum in the renormalized semiclassical theory of gravity”, J. Phys. A, 14, L229–L233, (1981).
310 Randjbar-Daemi, S., “A recursive formula for the evaluation of the diagonal matrix elements of the stress energy tensor operator and its application in the semiclassical theory of gravity”, J. Phys. A, 15, 2209–2219, (1982).
311 Rebhan, A., “Collective phenomena and instabilities of perturbative quantum gravity at nonzero temperature”, Nucl. Phys. B, 351, 706–734, (1991).
312 Rebhan, A., “Analytical solutions for cosmological perturbations with relativistic collisionless matter”, Nucl. Phys. B, 368, 479–508, (1992).
313 Roura, A., and Verdaguer, E., “Mode decomposition and renormalization in semiclassical gravity”, Phys. Rev. D, 60, 107503, 1–4, (1999). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9906036.
314 Roura, A., and Verdaguer, E., “Spacelike fluctuations of the stress tensor for de Sitter vacuum”, Int. J. Theor. Phys., 38, 3123–3133, (1999). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9904039.
315 Roura, A., and Verdaguer, E., “Semiclassical cosmological perturbations generated during inflation”, Int. J. Theor. Phys., 39, 1831–1839, (2000).
316 Roura, A., and Verdaguer, E., “Cosmological perturbations from stochastic gravity”, (2007). URL (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/arXiv:0709.1940.
317 Roura, A., and Verdaguer, E., “Stochastic gravity as the large N limit for quantum metric fluctuations”, unknown status, (2008). in preparation.
318 Russo, J.G., Susskind, L., and Thorlacius, L., “Black hole evaporation in 1 + 1 dimensions”, Phys. Lett. B, 292, 13–18, (1992). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/hep-th/9201074.
319 Russo, J.G., Susskind, L., and Thorlacius, L., “The Endpoint of Hawking radiation”, Phys. Rev. D, 46, 3444–3449, (1992). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/hep-th/9206070.
320 Schützhold, R., “Effective horizons in the laboratory”, in Unruh, W.G., and Schützhold, R., eds., Quantum Analogues: From Phase Transitions to Black Holes and Cosmology, Selected lectures from the international workshop on “Quantum Simulations via Analogues”, held at the Max Planck Institute for the Physics of Complex Systems in Dresden, Germany, July 25 – 28, 2005, Lecture Notes in Physics, vol. 718, pp. 5–30, (Springer, Berlin, Germany; New York, U.S.A., 2007).
321 Schützhold, R., Uhlmann, M., Petersen, L., Schmitz, H., Friedenauer, A., and Schutz, T., “Analogue of cosmological particle creation in an ion trap”, Phys. Rev. Lett., 99, 201301, (2007). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/arXiv:0705.3755.
322 Schwartz, L., Théorie des distributions, (Hermann, Paris, France, 1978).
323 Schwinger, J.S., “Brownian motion of a quantum oscillator”, J. Math. Phys., 2, 407–432, (1961).
324 Sciama, D.W., “Thermal and quantum fluctuations in special and general relativity: an Einstein Synthesis”, in de Finis, F., ed., Centenario di Einstein: Relativity, quanta, and cosmology in the development of the scientific thought of Albert Einstein, (Editrici Giunti Barbera Universitaria, Florence, Italy, 1979).
325 Sciama, D.W., Candelas, P., and Deutsch, D., “Quantum field theory, horizons and thermodynamics”, Adv. Phys., 30, 327–366, (1981).
326 Seiberg, N., “Emergent spacetime”, in Gross, D., Henneaux, M., and Sevrin, A., eds., The Quantum Structure Of Space And Time, Proceedings of the 23rd Solvay Conference on Physics, Brussels, Belgium, 1 – 3 December, 2005, (World Scientific, Singapore; Hackensack, U.S.A., 2007). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/hep-th/0601234.
327 Sexl, R.U., and Urbantke, H.K., “Production of particles by gravitational fields”, Phys. Rev., 179, 1247–1250, (1969).
328 Shiokawa, K., “Mesoscopic fluctuations in stochastic spacetime”, Phys. Rev. D, 62, 024002, 1–14, (2000). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-th/0001088.
329 Simon, J.Z., “Higher derivative Lagrangians, nonlocality, problems and solutions”, Phys. Rev. D, 41, 3720–3733, (1990).
330 Simon, J.Z., “Stability of flat space, semiclassical gravity, and higher derivatives”, Phys. Rev. D, 43, 3308–3316, (1991).
331 Sinha, S., and Hu, B.L., “Validity of the minisuperspace approximation: An Example from interacting quantum field theory”, Phys. Rev. D, 44, 1028–1037, (1991).
332 Sinha, S., Raval, A., and Hu, B.L., “Black Hole Fluctuations and Backreaction in Stochastic Gravity”, Found. Phys., 33, 37–64, (2003).
333 Smolin, J.A., and Oppenheim, J., “Information locking in black holes”, Phys. Rev. Lett., 96, 081302, (2006). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/hep-th/0507287.
334 Smoot, G.F., Bennett, C.L., Kogut, A., Wright, E.L., Aymon, J., Boggess, N.W., Cheng, E.S., de Amici, G., Gulkis, S., Hauser, M.G., Hinshaw, G., Jackson, P.D., Janssen, M., Kaita, E., Kelsall, T., Keegstra, P., Lineweaver, C.H., Loewenstein, K., Lubin, P., Mather, J., Meyer, S.S., Moseley, S.H., Murdock, T., Rokke, L., Silverberg, R.F., Tenorio, L., Weiss, R., and Wilkinson, D.T., “Structure in the COBE differential microwave radiometer first-year maps”, Astrophys. J. Lett., 396, L1–L5, (1992).
335 Sorkin, R.D., “Two Topics concerning Black Holes: Extremality of the Energy, Fractality of the Horizon”, in Fulling, S.A., ed., Heat Kernel Techniques and Quantum Gravity, Winnipeg, Canada, August, 1994, Discourses Math. Appl., vol. 4, pp. 387–407, (University of Texas Press, College Station, U.S.A., 1995). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/gr-qc/9508002.
336 Sorkin, R.D., “How Wrinkled is the Surface of a Black Hole?”, in Wiltshire, D., ed., First Australasian Conference on General Relativity and Gravitation, Proceedings of the conference held at the Institute for Theoretical Physics, University of Adelaide, 12 – 17 February 1996, pp. 163–174, (University of Adelaide, Adelaide, Australia, 1996). Related online version (cited on 3 May 2005):
External Linkhttp://arxiv.org/abs/gr-qc/9701056.
337 Sorkin, R.D., “The Statistical Mechanics of Black Hole Thermodynamics”, in Wald, R.M., ed., Black Holes and Relativistic Stars, pp. 177–194, (University of Chicago Press, Chicago, U.S.A., 1998). Related online version (cited on 4 May 2005):
External Linkhttp://arxiv.org/abs/gr-qc/9705006.
338 Sorkin, R.D., and Sudarsky, D., “Large fluctuations in the horizon area and what they can tell us about entropy and quantum gravity”, Class. Quantum Grav., 16, 3835–3857, (1999). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9902051.
339 Starobinsky, A.A., “A new type of isotropic cosmological models without singularity”, Phys. Lett. B, 91, 99–102, (1980).
340 Starobinsky, A.A., “Evolution of small excitation of isotropic cosmological models with one loop quantum gravitational corrections”, Zh. Eksp. Teor. Fiz., 34, 460–463, (1981). English translation: JETP Lett. 34 (1981) 438.
341 Strominger, A., and Trivedi, S.P., “Information consumption by Reissner-Nordstrom black holes”, Phys. Rev. D, 48, 5778–5783, (1993). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/hep-th/9302080.
342 Strominger, A., and Vafa, G., “Microscopic origin of the Bekenstein–Hawking entropy”, Phys. Lett. B, 379, 99–104, (1996). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-th/9601029.
343 Su, Z., Chen, L., Yu, X., and Chou, K., “Influence functional, closed time path Green’s function and quasidistribution function”, Phys. Rev. B, 37, 9810–9812, (1988).
344 Suen, W.-M., “Minkowski space-time is unstable in semiclassical gravity”, Phys. Rev. Lett., 62, 2217–2220, (1989).
345 Suen, W.-M., “Stability of the semiclassical Einstein equation”, Phys. Rev. D, 40, 315–326, (1989).
346 Susskind, L., and Uglum, J., “Black hole entropy in canonical quantum gravity and superstring theory”, Phys. Rev. D, 50, 2700–2711, (1994). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-th/9401070.
347 Tichy, W., and Flanagan, É.É., “How unique is the expected stress-energy tensor of a massive scalar field?”, Phys. Rev. D, 58, 124007, 1–18, (1998). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9807015.
348 Tomboulis, E., “1∕N expansion and renormalization in quantum gravity”, Phys. Lett. B, 70, 361–364, (1977).
349 Trivedi, S.P., “Semiclassical extremal black holes”, Phys. Rev. D, 47, 4233–4238, (1993). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/hep-th/9211011.
350 Twamley, J., “Phase space decoherence: A comparison between consistent histories and environment induced superselection”, Phys. Rev. D, 48, 5730–5745, (1993). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9306004.
351 Unruh, W.G., “Experimental black hole evaporation”, Phys. Rev. Lett., 46, 1351–1353, (1981).
352 Unruh, W.G., and Zurek, W.H., “Reduction of the wave packet in quantum Brownian motion”, Phys. Rev. D, 40, 1071–1094, (1989).
353 Urakawa, Y., and Maeda, K., “Cosmological Density Fluctuations in Stochastic Gravity: Formalism and Linear Analysis”, (2007). URL (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/arXiv:0710.5342.
354 Urakawa, Y., and Maeda, K., “One-loop Corrections to Scalar and Tensor Perturbations during Inflation in Stochastic Gravity”, (2008). URL (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/arXiv:0801.0126.
355 Vilenkin, A., “Classical and quantum cosmology of the Starobinsky inflationary model”, Phys. Rev. D, 32, 2511–2512, (1985).
356 Volovik, G.E., The Universe in a Helium Droplet, International Series of Monographs on Physics, vol. 117, (Oxford University Press, Oxford, U.K., New York, U.S.A., 2003).
357 Volovik, G.E., “Fermi-point scenario for emergent gravity”, (2007). URL (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/arXiv:0709.1258. To be published in proceedings of workshop “From Quantum To Emergent Gravity: Theory And Phenomenology”, Trieste, Italy, June 11 – 15, 2007.
358 Wald, R.M., “On particle creation by black holes”, Commun. Math. Phys., 45, 9–34, (1975).
359 Wald, R.M., “The backreaction effect in particle creation in curved spacetime”, Commun. Math. Phys., 54, 1–19, (1977).
360 Wald, R.M., “Trace anomaly of a conformally invariant quantum field in curved space-time”, Phys. Rev. D, 17, 1477–1484, (1978).
361 Wald, R.M., General Relativity, (University of Chicago Press, Chicago, U.S.A., 1984).
362 Wald, R.M., Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics, Chicago Lectures in Physics, (University of Chicago Press, Chicago, U.S.A., 1994).
363 Wald, R.M., “The Thermodynamics of Black Holes”, Living Rev. Relativity, 4, lrr-2001-6, (2001). URL (cited on 31 March 2003):
http://www.livingreviews.org/lrr-2001-6.
364 Wald, R.M., “The Thermodynamics of Black Holes”, in Bergman, P., and De Sabbata, V., eds., Advances in the Interplay Between Quantum and Gravity Physics, NATO Science Series II, vol. 60, pp. 523–544, (Kluwer, Dordrecht, Netherlands; Boston, U.S.A., 2002).
365 Weber, J., “Fluctuation dissipation theorem”, Phys. Rev., 101, 1620–1626, (1956).
366 Weinberg, S., The Quantum Theory of Fields, Vol. 1: Foundations, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1995).
367 Weinberg, S., The Quantum Theory of Fields, Vol. 2: Modern Applications, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1996).
368 Weinberg, S., “Quantum contributions to cosmological correlations”, Phys. Rev. D, 72, 043514, (2005). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/hep-th/0506236.
369 Weinberg, S., “Quantum contributions to cosmological correlations. II: Can these corrections become large?”, Phys. Rev. D, 74, 023508, (2006). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/hep-th/0605244.
370 Weiss, U., Quantum Dissipative Systems, Series in Modern Condensed Matter Physics, vol. 2, (World Scientific, Singapore; River Edge, U.S.A., 1993).
371 Weldon, H.A., “Covariant calculations at finite temperature: The relativistic plasma”, Phys. Rev. D, 26, 1394–1407, (1982).
372 Wen, X.-G., Quantum Field Theory of Many-Body Systems: From the Origin of Sound to an Origin of Light and Electron, (Oxford University Press, Oxford, U.K.; New York, U.S.A., 2004).
373 Wen, X.-G., “An introduction to quantum order, string-net condensation, and emergence of light and fermions”, Ann. Phys. (N.Y.), 316, 1–29, (2005). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/cond-mat/0406441.
374 Whelan, J.T., “Modelling the decoherence of spacetime”, Phys. Rev. D, 57, 768–797, (1998). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9612028.
375 Wilczek, F., “Quantum purity at a small price: Easing a black hole paradox”, in Kalara, S., and Nanopoulos, D.V., eds., Black Holes, Membranes, Wormholes and Superstrings, Proceedings of the International Symposium, Houston Advanced Research Center, USA, 16 – 18 January 1992, (World Scientific, Singapore; River Edge, U.S.A., 1993). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/hep-th/9302096.
376 Witten, E., “On string theory and black holes”, Phys. Rev. D, 44, 314–324, (1991).
377 Wu, C.-H., and Ford, L.H., “Fluctuations of the Hawking flux”, Phys. Rev. D, 60, 104013, 1–14, (1999). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/gr-qc/9905012.
378 Wu, C.-H., and Ford, L.H., “Quantum fluctuations of radiation pressure”, Phys. Rev. D, 64, 045010, 1–12, (2001). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/quant-ph/0012144.
379 Yamaguchi, M., and Yokoyama, J., “Numerical approach to the onset of the electroweak phase transition”, Phys. Rev. D, 56, 4544–4561, (1997). Related online version (cited on 31 March 2003):
External Linkhttp://arXiv.org/abs/hep-ph/9707502.
380 York Jr, J.W., “Dynamical origin of black-hole radiance”, Phys. Rev. D, 28(12), 2929–2945, (1983).
381 York Jr, J.W., “Black hole in thermal equilibrium with a scalar field: The back-reaction”, Phys. Rev. D, 31, 775–784, (1985).
382 York Jr, J.W., “Black hole thermodynamics and the Euclidean Einstein action”, Phys. Rev. D, 33, 2092–2099, (1986).
383 York Jr, J.W., and Schmekel, B.S., “Path integral over black hole fluctuations”, Phys. Rev. D, 72, 024022, (2005). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/hep-th/0505125.
384 Yu, Hong-wei, and Ford, L.H., “Lightcone fluctuations in flat spacetimes with nontrivial topology”, Phys. Rev. D, 60, 084023, (1999). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/gr-qc/9904082.
385 Yu, Hong-wei, and Ford, L.H., “Lightcone fluctuations in quantum gravity and extra dimensions”, Phys. Lett. B, 496, 107–112, (2000). Related online version (cited on 22 January 2008):
External Linkhttp://arXiv.org/abs/gr-qc/9907037.
386 Zel’dovich, Y.B., “Particle production in cosmology”, Pis. Zh. Eksp. Teor. Fiz., 12, 443–447, (1970). English translation: JETP Lett. 12 (1970) 307–311.
387 Zel’dovich, Y.B., and Starobinsky, A.A., “Particle Production and Vacuum Polarization in an Anisotropic Gravitational Field”, Zh. Eksp. Teor. Fiz., 61, 2161–2175, (1971). English translation: Sov. Phys. JETP 34 (1971) 1159–1166.
388 Zemanian, A.H., Distribution Theory and Transform Analysis: An Introduction to Generalized Functions, with Applications, (Dover, New York, U.S.A., 1987). Reprint, slightly corrected, Originally published: New York, McGraw-Hill, 1965.
389 Zurek, W.H., “Pointer basis of quantum apparatus: into what mixture does the wave packet collapse?”, Phys. Rev. D, 24, 1516–1525, (1981).
390 Zurek, W.H., “Environment induced superselection rules”, Phys. Rev. D, 26, 1862–1880, (1982).
391 Zurek, W.H., “Reduction of the wave packet: How long does it take?”, in Moore, G.T., and Scully, M.O., eds., Frontiers of Nonequilibrium Statistical Physics, Proceedings of a NATO Advanced Study Institute, held June 3 – 16, 1984, in Santa Fe, New Mexico, NATO Science Series B, vol. 135, pp. 145–149, (Plenum Press, New York, U.S.A., 1986).
392 Zurek, W.H., “Decoherence and the transition from quantum to classical”, Phys. Today, 44, 36–44, (1991).
393 Zurek, W.H., “Preferred states, predictability, classicality and the environment-induced decoherence”, Prog. Theor. Phys., 89, 281–312, (1993).