1 Alexander, S., “A Quantum Gravitational Relaxation of The Cosmological Constant”, (2005). URL (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/hep-th/0503146.
2 Alexander, S., Malecki, J., and Smolin, L., “Quantum Gravity and Inflation”, Phys. Rev. D, 70, 044025, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/hep-th/0309045.
3 Alfaro, J., Morales-Técotl, H.A., and Urrutia, L.F., “Quantum gravity corrections to neutrino propagation”, Phys. Rev. Lett., 84, 2318–2321, (2000). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9909079.
4 Alfaro, J., Morales-Técotl, H.A., and Urrutia, L.F., “Loop quantum gravity and light propagation”, Phys. Rev. D, 65, 103509, (2002). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/hep-th/0108061.
5 Anninos, P., “Computational Cosmology: From the Early Universe to the Large Scale Structure”, Living Rev. Relativity, 4, lrr-2001-2, (2001). URL (cited on 9 October 2005):
http://www.livingreviews.org/lrr-2001-2.
6 Arnowitt, R., Deser, S., and Misner, C.W., “The dynamics of general relativity”, in Witten, L., ed., Gravitation: An Introduction to Current Research, pp. 227–265, (Wiley, New York, U.S.A., 1962).
7 Ashtekar, A., “New Variables for Classical and Quantum Gravity”, Phys. Rev. Lett., 57, 2244–2247, (1986).
8 Ashtekar, A., “New Hamiltonian Formulation of General Relativity”, Phys. Rev. D, 36(6), 1587–1602, (1987).
9 Ashtekar, A., “Quantum Geometry and Gravity: Recent Advances”, in Bishop, N.T., and Maharaj, S.D., eds., General Relativity and Gravitation, Proceedings of the 16th International Conference on General Relativity and Gravitation, Durban, South Africa, 15 – 21 July 2001, (World Scientific, Singapore; River Edge, U.S.A., 2002). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0112038.
10 Ashtekar, A., “Quantum Geometry In Action: Big Bang and Black Holes”, in Lyubich, M., and Takhtajan, L., eds., Graphs and Patterns in Mathematics and Theoretical Physics, Proceedings of the conference dedicated to Dennis Sullivan’s 60th birthday, June 14 – 21, 2001, Stony Brook University, Stony Brook, NY, (American Mathematical Society, Providence, U.S.A., 2002). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/math-ph/0202008.
11 Ashtekar, A., Baez, J.C., Corichi, A., and Krasnov, K.V., “Quantum Geometry and Black Hole Entropy”, Phys. Rev. Lett., 80, 904–907, (1998). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9710007.
12 Ashtekar, A., Baez, J.C., and Krasnov, K.V., “Quantum Geometry of Isolated Horizons and Black Hole Entropy”, Adv. Theor. Math. Phys., 4, 1–94, (2000). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0005126.
13 Ashtekar, A., and Bojowald, M., “Black hole evaporation: A paradigm”, Class. Quantum Grav., 22, 3349–3362, (2005). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0504029.
14 Ashtekar, A., and Bojowald, M., “Quantum Geometry and the Schwarzschild Singularity”, Class. Quantum Grav., 23, 391–411, (2005). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0509075.
15 Ashtekar, A., and Bojowald, M., “Loop Quantum Cosmology I: Resolving the Big Bang Singularity from First Principles”, in Vaas, R., ed., Beyond the Big Bang: Prospects for an Eternal Universe, (Springer, Germany, Berlin, 2008).
16 Ashtekar, A., Bojowald, M., and Lewandowski, J., “Mathematical structure of loop quantum cosmology”, Adv. Theor. Math. Phys., 7, 233–268, (2003). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0304074.
17 Ashtekar, A., Bojowald, M., and Willis, J., in preparation.
18 Ashtekar, A., Corichi, A., and Zapata, J.A., “Quantum Theory of Geometry III: Non-commutativity of Riemannian Structures”, Class. Quantum Grav., 15, 2955–2972, (1998). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9806041.
19 Ashtekar, A., Fairhurst, S., and Willis, J.L., “Quantum gravity, shadow states, and quantum mechanics”, Class. Quantum Grav., 20, 1031–1062, (2003). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0207106.
20 Ashtekar, A., and Lewandowski, J., “Projective Techniques and Functional Integration for Gauge Theories”, J. Math. Phys., 36(5), 2170–2191, (1995).
21 Ashtekar, A., and Lewandowski, J., “Quantum Theory of Geometry I: Area Operators”, Class. Quantum Grav., 14, A55–A82, (1997). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9602046.
22 Ashtekar, A., and Lewandowski, J., “Quantum Theory of Geometry II: Volume Operators”, Adv. Theor. Math. Phys., 1, 388–429, (1997). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9711031.
23 Ashtekar, A., and Lewandowski, J., “Background independent quantum gravity: A status report”, Class. Quantum Grav., 21, R53–R152, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0404018.
24 Ashtekar, A., Lewandowski, J., Marolf, D., Mourão, J.M., and Thiemann, T., “Quantization of Diffeomorphism Invariant Theories of Connections with Local Degrees of Freedom”, J. Math. Phys., 36(11), 6456–6493, (1995). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9504018.
25 Ashtekar, A., Pawlowski, T., and Singh, P., “Quantum Nature of the Big Bang”, Phys. Rev. Lett., 96, 141301, (2006). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0602086.
26 Ashtekar, A., Pawlowski, T., and Singh, P., “Quantum Nature of the Big Bang: An Analytical and Numerical Investigation”, Phys. Rev. D, 73, 124038, (2006).
27 Ashtekar, A., Pawlowski, T., and Singh, P., “Quantum Nature of the Big Bang: Improved dynamics”, Phys. Rev. D, 74, 084003, (2006). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0607039.
28 Ashtekar, A., Pawlowski, T., Singh, P., and Vandersloot, K., “Loop quantum cosmology of k = 1 FRW models”, Phys. Rev. D, 75, 024035, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0612104.
29 Ashtekar, A., and Samuel, J., “Bianchi Cosmologies: The Role of Spatial Topology”, Class. Quantum Grav., 8, 2191–2215, (1991).
30 Ashtekar, A., and Schilling, T.A., “Geometrical Formulation of Quantum Mechanics”, in Harvey, A., ed., On Einstein’s Path: Essays in Honor of Engelbert Schücking, Proceedings of a symposium held at the Physics department in New York University, December 12 – 13, 1996, pp. 23–65, (Springer, New York, U.S.A., 1999). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9706069.
31 Ashtekar, A., and Tate, R.S., “An Algebraic Extension of Dirac Quantization: Examples”, J. Math. Phys., 35, 6434, (1994). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9405073.
32 Baez, J.C., and Krasnov, K.V., “Quantization of Diffeomorphism-Invariant Theories with Fermions”, J. Math. Phys., 39, 1251–1271, (1998). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/hep-th/9703112.
33 Bahr, B., and Thiemann, T., “Approximating the physical inner product of Loop Quantum Cosmology”, Class. Quantum Grav., 24, 2109–2138, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0607075.
34 Banerjee, K., and Date, G., “Loop quantization of polarized Gowdy model on T3: Classical theory”, in preparation.
35 Banerjee, K., and Date, G., “Loop quantization of polarized Gowdy model on T3: Quantum theory”, in preparation.
36 Banerjee, K., and Date, G., “Discreteness Corrections to the Effective Hamiltonian of Isotropic Loop Quantum Cosmology”, Class. Quantum Grav., 22, 2017–2033, (2005). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0501102.
37 Barbero G, J.F., “Real Ashtekar Variables for Lorentzian Signature Space-Times”, Phys. Rev. D, 51(10), 5507–5510, (1995). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9410014.
38 Belinskii, V.A., Khalatnikov, I.M., and Lifshitz, E.M., “A general solution of the Einstein equations with a time singularity”, Adv. Phys., 13, 639–667, (1982).
39 Berger, B.K., “Numerical Approaches to Spacetime Singularities”, Living Rev. Relativity, 5, lrr-2002-1, (2002). URL (cited on 9 October 2005):
http://www.livingreviews.org/lrr-2002-1.
40 Bergmann, P.G., “Observables in General Relativity”, Rev. Mod. Phys., 33, 510–514, (1961).
41 Bičák, J., and Schmidt, B., “Asymptotically flat radiative space-times with boost-rotation symmetry: The general structure”, Phys. Rev. D, 40, 1827–1853, (1989).
42 Böhmer, C.G., and Vandersloot, K., “Loop quantum dynamics of the Schwarzschild interior”, Phys. Rev. D, 76, 104030, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0709.2129.
43 Bojowald, M., “Abelian BF-Theory and Spherically Symmetric Electromagnetism”, J. Math. Phys., 41, 4313–4329, (2000). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/hep-th/9908170.
44 Bojowald, M., “Loop Quantum Cosmology: I. Kinematics”, Class. Quantum Grav., 17, 1489–1508, (2000). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9910103.
45 Bojowald, M., “Loop Quantum Cosmology: II. Volume Operators”, Class. Quantum Grav., 17, 1509–1526, (2000). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9910104.
46 Bojowald, M., Quantum Geometry and Symmetry, Ph.D. Thesis, (RWTH Aachen, Aachen, Germany, 2000).
47 Bojowald, M., “Absence of a Singularity in Loop Quantum Cosmology”, Phys. Rev. Lett., 86, 5227–5230, (2001). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0102069.
48 Bojowald, M., “Dynamical Initial Conditions in Quantum Cosmology”, Phys. Rev. Lett., 87, 121301, (2001). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0104072.
49 Bojowald, M., “Inverse Scale Factor in Isotropic Quantum Geometry”, Phys. Rev. D, 64, 084018, (2001). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0105067.
50 Bojowald, M., “Loop Quantum Cosmology III: Wheeler-DeWitt Operators”, Class. Quantum Grav., 18, 1055–1070, (2001). Related online version (cited on 23 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0008052.
51 Bojowald, M., “Loop Quantum Cosmology IV: Discrete Time Evolution”, Class. Quantum Grav., 18, 1071–1088, (2001). Related online version (cited on 23 May 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0008053.
52 Bojowald, M., “The Semiclassical Limit of Loop Quantum Cosmology”, Class. Quantum Grav., 18, L109–L116, (2001). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0105113.
53 Bojowald, M., “Inflation from quantum geometry”, Phys. Rev. Lett., 89, 261301, (2002). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0206054.
54 Bojowald, M., “Isotropic Loop Quantum Cosmology”, Class. Quantum Grav., 19, 2717–2741, (2002). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0202077.
55 Bojowald, M., “Quantization ambiguities in isotropic quantum geometry”, Class. Quantum Grav., 19, 5113–5130, (2002). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0206053.
56 Bojowald, M., “Homogeneous loop quantum cosmology”, Class. Quantum Grav., 20, 2595–2615, (2003). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0303073.
57 Bojowald, M., “Initial Conditions for a Universe”, Gen. Relativ. Gravit., 35, 1877–1883, (2003). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0305069.
58 Bojowald, M., “Loop quantum cosmology: Recent progress”, in Iyer, B.R., Kuriakose, V.C., and Vishveshwara, C.V., eds., Gravitation and Cosmology (ICGC-2004), Proceedings of the Fifth International Conference on Gravitation and Cosmology (ICGC-2004), Cochin University of Science and Technology, Cochin, India, Pramana, Special Issues, vol. 63, pp. 765–776, (Indian Academy of Sciences, Bangalore, India, 2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0402053.
59 Bojowald, M., “Quantum Gravity and the Big Bang”, in Basa, S., Ealet, A., Le Brun, V., Mazure, A., and Virey, J.M., eds., Where Cosmology and Fundamental Physics Meet, Proceedings of the IVth Marseille International Cosmology Conference, pp. 54–58, (Frontier Group, France, 2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0309478.
60 Bojowald, M., “Spherically Symmetric Quantum Geometry: States and Basic Operators”, Class. Quantum Grav., 21, 3733–3753, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0407017.
61 Bojowald, M., “Cosmology: Original questions”, Nature, 436, 920–921, (2005).
62 Bojowald, M., “Degenerate Configurations, Singularities and the Non-Abelian Nature of Loop Quantum Gravity”, Class. Quantum Grav., 23, 987–1008, (2005). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0508118.
63 Bojowald, M., “The Early Universe in Loop Quantum Cosmology”, in Cervantes, J., Alcubierre, M., and Montesinos, M., eds., Approaches to Quantum Gravity, VI Mexican School on Gravitation and Mathematical Physics, J. Phys.: Conf. Ser., vol. 24, pp. 77–86, (Institute of Physics Publishing, Bristol, U.K., Philadelphia, U.S.A., 2005). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0503020.
64 Bojowald, M., “Loop Quantum Cosmology”, in Ashtekar, A., ed., 100 Years of Relativity. Space-Time Structure: Einstein and Beyond, (World Scientific, Singapore, 2005). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0505057.
65 Bojowald, M., “Non-singular black holes and degrees of freedom in quantum gravity”, Phys. Rev. Lett., 95, 061301, (2005). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0506128.
66 Bojowald, M., “Loop quantum cosmology and inhomogeneities”, Gen. Relativ. Gravit., 38, 1771–1795, (2006). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0609034.
67 Bojowald, M., “Quantum Cosmology”, in Françoise, J.-P., Naber, G., and Tsou, S.T., eds., Encyclopedia of Mathematical Physics, Vol. 4, p. 153, (Elsevier, Amsterdam, Netherlands; Boston, U.S.A., 2006). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0603110.
68 Bojowald, M., “Quantum Riemannian Geometry and Black Holes”, in Moore, D.C., ed., Trends in Quantum Gravity Research, (Nova Science, New York, U.S.A., 2006). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0602100.
69 Bojowald, M., “Dynamical coherent states and physical solutions of quantum cosmological bounces”, Phys. Rev. D, 75, 123512, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0703144.
70 Bojowald, M., “Large scale effective theory for cosmological bounces”, Phys. Rev. D, 75, 081301(R), (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0608100.
71 Bojowald, M., “Singularities and Quantum Gravity”, in Novello, M., and Perez Bergliaffa, S.E., eds., Cosmology and Gravitation, Proceedings of the XIIth Brazilian School, Mangaratiba, Rio de Janeiro, Brazil, 10 – 23 September 2006, AIP Conference Proceedings, vol. 910, pp. 294–333, (American Institute of Physics, Melville, U.S.A., 2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0702144.
72 Bojowald, M., “What happened before the Big Bang?”, Nature Phys., 3(8), 523–525, (2007).
73 Bojowald, M., “The dark side of a patchwork universe”, Gen. Relativ. Gravit., 40, 639–660, (2008). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0705.4398.
74 Bojowald, M., “Harmonic cosmology: how much can we know about a universe before the big bang?”, Proc. R. Soc. London, Ser. A, 464, 2135–2150, (2008). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0710.4919.
75 Bojowald, M., Cartin, D., and Khanna, G., “Lattice refining loop quantum cosmology, anisotropic models and stability”, Phys. Rev. D, 76, 064018, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0704.1137.
76 Bojowald, M., and Das, R., “Canonical Gravity with Fermions”, (2007). URL (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0710.5722.
77 Bojowald, M., and Das, R., “The radiation equation of state and loop quantum gravity corrections”, Phys. Rev. D, 75, 123521, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0710.5721.
78 Bojowald, M., Das, R., and Scherrer, R., “Dirac Fields in Loop Quantum Gravity and Big Bang Nucleosynthesis”, Phys. Rev. D, 77, 084003, (2008). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0710.5734.
79 Bojowald, M., and Date, G., “Consistency conditions for fundamentally discrete theories”, Class. Quantum Grav., 21, 121–143, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0307083.
80 Bojowald, M., and Date, G., “Quantum Suppression of the Generic Chaotic Behavior Close to Cosmological Singularities”, Phys. Rev. Lett., 92, 071302, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0311003.
81 Bojowald, M., Date, G., and Hossain, G.M., “The Bianchi IX model in loop quantum cosmology”, Class. Quantum Grav., 21, 3541–3569, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0404039.
82 Bojowald, M., Date, G., and Vandersloot, K., “Homogeneous loop quantum cosmology: The role of the spin connection”, Class. Quantum Grav., 21, 1253–1278, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0311004.
83 Bojowald, M., Goswami, R., Maartens, R., and Singh, P., “A black hole mass threshold from non-singular quantum gravitational collapse”, Phys. Rev. Lett., 95, 091302, (2005). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0503041.
84 Bojowald, M., Hernández, H., Kagan, M., Singh, P., and Skirzewski, A., “Hamiltonian cosmological perturbation theory with loop quantum gravity corrections”, Phys. Rev. D, 74, 123512, (2006). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0609057.
85 Bojowald, M., Hernández, H., Kagan, M., Singh, P., and Skirzewski, A., “Formation and evolution of structure in loop cosmology”, Phys. Rev. Lett., 98, 031301, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0611685.
86 Bojowald, M., Hernández, H., Kagan, M., and Skirzewski, A., “Effective constraints of loop quantum gravity”, Phys. Rev. D, 75, 064022, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0611112.
87 Bojowald, M., Hernández, H., and Skirzewski, A., “Effective equations for isotropic quantum cosmology including matter”, Phys. Rev. D, 76, 063511, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0706.1057.
88 Bojowald, M., Hernández, H.H., and Morales-Técotl, H.A., “Perturbative degrees of freedom in loop quantum gravity: Anisotropies”, Class. Quantum Grav., 23, 3491–3516, (2006). Related online version (cited on 6 December 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0511058.
89 Bojowald, M., and Hinterleitner, F., “Isotropic loop quantum cosmology with matter”, Phys. Rev. D, 66, 104003, (2002). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0207038.
90 Bojowald, M., and Hossain, G., “Cosmological vector modes and quantum gravity effects”, Class. Quantum Grav., 24, 4801–4816, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0709.0872.
91 Bojowald, M., and Hossain, G., “Quantum gravity corrections to gravitational wave dispersion”, Phys. Rev. D, 77, 023508, (2008). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0709.2365.
92 Bojowald, M., Hossain, G., Kagan, M., Mulryne, D., Nunes, N., and Shankaranarayanan, S., in preparation.
93 Bojowald, M., and Kagan, M., “Loop cosmological implications of a non-minimally coupled scalar field”, Phys. Rev. D, 74, 044033, (2006). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0606082.
94 Bojowald, M., and Kagan, M., “Singularities in Isotropic Non-Minimal Scalar Field Models”, Class. Quantum Grav., 23, 4983–4990, (2006). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0604105.
95 Bojowald, M., and Kastrup, H.A., “Symmetric States in Quantum Geometry”, in Gurzadyan, V.G., Jantzen, R.T., and Ruffini, R., eds., The Ninth Marcel Grossmann Meeting: On recent developments in theoretical and experimental general relativity, gravitation, and relativistic field theories, Part B, Proceedings of the MGIX MM meeting held at the University of Rome “La Sapienza”, 2 – 8 July 2000, pp. 1271–1272, (World Scientific, Singapore; River Edge, U.S.A., 2000). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0101061.
96 Bojowald, M., and Kastrup, H.A., “Symmetry reduction for quantized diffeomorphism-invariant theories of connections”, Class. Quantum Grav., 17, 3009–3043, (2000). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/hep-th/9907042.
97 Bojowald, M., Lidsey, J.E., Mulryne, D.J., Singh, P., and Tavakol, R., “Inflationary Cosmology and Quantization Ambiguities in Semi-Classical Loop Quantum Gravity”, Phys. Rev. D, 70, 043530, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0403106.
98 Bojowald, M., Maartens, R., and Singh, P., “Loop Quantum Gravity and the Cyclic Universe”, Phys. Rev. D, 70, 083517, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/hep-th/0407115.
99 Bojowald, M., and Morales-Técotl, H.A., “Cosmological applications of loop quantum gravity”, in Bretón, N., Cervantes-Cota, J.L., and Salgado, M., eds., The Early Universe and Observational Cosmology, Fifth Mexican School on Gravitation and Mathematical Physics, November 2002, Lecture Notes in Physics, vol. 646, pp. 421–462, (Springer, Berlin, Germany; New York, U.S.A., 2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0306008.
100 Bojowald, M., Morales-Técotl, H.A., and Sahlmann, H., “Loop quantum gravity phenomenology and the issue of Lorentz invariance”, Phys. Rev. D, 71, 084012, 1–7, (2005). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0411101.
101 Bojowald, M., and Rej, A., “Asymptotic Properties of Difference Equations for Isotropic Loop Quantum Cosmology”, Class. Quantum Grav., 22, 3399–3420, (2005). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0504100.
102 Bojowald, M., and Reyes, J.D., in preparation.
103 Bojowald, M., Singh, P., and Skirzewski, A., “Coordinate time dependence in quantum gravity”, Phys. Rev. D, 70, 124022, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0408094.
104 Bojowald, M., and Skirzewski, A., “Effective theory for the cosmological generation of structure”, Adv. Sci. Lett., in preparation.
105 Bojowald, M., and Skirzewski, A., “Effective Equations of Motion for Quantum Systems”, Rev. Math. Phys., 18, 713–745, (2006). URL (cited on 6 December 2005):
External Linkhttp://arXiv.org/abs/math-ph/0511043.
106 Bojowald, M., and Skirzewski, A., “Quantum Gravity and Higher Curvature Actions”, Int. J. Geom. Meth. Mod. Phys., 4, 25–52, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/hep-th/0606232. Proceedings of “Current Mathematical Topics in Gravitation and Cosmology”, 42nd Karpacz Winter School of Theoretical Physics, Ladek, Poland 6 – 11 February 2006.
107 Bojowald, M., and Swiderski, R., “The Volume Operator in Spherically Symmetric Quantum Geometry”, Class. Quantum Grav., 21, 4881–4900, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0407018.
108 Bojowald, M., and Swiderski, R., “Spherically Symmetric Quantum Horizons”, Phys. Rev. D, 71, 081501(R), (2005). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0410147.
109 Bojowald, M., and Swiderski, R., “Spherically Symmetric Quantum Geometry: Hamiltonian Constraint”, Class. Quantum Grav., 23, 2129–2154, (2006). Related online version (cited on 6 December 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0511108.
110 Bojowald, M., and Tavakol, R., “Loop Quantum Cosmology II: Effective theories and oscillating universes”, in Vaas, R., ed., Beyond the Big Bang: Prospects for an Eternal Universe, (Springer, Berlin, Germany, 2008).
111 Bojowald, M., and Vandersloot, K., “Loop quantum cosmology, boundary proposals, and inflation”, Phys. Rev. D, 67, 124023, (2003). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0303072.
112 Bojowald, M., and Vandersloot, K., “Loop Quantum Cosmology and Boundary Proposals”, in Novello, M., Perez-Bergliaffa, S., and Ruffini, R., eds., The Tenth Marcel Grossmann Meeting: On recent developments in theoretical and experimental general relativity, gravitation, and relativistic field theories, Proceedings of the meeting held at Rio de Janeiro, July 20 – 26, 2003, (World Scientific, Singapore, 2005). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0312103. in press.
113 Booth, I., and Fairhurst, S., “The first law for slowly evolving horizons”, Phys. Rev. Lett., 92, 011102, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0307087.
114 Borde, A., Guth, A.H., and Vilenkin, A., “Inflationary spacetimes are not past-complete”, Phys. Rev. Lett., 90, 151301, (2003). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0110012.
115 Bröcker, T., and tom Dieck, T., Representations of Compact Lie Groups, Graduate Texts in Mathematics, vol. 98, (Springer, New York, U.S.A., 1995), 2nd edition.
116 Brodbeck, O., “On Symmetric Gauge Fields for Arbitrary Gauge and Symmetry Groups”, Helv. Phys. Acta, 69, 321–324, (1996). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9610024.
117 Brunnemann, J., and Fleischhack, C., “On the Configuration Spaces of Homogeneous Loop Quantum Cosmology and Loop Quantum Gravity”, (2007). URL (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0709.1621.
118 Brunnemann, J., and Thiemann, T., “Simplification of the Spectral Analysis of the Volume Operator in Loop Quantum Gravity”, Class. Quantum Grav., 23, 1289–1346, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0405060.
119 Brunnemann, J., and Thiemann, T., “On (Cosmological) Singularity Avoidance in Loop Quantum Gravity”, Class. Quantum Grav., 23, 1395–1427, (2005). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0505032.
120 Brunnemann, J., and Thiemann, T., “Unboundedness of Triad-Like Operators in Loop Quantum Gravity”, Class. Quantum Grav., 23, 1429–1483, (2005). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0505033.
121 Calcagni, G., and Cortês, M.V., “Inflationary scalar spectrum in loop quantum cosmology”, Class. Quantum Grav., 24, 829–853, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0607059.
122 Cartin, D., and Khanna, G., “Absence of pre-classical solutions in Bianchi I loop quantum cosmology”, Phys. Rev. Lett., 94, 111302, (2005). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0501016.
123 Cartin, D., and Khanna, G., “Wave functions for the Schwarschild black hole interior”, Phys. Rev. D, 73, 104009, (2006). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0602025.
124 Cartin, D., Khanna, G., and Bojowald, M., “Generating function techniques for loop quantum cosmology”, Class. Quantum Grav., 21, 4495–4509, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0405126.
125 Chiou, D.-W., “Effective Dynamics, Big Bounces and Scaling Symmetry in Bianchi Type I Loop Quantum Cosmology”, Phys. Rev. D, 76, 124037, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0710.0416.
126 Chiou, D.-W., “Effective Dynamics for the Cosmological Bounces in Bianchi Type I Loop Quantum Cosmology”, (2007). URL (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:gr-qc/0703010.
127 Chiou, D.-W., “Loop Quantum Cosmology in Bianchi Type I Models: Analytical Investigation”, Phys. Rev. D, 75, 024029, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0609029.
128 Chiou, D.-W., and Vandersloot, K., “The behavior of non-linear anisotropies in bouncing Bianchi I models of loop quantum cosmology”, Phys. Rev. D, 76, 084015, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0707.2548.
129 Clarke, C.J.S., “Generalised hyperbolicity in singular space-times”, Class. Quantum Grav., 15, 975–984, (1998). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/9702033.
130 Connors, S., and Khanna, G., “Approximate pre-classical solutions in loop quantum cosmology”, Class. Quantum Grav., 23, 2919–2926, (2006). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0509081.
131 Conradi, H.D., and Zeh, H.D., “Quantum cosmology as an initial value problem”, Phys. Lett. A, 154, 321–326, (1991).
132 Copeland, E.J., Lidsey, J.E., and Mizuno, S., “Correspondence between Loop-inspired and Braneworld Cosmology”, Phys. Rev. D, 73, 043503, (2006). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0510022.
133 Copeland, E.J., Lidsey, J.E., and Mizuno, S., “Correspondence between Loop-inspired and Braneworld Cosmology”, Phys. Rev. D, 73, 043503, (2006). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0510022.
134 Copeland, E.J., Mulryne, D.J., Nunes, N.J., and Shaeri, M., “Super-inflation in Loop Quantum Cosmology”, (2007). URL (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0708.1261.
135 Cordero, P., “Canonical Formulation of the Spherically Symmetric Einstein–Yang–Mills–Higgs System for a General Gauge Group”, Ann. Phys. (N.Y.), 108, 79–98, (1977).
136 Cordero, P., and Teitelboim, C., “Hamiltonian Treatment of the Spherically Symmetric Einstein–Yang–Mills System”, Ann. Phys. (N.Y.), 100, 607–631, (1976).
137 Corichi, A., and Hauser, A., “Bibliography of Publications related to Classical Self-dual variables and Loop Quantum Gravity”, (2005). URL (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0509039.
138 Corichi, A., and Singh, P., “Quantum bounce and cosmic recall”, (2007). URL (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0710.4543.
139 Coule, D.H., “Contrasting Quantum Cosmologies”, (2003). URL (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0312045.
140 Coule, D.H., “Quantum Cosmological Models”, Class. Quantum Grav., 22, R125–R166, (2005). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0412026.
141 Date, G., “Quantum Geometric Description of Cosmological Models”, Mod. Phys. Lett. A, 17, 967–976, (2002). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0205100.
142 Date, G., “Absence of the Kasner singularity in the effective dynamics from loop quantum cosmology”, Phys. Rev. D, 71, 127502, (2005). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0505002.
143 Date, G., “Preclassical solutions of the vacuum Bianchi I loop quantum cosmology”, Phys. Rev. D, 72, 067301, 1–4, (2005). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0505030.
144 Date, G., “On obtaining classical mechanics from quantum mechanics”, Class. Quantum Grav., 24, 535–550, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0606078.
145 Date, G., “Singularity Resolution in Isotropic Loop Quantum Cosmology: Recent Developments”, (2007). URL (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0704.0145.
146 Date, G., and Hossain, G.M., “Effective Hamiltonian for Isotropic Loop Quantum Cosmology”, Class. Quantum Grav., 21, 4941–4953, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0407073.
147 Date, G., and Hossain, G.M., “Genericity of Big Bounce in isotropic loop quantum cosmology”, Phys. Rev. Lett., 94, 011302, (2005). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0407074.
148 Date, G., and Hossain, G.M., “Genericity of inflation in isotropic loop quantum cosmology”, Phys. Rev. Lett., 94, 011301, (2005). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0407069.
149 De Pietri, R., “Spin networks and recoupling in loop quantum gravity”, Nucl. Phys. B (Proc. Suppl.), 57, 251–254, (1997). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9701041.
150 De Pietri, R., and Rovelli, C., “Geometry Eigenvalues and the Scalar Product from Recoupling Theory in Loop Quantum Gravity”, Phys. Rev. D, 54(4), 2664–2690, (1996).
151 De Risi, G., Maartens, R., and Singh, P., “Graceful exit via polymerization of pre-big-bang cosmology”, Phys. Rev. D, 76, 103531, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0706.3586.
152 DeWitt, B.S., “Quantum Theory of Gravity. I. The Canonical Theory”, Phys. Rev., 160, 1113–1148, (1967).
153 Dirac, P.A.M., Lectures on Quantum Mechanics, Belfer Graduate School of Science. Monographs Series, vol. 2, (Yeshiva Press, New York, U.S.A., 1964).
154 Dittrich, B., “Partial and Complete Observables for Hamiltonian Constrained Systems”, Class. Quantum Grav., 23, 6155–6184, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0411013.
155 Dittrich, B., and Loll, R., “Counting a black hole in Lorentzian product triangulations”, Class. Quantum Grav., 23, 3849–3878, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0506035.
156 Dittrich, B., and Tambornino, J., “Gauge invariant perturbations around symmetry reduced sectors of general relativity: applications to cosmology”, Class. Quantum Grav., 24, 4543–4585, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0702093.
157 Dittrich, B., and Tambornino, J., “A perturbative approach to Dirac observables and their space-time algebra”, Class. Quantum Grav., 24, 757–784, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0610060.
158 Domagala, M., and Lewandowski, J., “Black hole entropy from Quantum Geometry”, Class. Quantum Grav., 21, 5233–5243, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0407051.
159 Einstein, A., and Rosen, N., “On Gravitational Waves”, J. Franklin Inst., 233, 43, (1937).
160 Ellis, G.F.R., and Maartens, R., “The Emergent Universe: inflationary cosmology with no singularity”, Class. Quantum Grav., 21, 223–232, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0211082.
161 Ellis, G.F.R., and MacCallum, M.A.H., “A Class of Homogeneous Cosmological Models”, Commun. Math. Phys., 12, 108–141, (1969).
162 Ellis, G.F.R., Murugan, J., and Tsagas, C.G., “The Emergent Universe: An Explicit Construction”, Class. Quantum Grav., 21, 233–250, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0307112.
163 Engle, J., “Quantum field theory and its symmetry reduction”, Class. Quantum Grav., 23, 2861–2893, (2006). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0511107.
164 Engle, J., “On the physical interpretation of states in loop quantum cosmology”, Class. Quantum Grav., 24, 5777–5802, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0701132.
165 Fewster, C., and Sahlmann, H., “Phase space quantization and Loop Quantum Cosmology: A Wigner function for the Bohr-compactified real line”, (2008). URL (cited on 22 May 2008):
External Linkhttp://arXiv.org/abs/arXiv:0804.2541.
166 Fleischhack, C., “Representations of the Weyl Algebra in Quantum Geometry”, (2004). URL (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/math-ph/0407006.
167 Freidel, L., and Smolin, L., “The linearization of the Kodama state”, Class. Quantum Grav., 21, 3831–3844, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/hep-th/0310224.
168 Gambini, R., and Pullin, J., “Nonstandard optics from quantum space-time”, Phys. Rev. D, 59, 124021, 1–4, (1999). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9809038.
169 Garfinkle, D., “Numerical simulations of generic singuarities”, Phys. Rev. Lett., 93, 161101, (2004). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0312117.
170 Gaul, M., and Rovelli, C., “A generalized Hamiltonian Constraint Operator in Loop Quantum Gravity and its simplest Euclidean Matrix Elements”, Class. Quantum Grav., 18, 1593–1624, (2001). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0011106.
171 Giesel, K., and Thiemann, T., “Consistency Check on Volume and Triad Operator Quantisation in Loop Quantum Gravity I”, Class. Quantum Grav., 23, 5667–5691, (2006). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0507036.
172 Giles, R., “The reconstruction of gauge potentials from Wilson loops”, Phys. Rev. D, 24, 2160–2168, (1981).
173 Giulini, D., and Kiefer, C., “The Canonical Approach to Quantum Gravity: General Ideas and Geometrodynamics”, in Seiler, E., and Stamatescu, I.-O., eds., Approaches To Fundamental Physics: An Assessment Of Current Theoretical Ideas, Lecture Notes in Physics, vol. 721, pp. 131–150, (Springer, Berlin, Germany, 2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0611141.
174 Green, D., and Unruh, W.G., “Difficulties with recollapsing models in closed isotropic loop quantum cosmology”, Phys. Rev. D, 70, 103502, 1–7, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0408074.
175 Halliwell, J.J., and Hawking, S.W., “Origin of Structure in the Universe”, Phys. Rev. D, 31(8), 1777–1791, (1985).
176 Hartle, J.B., and Hawking, S.W., “Wave function of the Universe”, Phys. Rev. D, 28, 2960–2975, (1983).
177 Hawking, S.W., and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K., 1973).
178 Hawking, S.W., and Penrose, R., “The singularities of gravitational collapse and cosmology”, Proc. R. Soc. London, Ser. A, 314, 529–548, (1970).
179 Hertog, T., and Horowitz, G.T., “Holographic Description of AdS Cosmologies”, J. High Energy Phys., 2005(04), 005, (2005). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/hep-th/0503071.
180 Heslot, A., “Quantum mechanics as a classical theory”, Phys. Rev. D, 31, 1341–1348, (1985).
181 Hinterleitner, F., and Major, S., “Isotropic Loop Quantum Cosmology with Matter II: The Lorentzian Constraint”, Phys. Rev. D, 68, 124023, (2003). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0309035.
182 Hofmann, S., and Winkler, O., “The Spectrum of Fluctuations in Inflationary Quantum Cosmology”, (2004). URL (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0411124.
183 Holst, S., “Barbero’s Hamiltonian derived from a generalized Hilbert-Palatini action”, Phys. Rev. D, 53, 5966–5969, (1996). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/9511026.
184 Hossain, G.M., “Hubble operator in isotropic loop quantum cosmology”, Class. Quantum Grav., 21, 179–196, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0308014.
185 Hossain, G.M., “Large volume quantum correction in loop quantum cosmology: Graviton illusion?”, (2005). URL (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0504125.
186 Hossain, G.M., “On Energy Conditions and Stability in Effective Loop Quantum Cosmology”, Class. Quantum Grav., 22, 2653–2670, (2005). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0503065.
187 Hossain, G.M., “Primordial Density Perturbation in Effective Loop Quantum Cosmology”, Class. Quantum Grav., 22, 2511–2532, (2005). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0411012.
188 Husain, V., and Winkler, O., “On singularity resolution in quantum gravity”, Phys. Rev. D, 69, 084016, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0312094.
189 Husain, V., and Winkler, O., “How red is a quantum black hole?”, Int. J. Mod. Phys. D, 14, 2233–2238, (2005). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0505153.
190 Husain, V., and Winkler, O., “Quantum black holes”, Class. Quantum Grav., 22, L135–L141, (2005). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0412039.
191 Husain, V., and Winkler, O., “Quantum resolution of black hole singularities”, Class. Quantum Grav., 22, L127–L133, (2005). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0410125.
192 Husain, V., and Winkler, O., “Quantum Hamiltonian for gravitational collapse”, Phys. Rev. D, 73, 124007, (2006). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0601082.
193 Immirzi, G., “Real and Complex Connections for Canonical Gravity”, Class. Quantum Grav., 14, L177–L181, (1997).
194 Jones, A.W., and Lasenby, A.N., “The Cosmic Microwave Background”, Living Rev. Relativity, 1, lrr-1998-11, (1998). URL (cited on 9 October 2005):
http://www.livingreviews.org/lrr-1998-11.
195 Kagan, M., “Phenomenological implications of an alternative Hamiltonian constraint for quantum cosmology”, Phys. Rev. D, 72, 104004, (2005). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0511007.
196 Kamenshchik, A., Kiefer, C., and Sandhoefer, B., “Quantum cosmology with big-brake singularity”, Phys. Rev. D, 76, 064032, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0705.1688.
197 Kaminski, W., and Lewandowski, J., “The flat FRW model in LQC: the self-adjointness”, (2007). URL (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0709.3120.
198 Kasner, E., “Geometrical Theorems on Einstein’s Cosmological Equations”, Am. J. Math., 43, 217, (1921).
199 Kastrup, H.A., and Thiemann, T., “Spherically Symmetric Gravity as a Completely Integrable System”, Nucl. Phys. B, 425, 665–686, (1994). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9401032.
200 Khoury, J., Ovrut, B.A., Steinhardt, P.J., and Turok, N., “The Ekpyrotic Universe: Colliding Branes and the Origin of the Hot Big Bang”, Phys. Rev. D, 64, 123522, (2001). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/hep-th/0103239.
201 Kibble, T.W.B., “Geometrization of quantum mechanics”, Commun. Math. Phys., 65, 189–201, (1979).
202 Kobayashi, S., and Nomizu, K., Foundations of Differential Geometry, Vol. 1, (John Wiley, New York, U.S.A., 1963).
203 Kobayashi, S., and Nomizu, K., Foundations of Differential Geometry, Vol. 2, (John Wiley, New York, U.S.A., 1969).
204 Kodama, H., “Specialization of Ashtekar’s Formalism to Bianchi Cosmology”, Prog. Theor. Phys., 80(6), 1024–1040, (1988).
205 Kodama, H., “Holomorphic wave function of the Universe”, Phys. Rev. D, 42, 2548–2565, (1990).
206 Kontoleon, N., and Wiltshire, D.L., “Operator ordering and consistency of the wavefunction of the Universe”, Phys. Rev. D, 59, 063513, (1999). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9807075.
207 Koslowski, T., “Reduction of a Quantum Theory”, (2006). URL (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0612138.
208 Koslowski, T., “A Cosmological Sector in Loop Quantum Gravity”, (2007). URL (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0711.1098.
209 Kuchař, K.V., “Time and interpretations of quantum gravity”, in Kunstatter, G., Vincent, D.E., and Williams, J.G., eds., General Relativity and Relativistic Astrophysics, Proceedings of the Fourth Canadian Conference, held 16 – 18 May, 1991 at University of Winnipeg, (World Scientific, Singapore; River Edge, U.S.A., 1992).
210 Kuchař, K.V., and Ryan Jr, M.P., “Is minisuperspace quantization valid?: Taub in Mixmaster”, Phys. Rev. D, 40, 3982–3996, (1989).
211 Laguna, P., “The Shallow Waters of the Big-Bang”, Phys. Rev. D, 75, 024033, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0608117.
212 Lewandowski, J., Newman, E.T., and Rovelli, C., “Variations of the parallel propagator and holonomy operator and the Gauss law constraint”, J. Math. Phys., 34, 4646–4654, (1993).
213 Lewandowski, J., Okołów, A., Sahlmann, H., and Thiemann, T., “Uniqueness of diffeomorphism invariant states on holonomy-flux algebras”, Commun. Math. Phys., 267, 703–733, (2005). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0504147.
214 Lidsey, J.E., “Early Universe Dynamics in Semi-Classical Loop Quantum Cosmology”, J. Cosmol. Astropart. Phys., 2004(12), 007, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0411124.
215 Lidsey, J.E., Mulryne, D.J., Nunes, N.J., and Tavakol, R., “Oscillatory Universes in Loop Quantum Cosmology and Initial Conditions for Inflation”, Phys. Rev. D, 70, 063521, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0406042.
216 Livine, E.R., Speziale, S., and Willis, J.L., “Towards the graviton from spinfoams: higher order corrections in the 3d toy model”, Phys. Rev. D, 75, 024038, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0605123.
217 Loll, R., “Simplifying the Spectral Analysis of the Volume Operator”, Nucl. Phys. B, 500, 405–420, (1997). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9706038.
218 Loll, R., “Discrete Approaches to Quantum Gravity in Four Dimensions”, Living Rev. Relativity, 1, lrr-1998-13, (1998). URL (cited on 9 October 2005):
http://www.livingreviews.org/lrr-1998-13.
219 Maartens, R., “Brane-World Gravity”, Living Rev. Relativity, 7, lrr-2004-7, (2004). URL (cited on 9 October 2005):
http://www.livingreviews.org/lrr-2004-7.
220 MacCallum, M.A.H., and Taub, A.H., “Variational Principles and Spatially-Homogeneous Universes, Including Rotation”, Commun. Math. Phys., 25, 173–189, (1972).
221 Magueijo, J., and Singh, P., “Thermal fluctuations in loop cosmology”, Phys. Rev. D, submitted, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0703566.
222 Malecki, J., “Inflationary Quantum Cosmology: General Framework and Exact Bianchi I Solution”, Phys. Rev. D, 70, 084040, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0407114.
223 Marolf, D., “Refined Algebraic Quantization: Systems with a Single Constraint”, (1995). URL (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9508015.
224 Marolf, D., and Mourão, J.M., “On the support of the Ashtekar–Lewandowski measure”, Commun. Math. Phys., 170, 583–606, (1995). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/hep-th/9403112.
225 Meissner, K.A., “Black hole entropy in Loop Quantum Gravity”, Class. Quantum Grav., 21, 5245–5251, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0407052.
226 Mielczarek, J., and Szydłowski, M., “Relic gravitons as the observable for Loop Quantum Cosmology”, (2007). URL (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0705.4449.
227 Mielczarek, J., and Szydłowski, M., “Relic gravitons from super-inflation”, (2007). URL (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0710.2742.
228 Misner, C.W., “The Isotropy of the Universe”, Astrophys. J., 151, 431–457, (1968).
229 Misner, C.W., “Mixmaster Universe”, Phys. Rev. Lett., 22, 1071–1074, (1969).
230 Modesto, L., “The Kantowski–Sachs Space-Time in Loop Quantum Gravity”, (2004). URL (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0411032.
231 Modesto, L., “Black hole interior from loop quantum gravity”, (2006). URL (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0611043.
232 Modesto, L., “Evaporating loop quantum black hole”, (2006). URL (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0612084.
233 Modesto, L., “Loop quantum black hole”, Class. Quantum Grav., 23, 5587–5601, (2006). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0509078.
234 Morales-Técotl, H.A., and Esposito, G., “Selfdual action for fermionic fields and gravitation”, Nuovo Cimento B, 109, 973–982, (1994). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/9506073.
235 Morales-Técotl, H.A., and Rovelli, C., “Fermions in quantum gravity”, Phys. Rev. Lett., 72, 3642–3645, (1994). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/9401011.
236 Morales-Técotl, H.A., and Rovelli, C., “Loop space representation of quantum fermions and gravity”, Nucl. Phys. B, 451, 325–361, (1995).
237 Mulryne, D.J., and Nunes, N.J., “Constraints on a scale invariant power spectrum from superinflation in LQC”, Phys. Rev. D, 74, 083507, (2006). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0607037.
238 Mulryne, D.J., Tavakol, R., Lidsey, J.E., and Ellis, G.F.R., “An emergent universe from a loop”, Phys. Rev. D, 71, 123512, (2005). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0502589.
239 Nelson, W., and Sakellariadou, M., “Lattice Refining Loop Quantum Cosmology and Inflation”, Phys. Rev. D, 76, 044015, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0706.0179.
240 Nelson, W., and Sakellariadou, M., “Lattice Refining LQC and the Matter Hamiltonian”, Phys. Rev. D, 76, 104003, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0707.0588.
241 Nelson, W., and Sakellariadou, M., “Dark energy from corrections to the Wheeler-DeWitt equation”, Phys. Lett. B, 661, 37, (2008). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0709.1625.
242 Nicolai, H., Peeters, K., and Zamaklar, M., “Loop quantum gravity: an outside view”, Class. Quantum Grav., 22, R193–R247, (2005). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/hep-th/0501114.
243 Noui, K., Perez, A., and Vandersloot, K., “On the Physical Hilbert Space of Loop Quantum Cosmology”, Phys. Rev. D, 71, 044025, (2005). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0411039.
244 Nunes, N.J., “Inflation: A graceful entrance from Loop Quantum Cosmology”, Phys. Rev. D, 72, 103510, (2005). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/astro-ph/0507683.
245 Okołów, A., and Lewandowski, J., “Diffeomorphism covariant representations of the holonomy-flux star-algebra”, Class. Quantum Grav., 20, 3543–3568, (2003). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0302059.
246 Padmanabhan, T., “Acceptable Density Perturbations From Inflation due to Quantum Gravitational Damping”, Phys. Rev. Lett., 60, 2229–2230, (1988).
247 Padmanabhan, T., Seshadri, T.R., and Singh, T.P., “Making inflation work: Damping of density perturbations due to Planck energy cutoff”, Phys. Rev. D, 39, 2100–2107, (1989).
248 Perez, A., “Introduction to Loop Quantum Gravity and Spin Foams”, (2004). URL (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0409061. Lectures presented at the II International Conference of Fundamental Interactions, Pedra Azul, Brazil, June 2004.
249 Rendall, A.D., “The Nature of Spacetime Singularities”, in Ashtekar, A., ed., 100 Years of Relativity. Space-Time Structure: Einstein and Beyond, (World Scientific, Singapore, 2005). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0503112.
250 Rosen, J., Jung, J.-H., and Khanna, G., “Instabilities in numerical loop quantum cosmology”, Class. Quantum Grav., 23, 7075–7084, (2006). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0607044.
251 Rovelli, C., “Quantum Reference Systems”, Class. Quantum Grav., 8, 317–332, (1991).
252 Rovelli, C., “Time in Quantum Gravity: An Hypothesis”, Phys. Rev. D, 43, 442–456, (1991).
253 Rovelli, C., “What is Observable in Classical and Quantum Gravity?”, Class. Quantum Grav., 8, 297–316, (1991).
254 Rovelli, C., “Loop Quantum Gravity”, Living Rev. Relativity, 1, lrr-1998-1, (1998). URL (cited on 9 October 2005):
http://www.livingreviews.org/lrr-1998-1.
255 Rovelli, C., “A dialog on quantum gravity”, Int. J. Mod. Phys. D, 12, 1509–1528, (2003). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/hep-th/0310077.
256 Rovelli, C., Quantum Gravity, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 2004).
257 Rovelli, C., “Graviton propagator from background-independent quantum gravity”, Phys. Rev. Lett., 97, 151301, (2006). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0508124.
258 Rovelli, C., and Smolin, L., “Loop Space Representation of Quantum General Relativity”, Nucl. Phys. B, 331, 80–152, (1990).
259 Rovelli, C., and Smolin, L., “The physical Hamiltonian in nonperturbative quantum gravity”, Phys. Rev. Lett., 72, 446–449, (1994). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9308002.
260 Rovelli, C., and Smolin, L., “Discreteness of area and volume in quantum gravity”, Nucl. Phys. B, 442, 593–619, (1995). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9411005. Erratum: Nucl. Phys. B 456 (1995) 753.
261 Rovelli, C., and Smolin, L., “Spin networks and quantum gravity”, Phys. Rev. D, 52, 5743–5759, (1995).
262 Sabharwal, S., and Khanna, G., “Numerical solutions to lattice-refined models in loop quantum cosmology”, in preparation.
263 Sahlmann, H., “Some Comments on the Representation Theory of the Algebra Underlying Loop Quantum Gravity”, (2002). URL (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0207111.
264 Sahlmann, H., “When Do Measures on the Space of Connections Support the Triad Operators of Loop Quantum Gravity?”, (2002). URL (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0207112.
265 Sahlmann, H., and Thiemann, T., “On the superselection theory of the Weyl algebra for diffeomorphism invariant quantum gauge theories”, (2003). URL (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0302090.
266 Sahlmann, H., and Thiemann, T., “Irreducibility of the Ashtekar–Isham–Lewandowski representation”, Class. Quantum Grav., 23, 4453–4471, (2006). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0303074.
267 Sahlmann, H., and Thiemann, T., “Towards the QFT on curved spacetime limit of QGR. I: A general scheme”, Class. Quantum Grav., 23, 867–908, (2006). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0207030.
268 Sahlmann, H., and Thiemann, T., “Towards the QFT on curved spacetime limit of QGR. II: A concrete implementation”, Class. Quantum Grav., 23, 909–954, (2006). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0207031.
269 Sahlmann, H., Thiemann, T., and Winkler, O., “Coherent states for canonical quantum general relativity and the infinite tensor product extension”, Nucl. Phys. B, 606, 401–440, (2001). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0102038.
270 Samart, D., and Gumjudpai, B., “Phantom field dynamics in loop quantum cosmology”, Phys. Rev. D, 76, 043514, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0704.3414.
271 Sami, M., Singh, P., and Tsujikawa, S., “Avoidance of future singularities in loop quantum cosmology”, Phys. Rev. D, 74, 043514, (2006). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0605113.
272 Sen, A.A., “Tachyon matter in loop quantum cosmology”, Phys. Rev. D, 74, 043501, (2006). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0604050.
273 Shojai, A., and Shojai, F., “Causal Loop Quantum Gravity and Cosmological Solutions”, Europhys. Lett., 71, 886, (2005). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0409020.
274 Shojai, A., and Shojai, F., “On the Green’s function and iterative solutions of Loop Quantum Cosmology”, Gen. Relativ. Gravit., 38, 1387–1396, (2006). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0607034.
275 Shojai, A., and Shojai, F., “Variational Methods in Loop Quantum Cosmology”, Europhys. Lett., 75, 702–708, (2006). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0607033.
276 Shojai, A., and Shojai, F., “Causal loop quantum cosmology in momentum space”, (2007). URL (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0708.0621.
277 Singh, P., “Effective state metamorphosis in semi-classical loop quantum cosmology”, Class. Quantum Grav., 22, 4203–4216, (2005). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0502086.
278 Singh, P., “Loop cosmological dynamics and dualities with Randall-Sundrum braneworlds”, Phys. Rev. D, 73, 063508, (2006). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0603043.
279 Singh, P., and Toporensky, A., “Big crunch avoidance in k = 1 semiclassical loop quantum cosmology”, Phys. Rev. D, 69, 104008, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0312110.
280 Singh, P., and Vandersloot, K., “Semiclassical states, effective dynamics, and classical emergence in loop quantum cosmology”, Phys. Rev. D, 72, 084004, 1–8, (2005). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0507029.
281 Singh, P., Vandersloot, K., and Vereshchagin, G.V., “Non-singular bouncing universes in Loop Quantum Cosmology”, Phys. Rev. D, 74, 043510, (2006). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0606032.
282 Skirzewski, A., Effective Equations of Motion for Quantum Systems, Ph.D. Thesis, (Humboldt-Universität Berlin, Berlin, Germany, 2006).
283 Smolin, L., “The Classical Limit and the Form of the Hamiltonian Constraint in Non-Perturbative Quantum General Relativity”, (1996). URL (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9609034.
284 Smolin, L., “An invitation to loop quantum gravity”, (2004). URL (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/hep-th/0408048.
285 Szulc, L., “Open FRW model in Loop Quantum Cosmology”, Class. Quantum Grav., 24, 6191–6200, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0707.1816.
286 Szulc, L., Kaminski, W., and Lewandowski, J., “Closed Friedmann-Robertson-Walker model in loop quantum cosmology”, Class. Quantum Grav., 24, 2621–2635, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0612101.
287 Szydłowski, M., Godłowski, W., and Stachowiak, T., “Testing and selection of cosmological models with (1 + z)6 corrections”, Phys. Rev. D, 77, 043530, (2008). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0706.0283.
288 Thiemann, T., “Anomaly-free formulation of non-perturbative, four-dimensional Lorentzian quantum gravity”, Phys. Lett. B, 380, 257–264, (1996). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9606088.
289 Thiemann, T., “Kinematical Hilbert Spaces for Fermionic and Higgs Quantum Field Theories”, Class. Quantum Grav., 15, 1487–1512, (1998). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/9705021.
290 Thiemann, T., “A Length Operator for Canonical Quantum Gravity”, J. Math. Phys., 39, 3372–3392, (1998). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9606092.
291 Thiemann, T., “QSD V: Quantum Gravity as the Natural Regulator of Matter Quantum Field Theories”, Class. Quantum Grav., 15, 1281–1314, (1998). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9705019.
292 Thiemann, T., “Quantum Spin Dynamics (QSD)”, Class. Quantum Grav., 15, 839–873, (1998). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9606089.
293 Thiemann, T., Introduction to Modern Canonical Quantum General Relativity, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 2007).
294 Thiemann, T., and Kastrup, H.A., “Canonical Quantization of Spherically Symmetric Gravity in Ashtekar’s Self-Dual Representation”, Nucl. Phys. B, 399, 211–258, (1993). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/9310012.
295 Tsujikawa, S., Singh, P., and Maartens, R., “Loop quantum gravity effects on inflation and the CMB”, Class. Quantum Grav., 21, 5767–5775, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/astro-ph/0311015.
296 Vaas, R., “Beyond Space And Time (Jenseits von Raum und Zeit)”, Bild der Wiss., 2003(12), 50–56, (2003). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/physics/0401128. English translation by Amitabha Sen.
297 Vaas, R., “The Inverted Big-Bang (Der umgestülpte Urknall)”, Bild der Wiss., 2004(4), 50–56, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/physics/0407071. Translated by Amitabha Sen.
298 Vaas, R., “Time before Time: Classifications of universes in contemporary cosmology, and how to avoid the antinomy of the beginning and eternity of the world”, (2004). URL (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/physics/0408111.
299 Vandersloot, K., “On the Hamiltonian Constraint of Loop Quantum Cosmology”, Phys. Rev. D, 71, 103506, (2005). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0502082.
300 Vandersloot, K., “Loop quantum cosmology and the k = 1 RW model”, Phys. Rev. D, 75, 023523, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0612070.
301 Varadarajan, M., “Towards new background independent representations for Loop Quantum Gravity”, (2007). URL (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0709.1680.
302 Velhinho, J.M., “Comments on the kinematical structure of loop quantum cosmology”, Class. Quantum Grav., 21, L109–L113, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0406008.
303 Vereshchagin, G.V., “Qualitative Approach to Semi-Classical Loop Quantum Cosmology”, J. Cosmol. Astropart. Phys., 2004(07), 013, (2004). Related online version (cited on 9 October 2005):
External Linkhttp://arXiv.org/abs/gr-qc/0406108.
304 Vickers, J.A., and Wilson, J.P., “Generalised hyperbolicity in conical space-times”, Class. Quantum Grav., 17, 1333–1360, (2000). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/9907105.
305 Vickers, J.A., and Wilson, J.P., “Generalised hyperbolicity: hypersurface singularities”, (2001). URL (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0101018.
306 Vilenkin, A., “Quantum creation of universes”, Phys. Rev. D, 30, 509–511, (1984).
307 Wei, H., and Zhang, S.N., “Dynamics of Quintom and Hessence Energies in Loop Quantum Cosmology”, Phys. Rev. D, 76, 063005, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0705.4002.
308 Will, C.M., “The Confrontation between General Relativity and Experiment”, Living Rev. Relativity, 9, lrr-2006-3, (2006). URL (cited on 21 November 2005):
http://www.livingreviews.org/lrr-2006-3.
309 Willis, J.L., On the Low-Energy Ramifications and a Mathematical Extension of Loop Quantum Gravity, Ph.D. Thesis, (The Pennsylvania State University, University Park, U.S.A., 2004). Related online version (cited on 9 October 2005):
External Linkhttp://cgpg.gravity.psu.edu/archives/thesis/2004/.
310 Wiltshire, D.L., “An introduction to quantum cosmology”, in Robson, B.A., Visvanathan, N., and Woolcock, W.S., eds., Cosmology: The Physics of the Universe, Proceedings of the 8th Annual Physics Summer School, held at The Australian National University, Canberra, Australia, 16 January – 3 February 1995, pp. 473–531, (World Scientific, Singapore, 1996). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0101003.
311 Xiong, H.-H., and Zhu, J.-Y., “Tachyon field in loop quantum cosmology: Inflation and evolution picture”, Phys. Rev. D, 75, 084023, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/gr-qc/0702003.
312 Xiong, H.-H., and Zhu, J.-Y., “Violation of Strong Energy Condition in Effective Loop Quantum Cosmology”, Int. J. Mod. Phys. A, 22, 3137, (2007).
313 Zhang, X., “Can black holes be torn up by phantom in cyclic cosmology?”, (2007). URL (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0708.1408.
314 Zhang, X., and Ling, Y., “Inflationary universe in loop quantum cosmology”, J. Cosmol. Astropart. Phys., 2007(08), 012, (2007). Related online version (cited on 21 November 2007):
External Linkhttp://arXiv.org/abs/arXiv:0705.2656.