References

1 Abbott, L.F. and Deser, S., “Stability of gravity with a cosmological constant”, Nucl. Phys. B, 195, 76–96 (1982). [External LinkDOI].
2 Abreu, G. and Visser, M., “Tolman mass, generalized surface gravity, and entropy bounds”, Phys. Rev. Lett., 105, 041302 (2010). [External LinkDOI], [External LinkarXiv:1005.1132].
3 Abreu, G. and Visser, M., “Entropy bounds for uncollapsed matter”, J. Phys.: Conf. Ser., 314, 012035 (2011). [External LinkDOI], [External LinkarXiv:1011.4538].
4 Abreu, G. and Visser, M., “Entropy bounds for uncollapsed rotating bodies”, J. High Energy Phys., 2011(03), 056 (2011). [External LinkDOI], [External LinkarXiv:1012.2867].
5 Adamo, T. M., Newman, E.T. and Kozameh, C., “Null geodesic congruences, asymptotically-flat spacetimes and their physical interpretation”, Living Rev. Relativity, 15, lrr-2012-1 (2012). [External LinkarXiv:0906.2155]. URL (accessed 12 October 2012):
http://www.livingreviews.org/lrr-2012-1.
6 Afshar, M.M., “Quasilocal energy in FRW cosmology”, Class. Quantum Grav., 26, 225005 (2009). [External LinkDOI], [External LinkarXiv:0903.3982].
7 Aguirregabiria, J.M., Chamorro, A. and Virbhadra, K.S., “Energy and angular momentum of charged rotating black holes”, Gen. Relativ. Gravit., 28, 1393–1400 (1996). [External LinkDOI], [External Linkgr-qc/9501002].
8 Aichelburg, P.C., “Remark on the superposition principle for gravitational waves”, Acta Phys. Austriaca, 34, 279–284 (1971).
9 Allemandi, G., Francaviglia, M. and Raiteri, M., “Energy in Einstein–Maxwell theory and the first law of isolated horizons via the Noether theorem”, Class. Quantum Grav., 19, 2633–2655 (2002). [External LinkDOI], [External Linkgr-qc/0110104].
10 Álvarez-Gaumé, L. and Nelson, P., “Riemann surfaces and string theories”, in de Wit, B., Fayet, P. and Grisaru, M., eds., Supersymmetry, Supergravity, Superstrings ’86, Proceedings of the 4th Trieste Spring School, held at the ICTP, Trieste, Italy 7 – 15 April 1986, pp. 419–510, (World Scientific, Singapore, 1986).
11 Anco, S.C., “Mean-curvature flow and quasilocal mass for 2-surfaces in Hamiltonian general relativity”, J. Math. Phys., 48, 052502 (2007). [External LinkDOI], [External Linkgr-qc/0402057].
12 Anco, S.C., “Spinor Derivation of Quasilocal Mean Curvature Mass in General Relativity”, Int. J. Theor. Phys., 47, 684–695 (2008). [External LinkDOI], [External LinkADS].
13 Anco, S.C. and Tung, R.-S., “Covariant Hamiltonian boundary conditions in general relativity for spatially bounded spacetime regions”, J. Math. Phys., 43, 5531–5566 (2002). [External LinkDOI], [External Linkgr-qc/0109013].
14 Anco, S.C. and Tung, R.-S., “Properties of the symplectic structure of general relativity for spatially bounded spacetime regions”, J. Math. Phys., 43, 3984–4019 (2002). [External LinkDOI], [External Linkgr-qc/0109014].
15 Anderson, J.L., Principles of Relativity Physics, (Academic Press, New York, 1967).
16 Anderson, M.T., “Quasilocal Hamiltonians in general relativity”, Phys. Rev. D, 83, 084044 (2010). [External LinkDOI], [External LinkarXiv:1008.4309].
17 Anderson, M.T. and Khuri, M.A., “The static extension problem in general relativity”, arXiv, e-print, (2009). [External LinkarXiv:0909.4550].
18 Andersson, F. and Edgar, S.B., “Curvature-free asymmetric metric connections in Kerr–Schild spacetimes”, J. Math. Phys., 39, 2859–2861 (1998). [External LinkDOI].
19 Andersson, L., Mars, M. and Simon, W., “Local Existence of Dynamical and Trapping Horizons”, Phys. Rev. Lett., 95, 111102 (2005). [External LinkDOI], [External Linkgr-qc/0506013].
20 Ansorg, M. and Petroff, D., “Black holes surrounded by uniformly rotating rings”, Phys. Rev. D, 72, 024019 (2005). [External LinkDOI], [External Linkgr-qc/0505060].
21 Ansorg, M. and Petroff, D., “Negative Komar mass of single objects in regular, asymptotically flat spacetimes”, Class. Quantum Grav., 23, L81–L87 (2006). [External LinkDOI], [External Linkgr-qc/0607091].
22 Ansorg, M. and Pfister, H., “A universal constraint between charge and rotation rate for degenerate black holes surrounded by matter”, Class. Quantum Grav., 25, 035009 (2008). [External LinkDOI], [External Link0708.4196 [gr-qc]].
23 Arnowitt, R., Deser, S. and Misner, C.W., “Energy and the Criteria for Radiation in General Relativity”, Phys. Rev., 118, 1100–1104 (1960). [External LinkDOI], [External LinkADS].
24 Arnowitt, R., Deser, S. and Misner, C.W., “Coordinate Invariance and Energy Expressions in General Relativity”, Phys. Rev., 122, 997–1006 (1961). [External LinkDOI].
25 Arnowitt, R., Deser, S. and Misner, C.W., “Wave Zone in General Relativity”, Phys. Rev., 121, 1556–1566 (1961). [External LinkDOI].
26 Arnowitt, R., Deser, S. and Misner, C.W., “The dynamics of general relativity”, in Witten, L., ed., Gravitation: An Introduction to Current Research, pp. 227–265, (Wiley, New York; London, 1962). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0405109 [gr-qc]].
27 Aronson, B. and Newman, E.T., “Coordinate systems associated with asymptotically shear-free null congruences”, J. Math. Phys., 13, 1847–1851 (1972). [External LinkDOI].
28 Ashtekar, A., “Asymptotic structure of the gravitational field at spatial infinity”, in Held, A., ed., General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, 2, pp. 37–69, (Plenum Press, New York, 1980).
29 Ashtekar, A., “On the boundary conditions for gravitational and gauge fields at spatial infinity”, in Flaherty, F.J., ed., Asymptotic Behavior of Mass and Spacetime Geometry, Proceedings of the conference, held at Oregon State University, Corvallis, Oregon, USA, October 17 – 21, 1983, Lecture Notes in Physics, 202, pp. 95–109, (Springer, Berlin; New York, 1984).
30 Ashtekar, A., Lectures on Non-Perturbative Canonical Gravity, Advanced Series in Astrophysics and Cosmology, 6, (World Scientific, Singapore, 1991). [External LinkGoogle Books].
31 Ashtekar, A., Beetle, C. and Lewandowski, J., “Mechanics of rotating isolated horizons”, Phys. Rev. D, 64, 044016 (2001). [External LinkDOI], [External Linkgr-qc/0103026].
32 Ashtekar, A., Beetle, C. and Lewandowski, J., “Geometry of generic isolated horizons”, Class. Quantum Grav., 19, 1195–1225 (2002). [External LinkDOI], [External Linkgr-qc/0111067].
33 Ashtekar, A., Bombelli, L. and Reula, O.A., “The covariant phase space of asymptotically flat gravitational fields”, in Francaviglia, M. and Holm, D., eds., Mechanics, Analysis and Geometry: 200 Years after Lagrange, pp. 417–450, (North-Holland, Amsterdam; New York, 1991).
34 Ashtekar, A., Fairhurst, S. and Krishnan, B., “Isolated horizons: Hamiltonian evolution and the first law”, Phys. Rev. D, 62, 104025 (2000). [External LinkDOI], [External Linkgr-qc/0005083].
35 Ashtekar, A. and Galloway, J.G., “Some uniqueness results for dynamical horizons”, Adv. Theor. Math. Phys., 95, 1–30 (2005). [External Linkgr-qc/0503109].
36 Ashtekar, A. and Geroch, R., “Quantum theory of gravitation”, Rep. Prog. Phys., 37, 1211–1256 (1974). [External LinkDOI].
37 Ashtekar, A. and Hansen, R.O., “A unified treatment of null and spatial infinity in general relativity. I. Universal structure, asymptotic symmetries, and conserved quantities at spatial infinity”, J. Math. Phys., 19, 1542–1566 (1978). [External LinkDOI].
38 Ashtekar, A. and Horowitz, G.T., “Energy-momentum of isolated systems cannot be null”, Phys. Lett., 89A, 181–184 (1982).
39 Ashtekar, A. and Krishnan, B., “Dynamical Horizons: Energy, Angular Momentum, Fluxes and Balance Laws”, Phys. Rev. Lett., 89, 261101 (2002). [External LinkDOI], [External Linkgr-qc/0207080].
40 Ashtekar, A. and Krishnan, B., “Dynamical horizons and their properties”, Phys. Rev. D, 68, 104030 (2003). [External LinkDOI], [External Linkgr-qc/0308033].
41 Ashtekar, A. and Krishnan, B., “Isolated and Dynamical Horizons and Their Applications”, Living Rev. Relativity, 7, lrr-2004-10 (2004). [External LinkarXiv:gr-qc/0407042]. URL (accessed 17 November 2008):
http://www.livingreviews.org/lrr-2004-10.
42 Ashtekar, A. and Magnon, A., “Asymptotically anti-de Sitter space-times”, Class. Quantum Grav., 1, L39–L44 (1984). [External LinkDOI].
43 Ashtekar, A. and Romano, J.D., “Spatial infinity as a boundary of spacetime”, Class. Quantum Grav., 9, 1069–1100 (1992).
44 Ashtekar, A. and Streubel, M., “Symplectic geometry of radiative modes and conserved quantities at null infinity”, Proc. R. Soc. London, Ser. A, 376, 585–607 (1981).
45 Ashtekar, A. and Winicour, J., “Linkages and Hamiltonians at null infinity”, J. Math. Phys., 23, 2410–2417 (1982). [External LinkDOI].
46 Balachandran, A.P., Chandar, L. and Momen, A., “Edge States in Canonical Gravity”, arXiv, e-print, (1995). [External LinkarXiv:gr-qc/9506006].
47 Balachandran, A.P., Momen, A. and Chandar, L., “Edge states in gravity and black hole physics”, Nucl. Phys. B, 461, 581–596 (1996). [External LinkDOI], [External Linkgr-qc/9412019].
48 Balasubramanian, V. and Kraus, P., “A stress tensor for anti-de-Sitter gravity”, Commun. Math. Phys., 208, 413–428 (1999). [External LinkDOI], [External Linkhep-th/9902121].
49 Bardeen, J.M., Carter, B. and Hawking, S.W., “The Four Laws of Black Hole Mechanics”, Commun. Math. Phys., 31, 161–170 (1973). [External LinkDOI]. Online version (accessed 21 February 2005):
External Linkhttp://projecteuclid.org/euclid.cmp/1103858973.
50 Barrabès, C., Gramain, A., Lesigne, E. and Letelier, P.S., “Geometric inequalities and the hoop conjecture”, Class. Quantum Grav., 9, L105–L110 (1992). [External LinkDOI].
51 Barrabès, C., Israel, W. and Letelier, P.S., “Analytic models of nonspherical collapse, cosmic censorship and the hoop conjecture”, Phys. Lett. A, 160, 41–44 (1991). [External LinkDOI].
52 Bartnik, R., “The mass of an asymptotically flat manifold”, Commun. Pure Appl. Math., 39, 661–693 (1986). [External LinkDOI].
53 Bartnik, R., “A new definition of quasi-local mass”, in Blair, D.G. and Buckingham, M.J., eds., The Fifth Marcel Grossmann Meeting on recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories, Proceedings of the meeting held at The University of Western Australia, 8 – 13 August 1988, pp. 399–401, (World Scientific, Singapore; River Edge, NJ, 1989).
54 Bartnik, R., “New definition of quasilocal mass”, Phys. Rev. Lett., 62, 2346–2348 (1989). [External LinkDOI].
55 Bartnik, R., “Quasi-spherical metrics and prescribed scalar curvature”, J. Differ. Geom., 37, 31–71 (1993).
56 Bartnik, R., “Mass and 3-metrics of non-negative scalar curvature”, in Tatsien, L., ed., Proceedings of the International Congress of Mathematicians, Beijing, China 20 – 28 August 2002, II, pp. 231–240, (World Scientific, Singapore, 2002). [External Linkmath.DG/0304259].
57 Baskaran, D., Lau, S.R. and Petrov, A.N., “Center of mass integral in canonical general relativity”, Ann. Phys. (N.Y.), 307, 90–131 (2003). [External LinkDOI], [External Linkgr-qc/0301069].
58 Baston, R.J., “The index of the 2-twistor equations”, Twistor Newsletter, 1984(17), 31–32 (1984).
59 Beetle, C., “Approximate Killing Fields as an Eigenvalue Problem”, arXiv, e-print, (2008). [External LinkarXiv:0808.1745 [gr-qc]].
60 Beig, R., “Arnowitt–Deser–Misner energy and g00”, Phys. Lett. A, 69, 153–155 (1978). [External LinkDOI].
61 Beig, R., “Integration of Einstein’s equations near spatial infinity”, Proc. R. Soc. London, Ser. A, 391, 295–304 (1984).
62 Beig, R., “Time symmetric initial data and Penrose’s quasi-local mass”, Class. Quantum Grav., 8, L205–L209 (1991).
63 Beig, R., “The classical theory of canonical general relativity”, in Ehlers, J. and Friedrich, H., eds., Canonical Gravity: From Classical to Quantum, Proceedings of the 117th WE Heraeus Seminar, Bad Honnef, Germany, 13 – 17 September 1993, Lecture Notes in Physics, 434, pp. 59–80, (Springer, Berlin; New York, 1994).
64 Beig, R. and Ó Murchadha, N., “The Poincaré group as the symmetry group of canonical general relativity”, Ann. Phys. (N.Y.), 174, 463–498 (1987). [External LinkDOI].
65 Beig, R. and Schmidt, B.G., “Einstein’s equations near spatial infinity”, Commun. Math. Phys., 87, 65–80 (1982). [External LinkDOI].
66 Beig, R. and Szabados, L.B., “On a global conformal invariant of initial data sets”, Class. Quantum Grav., 14, 3091–3107 (1997). [External Linkgr-qc/9706078].
67 Bekenstein, J.D., “Black holes and entropy”, Phys. Rev. D, 7, 2333–2346 (1973). [External LinkDOI].
68 Bekenstein, J.D., “Generalized second law of thermodynamics in black-hole physics”, Phys. Rev. D, 9, 3292–3300 (1974). [External LinkDOI].
69 Bekenstein, J.D., “Universal upper bound on the entropy-to energy ratio for bounded systems”, Phys. Rev. D, 23, 287–298 (1981).
70 Bekenstein, J.D., “Black holes and everyday physics”, Gen. Relativ. Gravit., 14, 355–359 (1982). [External LinkDOI].
71 Bekenstein, J.D., “On Page’s examples challenging the entropy bound”, arXiv, e-print, (2000). [External LinkarXiv:gr-qc/0006003].
72 Bekenstein, J.D. and Mayo, A.E., “Black hole polarization and new entropy bounds”, Phys. Rev. D, 61, 024022 (1999). [External LinkDOI], [External Linkgr-qc/9903002].
73 Belinfante, F.J., “On the spin angular momentum of mesons”, Physica, VI(9), 887–898 (1939). [External LinkDOI], [External LinkADS].
74 Belinfante, F.J., “On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields”, Physica, VII, 449–474 (1940). [External LinkDOI], [External LinkADS].
75 Ben-Dov, I., “Penrose inequality and apparent horizons”, Phys. Rev. D, 70, 124031 (2004). [External LinkDOI], [External Linkgr-qc/0408066].
76 Bergmann, P.G., “Observables in general relativity”, Rev. Mod. Phys., 33, 510–514 (1961).
77 Bergmann, P.G., “The general theory of relativity”, in Flügge, S., ed., Handbuch der Physik. Vol. IV: Prinzipien der Elektrodynamik und Relativitätstheorie, pp. 203–242, (Springer, Berlin; New York, 1962).
78 Bergmann, P.G. and Thomson, R., “Spin and angular momentum in general relativity”, Phys. Rev., 89, 400–407 (1953). [External LinkDOI].
79 Bergqvist, G., “Positivity and definitions of mass”, Class. Quantum Grav., 9, 1917–1922 (1992).
80 Bergqvist, G., “Quasilocal mass for event horizons”, Class. Quantum Grav., 9, 1753–1766 (1992).
81 Bergqvist, G., “Energy of small surfaces”, Class. Quantum Grav., 11, 3013–3023 (1994).
82 Bergqvist, G., “On the Penrose inequality and the role of auxiliary spinor fields”, Class. Quantum Grav., 14, 2577–2583 (1997). [External LinkDOI].
83 Bergqvist, G., “Vacuum momenta of small spheres”, Class. Quantum Grav., 15, 1535–1538 (1998). [External LinkDOI].
84 Bergqvist, G. and Ludvigsen, M., “Quasi-local mass near a point”, Class. Quantum Grav., 4, L29–L32 (1987). [External LinkDOI].
85 Bergqvist, G. and Ludvigsen, M., “Spinor propagation and quasilocal momentum for the Kerr solution”, Class. Quantum Grav., 6, L133–L136 (1989). [External LinkDOI].
86 Bergqvist, G. and Ludvigsen, M., “Quasilocal momentum and angular momentum in Kerr spacetime”, Class. Quantum Grav., 8, 697–701 (1991). [External LinkDOI].
87 Bernstein, D.H. and Tod, K.P., “Penrose’s quasi-local mass in a numerically computed space-time”, Phys. Rev. D, 49, 2808–2820 (1994).
88 Bizoń, P. and Malec, E., “On Witten’s positive-energy proof for weakly asymptotically flat spacetimes”, Class. Quantum Grav., 3, L123–L128 (1986). [External LinkDOI].
89 Bland, J. and Ma, L., “When is the Hawking mass monotone under geometric flows”, arXiv, e-print, (2008). [External LinkarXiv:0805.3896].
90 Blau, M. and Rollier, B., “Brown–York energy and radial geodesics”, Class. Quantum Grav., 25, 105004 (2008). [External LinkDOI], [External LinkarXiv:0708.0321].
91 Bondi, H., “Gravitational waves in general relativity”, Nature, 186, 535 (1960). [External LinkDOI], [External LinkADS].
92 Bondi, H., van der Burg, M.G.J. and Metzner, A.W.K., “Gravitational Waves in General Relativity. VII. Waves from Axi-Symmetric Isolated Systems”, Proc. R. Soc. London, Ser. A, 269, 21–52 (1962). [External LinkDOI], [External LinkADS].
93 Booth, I.S., “Metric-based Hamiltonians, null boundaries and isolated horizons”, Class. Quantum Grav., 18, 4239–4264 (2001). [External LinkDOI], [External Linkgr-qc/0105009].
94 Booth, I.S. and Creighton, J.D.E., “Quasilocal calculation of tidal heating”, Phys. Rev. D, 62, 067503 (2000). [External LinkDOI], [External Linkgr-qc/0003038].
95 Booth, I. and Fairhurst, S., “Canonical phase space formulation of quasilocal general relativity”, Class. Quantum Grav., 20, 4507–4531 (2003). [External LinkDOI], [External Linkgr-qc/0301123].
96 Booth, I. and Fairhurst, S., “The First Law for Slowly Evolving Horizons”, Phys. Rev. Lett., 92, 011102 (2004). [External LinkDOI], [External Linkgr-qc/0307087].
97 Booth, I. and Fairhurst, S., “Horizon energy and angular momentum from a Hamiltonian perspective”, Class. Quantum Grav., 22, 4515–4550 (2005). [External LinkDOI], [External Linkgr-qc/0505049].
98 Booth, I. and Fairhurst, S., “Isolated, slowly evolving, and dynamical trapping horizons: Geometry and mechanics from surface deformations”, Phys. Rev. D, 75, 084019 (2007). [External LinkDOI], [External Linkgr-qc/0610032].
99 Booth, I. and Fairhurst, S., “Extremality conditions for isolated and dynamical horizons”, Phys. Rev. D, 77, 084005 (2008). [External LinkDOI], [External LinkarXiv:0708.2209].
100 Booth, I.S. and Mann, R.B., “Moving observers, nonorthogonal boundaries, and quasilocal energy”, Phys. Rev. D, 59, 064021 (1999). [External LinkDOI], [External Linkgr-qc/9810009].
101 Booth, I.S. and Mann, R.B., “Static and infalling quasilocal energy of charged and naked black holes”, Phys. Rev. D, 60, 124009 (1999). [External LinkDOI], [External Linkgr-qc/9907072].
102 Borowiec, A., Ferraris, M., Francaviglia, M. and Volovich, I., “Energy-momentum complex for nonlinear gravitational Lagrangians in the first-order formalism”, Gen. Relativ. Gravit., 26, 637–645 (1994). [External LinkDOI].
103 Bousso, R., “Holography in general space-times”, J. High Energy Phys., 1999(06), 028 (1999). [External LinkDOI], [External Linkhep-th/9906022].
104 Bousso, R., “The holographic principle”, Rev. Mod. Phys., 74, 825–874 (2002). [External LinkDOI], [External Linkhep-th/0203101].
105 Brady, P.R., Droz, S., Israel, W. and Morsink, S.M., “Covariant double–null dynamics: (2+2)-splitting of the Einstein equations”, Class. Quantum Grav., 13, 2211–2230 (1996). [External LinkDOI], [External Linkgr-qc/9510040].
106 Bramson, B.D., “The alignment of frames of reference at null infinity for asymptotically flat Einstein–Maxwell manifolds”, Proc. R. Soc. London, Ser. A, 341, 451–461 (1975).
107 Bramson, B.D., “Relativistic Angular Momentum for Asymptotically Flat Einstein-Maxwell Manifolds”, Proc. R. Soc. London, Ser. A, 341, 463–490 (1975). [External LinkDOI].
108 Bramson, B.D., “Physics in cone space”, in Espositio, P. and Witten, L., eds., Asymptotic structure of spacetime, Proceedings of a Symposium on Asymptotic Structure of Space-Time (SOASST), held at the University of Cincinnati, Ohio, June 14 – 18, 1976, pp. 273–359, (Plenum Press, New York, 1977).
109 Bramson, B.D., “The invariance of spin”, Proc. R. Soc. London, Ser. A, 364, 463–490 (1978).
110 Bray, H.L., “Proof of the Riemannian Penrose inequality using the positive energy theorem”, J. Differ. Geom., 59, 177–267 (2001). [External Linkmath.DG/9911173].
111 Bray, H.L., “Black holes and the Penrose inequality in general relativity”, in Tatsien, L., ed., Proceedings of the International Congress of Mathematicians, Beijing, China 20 – 28 August 2002, II, (World Scientific, Singapore, 2002). [External Linkmath.DG/0304261].
112 Bray, H.L., “Black holes, geometric flows, and the Penrose inequality in general relativity”, Notices AMS, 49, 1372–1381 (2002).
113 Bray, H.L. and Chruściel, P.T., “The Penrose Inequality”, in Chruściel, P.T. and Friedrich, H., eds., The Einstein Equations and the Large Scale Behavior of Gravitational Fields: 50 Years of the Cauchy Problem in General Relativity, pp. 39–70, (Birkhäuser, Basel, 2004). [External Linkgr-qc/0312047], [External LinkGoogle Books].
114 Bray, H., Hayward, S., Mars, M. and Simon, W., “Generalized Inverse Mean Curvature Flows in Spacetime”, Commun. Math. Phys., 272, 119–138 (2007). [External LinkDOI], [External Linkgr-qc/0603014].
115 Brinkmann, H.W., “On Riemann spaces conformal to Euclidean space”, Proc. Natl. Acad. Sci. USA, 9, 1–3 (1923).
116 Brown, J.D., Creighton, J.D.E. and Mann, R., “Temperature, energy, and heat capacity of asymptotically anti-de-Sitter black holes”, Phys. Rev. D, 50, 6394–6403 (1994). [External Linkgr-qc/9405007].
117 Brown, J.D., Lau, S.R. and York Jr, J.W., “Energy of isolated systems at retarded times as the null limit of quasilocal energy”, Phys. Rev. D, 55, 1977–1984 (1997). [External Linkgr-qc/9609057].
118 Brown, J.D., Lau, S.R. and York Jr, J.W., “Canonical quasilocal energy and small spheres”, Phys. Rev. D, 59, 064028 (1999). [External LinkDOI], [External Linkgr-qc/9810003].
119 Brown, J.D., Lau, S.R. and York Jr, J.W., “Action and energy of the gravitational field”, Ann. Phys. (N.Y.), 297, 175–218 (2002). [External LinkDOI], [External Linkgr-qc/0010024].
120 Brown, J.D. and York, J.M., “Quasilocal energy in general relativity”, in Gotay, M.J., Marsden, J.E. and Moncrief, V.E., eds., Mathematical Aspects of Classical Field Theory, Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference held July 20 – 26, 1991 at the University of Washington, Seattle, Contemporary Mathematics, 132, pp. 129–142, (American Mathematical Society, Providence, RI, 1992).
121 Brown, J.D. and York Jr, J.W., “Quasilocal energy and conserved charges derived from the gravitational action”, Phys. Rev. D, 47, 1407–1419 (1993). [External Linkgr-qc/9209012].
122 Cahill, M.E. and McVittie, G.C., “Spherical symmetry and mass-energy in general relativity I. General theory”, J. Math. Phys., 11, 1382–1391 (1970).
123 Carlip, S., “Statistical Mechanics and Black Hole Entropy”, arXiv, e-print, (1995). [External LinkarXiv:gr-qc/9509024].
124 Carlip, S., “Black hole entropy from conformal field theory in any dimension”, Phys. Rev. Lett., 82, 2828–2831 (1999). [External LinkDOI], [External Linkhep-th/9812013].
125 Carlip, S., “Entropy from conformal field theory at Killing horizons”, Class. Quantum Grav., 16, 3327–3348 (1999). [External LinkDOI], [External Linkgr-qc/9906126].
126 Carlip, S., “Black hole entropy from conformal field theory”, Nucl. Phys. B (Proc. Suppl.), 88, 10–16 (2000). [External LinkDOI], [External Linkgr-qc/9912118].
127 Carlip, S., “Near-horizon conformal symmetry and black hole entropy”, Phys. Rev. Lett., 88, 241301 (2002). [External LinkDOI], [External Linkgr-qc/0203001].
128 Carlip, S., “Black Hole Thermodynamics and Statistical Mechanics”, in Papantonopoulos, E., ed., Physics of Black Holes: A Guided Tour, Fourth Aegean School on Black Holes, held in Mytilene, Greece, 17 – 22 September 2007, Lecture Notes in Physics, 769, pp. 89–123, (Springer, Berlin; New York, 2009). [External LinkDOI], [External LinkarXiv:0807.4520 [gr-qc]].
129 Carrasco, A. and Mars, M., “A counter-example to a recent version of the Penrose conjecture”, Class. Quantum Grav., 27, 062001 (2010). [External LinkDOI], [External LinkarXiv:0911.0883].
130 Carrera, M. and Giulini, D., “On the influence of global cosmological expansion on the dynamics and kinematics of local systems”, Rev. Mod. Phys., 82, 169–208 (2010). [External LinkDOI], [External LinkarXiv:0810.2712].
131 Chang, C.-C., Nester, J.M. and Chen, C.-M., “Pseudotensors and quasi-local energy-momentum”, Phys. Rev. Lett., 83, 1897–1901 (1999). [External LinkDOI], [External Linkgr-qc/9809040].
132 Chang, C.-C., Nester, J.M. and Chen, C.-M., “Energy-momentum quasi-localization for gravitating systems”, in Liu, L., Luo, J., Li, X.-Z. and Hsu, J.-P., eds., Gravitation and Astrophysics, Proceedings of the Fourth International Workshop, held at Beijing Normal University, China, October 10 – 15, 1999, pp. 163–173, (World Scientific, Singapore; River Edge, NJ, 2000). [External Linkgr-qc/9912058].
133 Chellathurai, V. and Dadhich, N., “Effective mass of a rotating black hole in a magnetic field”, Class. Quantum Grav., 7, 361–370 (1990). [External LinkDOI].
134 Chen, C.-M., Liu, J.-L. and Nester, J.M., “Quasi-local energy for cosmological models”, Mod. Phys. Lett. A, 22, 2039–2046 (2007). [External LinkarXiv:0705.1080].
135 Chen, C.-M., Liu, J.-L., Nester, J.M. and Wu, M.-F., “Optimal Choices of Reference for Quasi-local Energy”, Phys. Lett. A, 374, 3599–3602 (2010). [External LinkDOI], [External LinkarXiv:0909.2754].
136 Chen, C.-M. and Nester, J.M., “Quasilocal quantities for general relativity and other gravity theories”, Class. Quantum Grav., 16, 1279–1304 (1999). [External LinkDOI], [External Linkgr-qc/9809020].
137 Chen, C.-M. and Nester, J.M., “A symplectic Hamiltonian derivation of quasi-local energy-momentum for GR”, Grav. Cosmol., 6, 257–270 (2000). [External Linkgr-qc/0001088].
138 Chen, C.-M. and Nester, J.M., “Quasi-Local Energy for an Unusual Slicing of Static Spherically Symmetric Metrics”, in Kleinert, H., Jantzen, R.T. and Ruffini, R., eds., The Eleventh Marcel Grossmann Meeting on General Relativity, Proceedings of the MG11 Meeting on General Relativity, Berlin, Germany, 23 – 29 July 2006, pp. 2146–2148, (World Scientific, Singapore; Hackensack, NJ, 2008).
139 Chen, C.-M., Nester, J.M. and Tung, R.-S., “Quasilocal energy-momentum for geometric gravity theories”, Phys. Lett. A, 203, 5–11 (1995). [External LinkDOI], [External Linkgr-qc/9411048].
140 Chen, C.-M., Nester, J.M. and Tung, R.-S., “Spinor Formulations for Gravitational Energy-Momentum”, arXiv, e-print, (2002). [External LinkarXiv:gr-qc/0209100].
141 Chen, C.-M., Nester, J.M. and Tung, R.-S., “Hamiltonian boundary term and quasilocal energy flux”, Phys. Rev. D, 72, 104020 (2005). [External LinkDOI], [External Linkgr-qc/0508026].
142 Chen, P.-N., Wang, M.-T. and Yau, S.-T., “Evaluating quasilocal energy and solving optimal embedding equation at null infinity”, arXiv, e-print, (2010). [External LinkarXiv:1002.0927].
143 Christodoulou, D. and Yau, S.-T., “Some remarks on the quasi-local mass”, in Isenberg, J.A., ed., Mathematics and General Relativity, Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference held June 22 – 28, 1986, Contemporary Mathematics, 71, pp. 9–14, (American Mathematical Society, Providence, RI, 1988).
144 Chruściel, P.T., “Boundary conditions at spacelike infinity from a Hamiltonian point of view”, in Bergmann, P.G. and de Sabbata, V., eds., Topological Properties and Global Structure of Space-time, Proceedings of a NATO Advanced Study Institute, held May 12–22, 1985, in Erice, Italy, NATO ASI Series B, 138, pp. 49–59, (Plenum Press, New York, 1986).
145 Chruściel, P.T., “A remark on the positive-energy theorem”, Class. Quantum Grav., 3, L115–L121 (1986). [External LinkDOI].
146 Chruściel, P.T., Jezierski, J. and Kijowski, J., Hamiltonian Field Theory in the Radiating Regime, Lecture Notes in Physics, m70, (Springer, Berlin; New York, 2002). [External LinkGoogle Books].
147 Chruściel, P.T., Jezierski, J. and MacCallum, M.A.H., “Uniqueness of scalar field energy and gravitational energy in the radiating regime”, Phys. Rev. Lett., 80, 5052–5055 (1998). [External LinkDOI], [External Linkgr-qc/9801073].
148 Chruściel, P.T., Jezierski, J. and MacCallum, M.A.H., “Uniqueness of the Trautman–Bondi mass”, Phys. Rev. D, 58, 084001 (1998). [External LinkDOI], [External Linkgr-qc/9803010].
149 Chruściel, P.T., Maerten, D. and Tod, P., “Rigid upper bounds for the angular momentum and centre of mass of non-singular asymptotically anti-de Sitter space-times”, J. High Energy Phys., 2006(11), 084 (2006). [External LinkDOI], [External Linkgr-qc/0606064].
150 Chruściel, P.T. and Nagy, G., “A Hamiltonian mass of asymptotically anti-de Sitter space-times”, Class. Quantum Grav., 18, L61–L68 (2001). [External LinkDOI], [External Linkhep-th/0011270].
151 Chruściel, P.T. and Tod, P., “An angular momentum bound at null infinity”, Adv. Theor. Math. Phys., 13, 1317–1334 (2009). [External LinkarXiv:0706.4057].
152 Coleman, S., “Non-Abelian plane waves”, Phys. Lett. B, 70, 59–60 (1977). [External LinkDOI].
153 Cook, G.B. and Whiting, B.F., “Approximate Killing vectors on S2”, Phys. Rev. D, 76, 041501 (2007). [External LinkDOI], [External LinkarXiv:0706.0199].
154 Corvino, J., “Scalar curvature deformation and a gluing construction for the Einstein constraint equations”, Commun. Math. Phys., 214, 137–189 (2000). [External LinkDOI].
155 Corvino, J. and Schoen, R.M., “On the asymptotics for the vacuum Einstein constraint equations”, J. Differ. Geom., 73, 185–217 (2006). [External Linkgr-qc/0301071].
156 Corvino, J. and Wu, H., “On the center of mass of isolated systems”, Class. Quantum Grav., 25, 085008 (2008). [External LinkDOI], [External LinkADS].
157 Creighton, J.D.E. and Mann, R., “Quasilocal thermodynamics of dilaton gravity coupled to gauge fields”, Phys. Rev. D, 52, 4569–4587 (1995). [External Linkgr-qc/9505007].
158 Crnkovic, C. and Witten, E., “Covariant description of canonical formalism in geometrical theories”, in Hawking, S.W. and Israel, W., eds., Three Hundred Years of Gravitation, pp. 676–684, (Cambridge University Press, Cambridge; New York, 1987).
159 Cvetič, M., Gibbons, G.W. and Pope, C.N., “More about Birkhoff’s invariant and Thorne’s hoop conjecture for horizons”, Class. Quantum Grav., 28, 195001 (2011). [External LinkDOI], [External LinkarXiv:1104.4504].
160 d’ Inverno, R.A. and Smallwood, J., “Covariant 2+2 formalism of the initial-value problem in general relativity”, Phys. Rev. D, 22, 1233–1247 (1980).
161 Dain, S., “Angular Momentum–Mass Inequality for Axisymmetric Black Holes”, Phys. Rev. Lett., 96, 101101 (2006). [External LinkDOI], [External Linkgr-qc/0511101].
162 Dain, S., “Proof of the (local) angular momentum–mass inequality for axisymmetric black holes”, Class. Quantum Grav., 23, 6845–6855 (2006). [External LinkDOI], [External Linkgr-qc/0511087].
163 Dain, S., “A variational principle for stationary, axisymmetric solutions of Einstein’s equations”, Class. Quantum Grav., 23, 6857–6871 (2006). [External LinkDOI], [External Linkgr-qc/0508061].
164 Dain, S., “The inequality between mass and angular momentum for axially symmetric black holes”, Int. J. Mod. Phys. D, 17, 519–523 (2008). [External LinkDOI], [External LinkarXiv:0707.3118].
165 Dain, S., “Proof of the angular momentum–mass inequality for axisymmetric black holes”, J. Differ. Geom., 79, 33–67 (2008). [External Linkgr-qc/0606105].
166 Dain, S., “A counterexample to a Penrose inequality conjectured by Gibbons”, Class. Quantum Grav., 28, 085015 (2011). [External LinkDOI], [External LinkarXiv:1012.4190].
167 Dain, S., “Geometric inequalities for axially symmetric black holes”, Class. Quantum Grav., 29, 073001 (2012). [External LinkDOI], [External LinkarXiv:1111.3615].
168 Dain, S., Lousto, C.O. and Takahashi, R., “New conformally flat initial data for spinning black holes”, Phys. Rev. D, 65, 104038 (2002). [External LinkDOI], [External Linkgr-qc/0201062].
169 Dain, S. and Moreschi, O.M., “General existence proof for rest frame systems in asymptotically flat spacetime”, Class. Quantum Grav., 17, 3663–3672 (2000). [External LinkDOI], [External Linkgr-qc/0203048].
170 Deser, S., Franklin, J.S. and Seminara, D., “Graviton–graviton scattering, Bel–Robinson and energy (pseudo)–tensors”, Class. Quantum Grav., 18, 2815–2821 (1999). [External Linkgr-qc/9905021].
171 Dougan, A.J., “Quasi-local mass for spheres”, Class. Quantum Grav., 9, 2461–2475 (1992). [External LinkDOI].
172 Dougan, A.J. and Mason, L.J., “Quasilocal mass constructions with positive energy”, Phys. Rev. Lett., 67, 2119–2122 (1991). [External LinkDOI].
173 Dray, T., “Momentum flux at null infinity”, Class. Quantum Grav., 2, L7–L10 (1985). [External LinkDOI].
174 Dray, T. and Streubel, M., “Angular momentum at null infinity”, Class. Quantum Grav., 1, 15–26 (1984). [External LinkDOI].
175 Dubois-Violette, M. and Madore, J., “Conservation laws and integrability conditions for gravitational and Yang-Mills equations”, Commun. Math. Phys., 108, 213–223 (1987). [External LinkDOI].
176 Eardley, D.M., “Global problems in numerical relativity”, in Smarr, L.L., ed., Sources of Gravitational Radiation, Proceedings of the Battelle Seattle Workshop, July 24 – August 4, 1978, pp. 127–138, (Cambridge University Press, Cambridge; New York, 1979).
177 Eastwood, M. and Tod, K.P., “Edth – a differential operator on the sphere”, Math. Proc. Camb. Phil. Soc., 92, 317–330 (1982). [External LinkDOI].
178 Epp, R.J., “Angular momentum and an invariant quasilocal energy in general relativity”, Phys. Rev. D, 62, 124018 (2000). [External LinkDOI], [External Linkgr-qc/0003035].
179 Exton, A.R., Newman, E.T. and Penrose, R., “Conserved quantities in the Einstein–Maxwell theory”, J. Math. Phys., 10, 1566–1570 (1969). [External LinkDOI].
180 Fan, X.-Q. and Kwong, K.-K., “The Brown–York mass of revolution surface in asymptotically Schwarzschild manifold”, J. Geom. Anal., 21, 527–542 (2011). [External LinkDOI], [External LinkarXiv:0910.3514].
181 Fan, X.-Q., Shi, Y. and Tam, L.-F., “Large-sphere and small-sphere limits of the Brown–York mass”, Commun. Anal. Geom., 17, 37–72 (2009). [External LinkarXiv:0711.2552].
182 Farinelli, S. and Schwartz, G., “On the spectrum of the Dirac operator under boundary conditions”, J. Geom. Phys., 28, 67–84 (1998). [External LinkDOI].
183 Farkas, R. and Szabados, L.B., “On quasi-local charges and Newman–Penrose type quantities in Yang–Mills theories”, Class. Quantum Grav., 28, 145013 (2011). [External LinkDOI], [External LinkarXiv:1012.4662].
184 Fatibene, L., Ferraris, M., Francaviglia, M. and Raiteri, M., “Noether charges, Brown–York quasilocal energy, and related topics”, J. Math. Phys., 42, 1173–1195 (2001). [External LinkDOI], [External Linkgr-qc/0003019].
185 Favata, M., “Energy localization invariance of tidal work in general relativity”, Phys. Rev. D, 63, 064013 (2001). [External LinkDOI], [External Linkgr-qc/0008061].
186 Ferraris, M. and Francaviglia, M., “Covariant first-order Lagrangians, energy-density and superpotentials in general relativity”, Gen. Relativ. Gravit., 22, 965–985 (1990). [External LinkDOI].
187 Ferraris, M. and Francaviglia, M., “Conservation laws in general relativity”, Class. Quantum Grav., 9, S79–S95 (1992). [External LinkDOI].
188 Flanagan, É.É., “Hoop conjecture for black-hole horizon formation”, Phys. Rev. D, 44, 2409–2420 (1991).
189 Flanagan, É.É., Marolf, D. and Wald, R.M., “Proof of classical versions of the Bousso entropy bound and of the generalized second law”, Phys. Rev. D, 62, 084035 (2000). [External Linkhep-th/9908070].
190 Fouxon, I., Betschart, G. and Bekenstein, J.D., “Bound on viscosity and the generalized second law of thermodynamics”, Phys. Rev. D, 77, 024016 (2008). [External LinkDOI], [External LinkarXiv:0710.1429].
191 Francaviglia, M. and Raiteri, M., “Hamiltonian, energy and entropy in general relativity with non-orthogonal boundaries”, Class. Quantum Grav., 19, 237–258 (2002). [External LinkDOI], [External Linkgr-qc/0107074].
192 Frauendiener, J., “Geometric description of energy-momentum pseudotensors”, Class. Quantum Grav., 6, L237–L241 (1989). [External LinkDOI].
193 Frauendiener, J., “On an integral formula on hypersurfaces in general relativity”, Class. Quantum Grav., 14, 2413–3423 (1997). [External LinkDOI], [External Linkgr-qc/9511036].
194 Frauendiener, J., “On the Penrose inequality”, Phys. Rev. Lett., 87, 101101 (2001). [External LinkDOI], [External Linkgr-qc/0105093].
195 Frauendiener, J., “Conformal Infinity”, Living Rev. Relativity, 7, lrr-2004-1 (2004). URL (accessed 17 November 2008):
http://www.livingreviews.org/lrr-2004-1.
196 Frauendiener, J., Nester, J.M. and Szabados, L.B., “Witten spinors on maximal, conformally flat hypersurfaces”, Class. Quantum Grav., 28, 185004 (2011). [External LinkDOI], [External LinkarXiv:1105.5008].
197 Frauendiener, J. and Sparling, G.A.J., “On the symplectic formalism for general relativity”, Proc. R. Soc. London, 436, 141–153 (1992).
198 Frauendiener, J. and Szabados, L.B., “The kernel of the edth operators on higher-genus spacelike 2-surfaces”, Class. Quantum Grav., 18, 1003–1014 (2001). [External LinkDOI], [External Linkgr-qc/0010089].
199 Frauendiener, J. and Szabados, L.B., “A note on the post–Newtonian limit of quasi-local energy expressions”, Class. Quantum Grav., 28, 235009 (2011). [External LinkDOI], [External LinkarXiv:1102.1867]. Corrigendum: Class. Quantum Grav., 29, 059501 (2012).
200 Friedrich, H., “Gravitational fields near space-like and null infinity”, J. Geom. Phys., 24, 83–163 (1998). [External LinkDOI].
201 Friedrich, H., “Initial boundary value problems for Einstein’s field equations and geometric uniqueness”, Gen. Relativ. Gravit., 41, 1947–1966 (2009). [External LinkDOI], [External LinkarXiv:0903.5160].
202 Friedrich, H. and Nagy, G., “The Initial Boundary Value Problem for Einstein’s Vacuum Field Equation”, Commun. Math. Phys., 201, 619–655 (1999). [External LinkDOI], [External LinkADS].
203 Frolov, V.P., “Embedding of the Kerr–Newman black hole surface in Euclidean space”, Phys. Rev. D, 73, 064021 (2006). [External LinkDOI], [External Linkgr-qc/0601104].
204 Gallo, E., Lehner, L. and Moreschi, O.M., “A note on computations of angular momentum and its flux in numerical relativity”, Class. Quantum Grav., 26, 048002 (2009). [External LinkDOI], [External LinkarXiv:0810.0666].
205 Garfinkle, D. and Mann, R., “Generalized entropy and Noether charge”, Class. Quantum Grav., 17, 3317–3324 (2000). [External Linkgr-qc/0004056].
206 Geroch, R., “Spinor Structure of Space-Times in General Relativity. I”, J. Math. Phys., 9, 1739–1744 (1968). [External LinkDOI].
207 Geroch, R., “Energy extraction”, Ann. N.Y. Acad. Sci., 224, 108–117 (1973). [External LinkDOI].
208 Geroch, R., “Asymptotic structure of space-time”, in Esposito, F.P. and Witten, L., eds., Asymptotic Structure of Spacetime, Proceedings of a Symposium on Asymptotic Structure of Space-Time (SOASST), held at the University of Cincinnati, Ohio, June 14 – 18, 1976, pp. 1–105, (Plenum Press, New York, 1977).
209 Geroch, R., Held, A. and Penrose, R., “A spacetime calculus based on pairs of null directions”, J. Math. Phys., 14, 874–881 (1973). [External LinkDOI].
210 Geroch, R. and Winicour, J., “Linkages in general relativity”, J. Math. Phys., 22, 803–812 (1981). [External LinkDOI].
211 Giachetta, G. and Sardanashvily, G., “Stress-Energy-Momentum Tensors in Lagrangian Field Theory. Part 1. Superpotentials”, arXiv, e-print, (1995). [External LinkarXiv:gr-qc/9510061].
212 Giachetta, G. and Sardanashvily, G., “Stress-Energy-Momentum Tensors in Lagrangian Field Theory. Part 2. Gravitational Superpotential”, arXiv, e-print, (1995). [External LinkarXiv:gr-qc/9511040].
213 Gibbons, G.W., “The isoperimetric and Bogomolny inequalities for black holes”, in Willmore, T.J. and Hitchin, N.J., eds., Global Riemannian Geometry, pp. 194–202, (Ellis Horwood; Halsted Press, Chichester; New York, 1984).
214 Gibbons, G.W., “Collapsing shells and the isoperimetric inequality for black holes”, Class. Quantum Grav., 14, 2905–2915 (1997). [External Linkhep-th/9701049].
215 Gibbons, G.W., “Birkhoff’s invariant and Thorne’s hoop conjecture”, arXiv, e-print, (2009). [External LinkarXiv:0903.1580].
216 Gibbons, G.W. and Hawking, S.W., “Action integrals and partition functions in general relativity”, Phys. Rev. D, 15, 2752–2756 (1977).
217 Gibbons, G.W., Hawking, S.W., Horowitz, G.T. and Perry, M.J., “Positive mass theorem for black holes”, Commun. Math. Phys., 88, 295–308 (1983). [External LinkDOI].
218 Gibbons, G.W. and Holzegel, G., “The positive mass and isoperimetric inequalities for axisymmetric black holes in four and five dimensions”, Class. Quantum Grav., 23, 6459–6478 (2006). [External LinkDOI], [External Linkgr-qc/0606116].
219 Gibbons, G.W. and Hull, C.M., “A Bogomolny bound for general relativity and solutions in N=2 supergravity”, Phys. Lett. B, 109, 190–194 (1982). [External LinkDOI].
220 Gibbons, G.W., Hull, C.M. and Warner, N.P., “The stability of gauged supergravity”, Nucl. Phys. B, 218, 173–190 (1983). [External LinkDOI].
221 Giulini, D., “Consistently implementing the field self-energy in Newtonian gravity”, Phys. Lett. A, 232, 165–170 (1997). [External LinkDOI], [External Linkgr-qc/9605011].
222 Goldberg, J.N., “Conservation laws in general relativity”, Phys. Rev., 111, 315–320 (1958). [External LinkDOI].
223 Goldberg, J.N., “Invariant transformations, conservation laws, and energy-momentum”, in Held, A., ed., General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, 1, pp. 469–489, (Plenum Press, New York, 1980).
224 Goldberg, J.N., “Conserved quantities at spatial and null infinity: The Penrose potential”, Phys. Rev. D, 41, 410–417 (1990).
225 Goldberg, J.N. and Soteriou, C., “Canonical general relativity on a null surface with coordinate and gauge fixing”, Class. Quantum Grav., 12, 2779–2797 (1995). [External LinkDOI].
226 Gour, G., “Entropy bounds for charged and rotating systems”, Class. Quantum Grav., 20, 3403–3412 (2003). [External LinkDOI], [External Linkgr-qc/0302117].
227 Gourgoulhon, E., “Generalized Damour–Navier–Stokes equation applied to trapping horizons”, Phys. Rev. D, 72, 104007 (2005). [External LinkDOI], [External Linkgr-qc/0508003].
228 Gourgoulhon, E. and Jaramillo, J.L., “Area evolution, bulk viscosity, and entropy principles for dynamical horizons”, Phys. Rev. D, 74, 087502 (2006). [External LinkDOI], [External LinkADS], [External Linkgr-qc/0607050].
229 Grabowska, K. and Kijowski, J., “Gravitational energy: A quasi-local Hamiltonian approach”, Talk given at the conference ‘Road to reality with Roger Penrose’, Warsaw, 2010, conference paper, (2010). Online version (accessed 21 November 2012):
www.cft.edu.pl/~kijowski/Odbitki-prac/energy-RtR.pdf.
230 Güven, R., “Solutions for gravity coupled to non-Abelian plane waves”, Phys. Rev. D, 19, 471–472 (1979).
231 Haag, R., Local Quantum Physics, Fields, Particles, Algebras, Texts and Monographs in Physics, (Springer, Berlin; New York, 1992).
232 Haag, R. and Kastler, D., “An algebraic approach to quantum field theory”, J. Math. Phys., 5, 848–861 (1964). [External LinkDOI].
233 Hall, G.S., Symmetries and Curvature Structure in General Relativity, World Scientific Lecture Notes in Physics, 46, (World Scientific, Singapore; River Edge, NJ, 2004). [External LinkGoogle Books].
234 Harnett, G., “The flat generalized affine connection and twistors for the Kerr solution”, Class. Quantum Grav., 10, 407–415 (1993). [External LinkDOI].
235 Harte, A.I., “Approximate spacetime symmetries and conservation laws”, Class. Quantum Grav., 25, 205008 (2008). [External LinkDOI], [External LinkarXiv:0805.4259].
236 Hawking, S.W., “Gravitational radiation in an expanding universe”, J. Math. Phys., 9, 598–604 (1968). [External LinkDOI].
237 Hawking, S.W., “Black holes in general relativity”, Commun. Math. Phys., 25, 152–166 (1972). [External LinkDOI]. Online version (accessed 21 February 2005):
External Linkhttp://projecteuclid.org/euclid.cmp/1103857884.
238 Hawking, S.W., “The Event Horizon”, in DeWitt, C.M. and DeWitt, B.S., eds., Black Holes, Based on lectures given at the 23rd session of the Summer School of Les Houches, 1972, pp. 1–56, (Gordon and Breach, New York, 1973).
239 Hawking, S.W., “Particle creation by black holes”, Commun. Math. Phys., 43, 199–220 (1975). [External LinkDOI]. Online version (accessed 21 February 2005):
External Linkhttp://projecteuclid.org/euclid.cmp/1103899181.
240 Hawking, S.W. and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, 1973). [External LinkGoogle Books].
241 Hawking, S.W. and Horowitz, G.T., “The gravitational Hamiltonian, action, entropy and surface terms”, Class. Quantum Grav., 13, 1487–1498 (1996). [External LinkDOI], [External Linkgr-qc/9501014].
242 Hawking, S.W. and Hunter, C.J., “The gravitational Hamiltonian in the presence of non-orthogonal boundaries”, Class. Quantum Grav., 13, 2735–2752 (1996). [External Linkgr-qc/9603050].
243 Hayward, G., “Gravitational action for spacetimes with nonsmooth boundaries”, Phys. Rev. D, 47, 3275–3280 (1993).
244 Hayward, G., “Quasilocal energy conditions”, Phys. Rev. D, 52, 2001–2006 (1995). [External Linkgr-qc/9403039].
245 Hayward, S.A., “Dual-null dynamics of the Einstein field”, Class. Quantum Grav., 10, 779–790 (1993). [External LinkDOI], [External LinkADS].
246 Hayward, S.A., “General laws of black-hole dynamics”, Phys. Rev. D, 49, 6467–6474 (1994). [External LinkDOI], [External Linkgr-qc/9303006].
247 Hayward, S.A., “Quasi-localization of Bondi–Sachs energy loss”, Class. Quantum Grav., 11, 3037–3048 (1994). [External Linkgr-qc/9405071].
248 Hayward, S.A., “Quasilocal gravitational energy”, Phys. Rev. D, 49, 831–839 (1994). [External Linkgr-qc/9303030].
249 Hayward, S.A., “Spin coefficient form of the new laws of black hole dynamics”, Class. Quantum Grav., 11, 3025–3035 (1994). [External Linkgr-qc/9406033].
250 Hayward, S.A., “Gravitational energy in spherical symmetry”, Phys. Rev. D, 53, 1938–1949 (1996). [External Linkgr-qc/9408002].
251 Hayward, S.A., “Inequalities relating area, energy, surface gravity and charge of black holes”, Phys. Rev. Lett., 81, 4557–4559 (1998). [External LinkDOI], [External Linkgr-qc/9807003].
252 Hayward, S.A., “Unified first law of black-hole dynamics and relativistic thermodynamics”, Class. Quantum Grav., 15, 3147–3162 (1998). [External LinkDOI].
253 Hayward, S.A., “Gravitational energy as Noether charge”, arXiv, e-print, (2000). [External LinkarXiv:gr-qc/0004042].
254 Hayward, S.A., “Gravitational-wave dynamics and black-hole dynamics: second quasi-spherical approximation”, Class. Quantum Grav., 18, 5561–5581 (2001). [External LinkDOI], [External Linkgr-qc/0102013].
255 Hayward, S.A., “Dynamics of black holes”, Adv. Sci. Lett., 2, 205–213 (2009). [External LinkDOI], [External LinkarXiv:0810.0923].
256 Hayward, S.A., Mukohyama, S. and Ashworth, M.C., “Dynamic black-hole entropy”, Phys. Lett. A, 256, 347–350 (1999). [External LinkDOI], [External Linkgr-qc/9810006].
257 Hecht, R.D. and Nester, J.M., “A new evaluation of PGT mass and spin”, Phys. Lett. A, 180, 324–331 (1993). [External LinkDOI].
258 Hecht, R.D. and Nester, J.M., “An evaluation of mass and spin at null infinity for the PGT and GR gravity theories”, Phys. Lett. A, 217, 81–89 (1996). [External LinkDOI].
259 Hehl, F.W., “On the energy tensor of spinning massive matter in classical field theory and general relativity”, Rep. Math. Phys., 9, 55–82 (1976). [External LinkDOI].
260 Hehl, F.W., von der Heyde, P., Kerlick, G.D. and Nester, J.M., “General relativity with spin and torsion: Foundation and prospects”, Rev. Mod. Phys., 48, 393–416 (1976).
261 Heinz, E., “On Weyl’s embedding problems”, J. Math. Mech., 11, 421–454 (1962).
262 Helfer, A.D., “The angular momentum of gravitational radiation”, Phys. Lett. A, 150, 342–344 (1990). [External LinkDOI].
263 Helfer, A.D., “Difficulties with quasi-local momentum and angular momentum”, Class. Quantum Grav., 9, 1001–1008 (1992). [External LinkDOI].
264 Helfer, A.D., “Angular momentum of isolated systems”, Gen. Relativ. Gravit., 39, 2125–2147 (2007). [External LinkDOI], [External LinkarXiv:0709.1078].
265 Henneaux, M., Martínez, C., Troncoso, R. and Zanelli, J., “Asymptotically anti-de Sitter spacetimes and scalar fields with a logarithmic branch”, Phys. Rev. D, 70, 044034 (2004). [External LinkDOI], [External Linkhep-th/0404236].
266 Hennig, J., Ansorg, M. and Cederbaum, C., “A universal inequality between the angular momentum and horizon area for axisymmetric and stationary black holes with surrounding matter”, Class. Quantum Grav., 25, 162002 (2008). [External LinkDOI], [External LinkarXiv:0805.4320].
267 Hernandez Jr, W.C. and Misner, C.W., “Observer time as a coordinate in relativistic spherical hydrodynamics”, Astrophys. J., 143, 452–464 (1966). [External LinkDOI].
268 Herzlich, M., “The positive mass theorem for black holes revisited”, J. Geom. Phys., 26, 97–111 (1998). [External LinkDOI].
269 Hod, S., “Universal entropy bound for rotating systems”, Phys. Rev. D, 61, 024018 (1999). [External LinkDOI], [External Linkgr-qc/9901035].
270 Hod, S., “Universal bound on dynamical relaxation times and black-hole quasinormal ringing”, Phys. Rev. D, 75, 064013 (2007). [External LinkDOI], [External Linkgr-qc/0611004].
271 Hod, S., “Gravitation, thermodynamics, and the bound on viscosity”, Gen. Relativ. Gravit., 41, 2295–2299 (2009). [External LinkDOI], [External LinkarXiv:0905.4113].
272 Holm, J.J., The Hawking Mass in Kerr Spacetime, Master’s thesis, (Linköping University, Linköping, Sweden, 2004). URL (accessed 1 October 2008):
External Linkhttp://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2533.
273 Horowitz, G.T., “The positive energy theorem and its extensions”, in Flaherty, F.J., ed., Asymptotic Behavior of Mass and Spacetime Geometry, Proceedings of the conference held at Oregon State University Corvallis, Oregon, USA, October 17 – 21, 1983, Lecture Notes in Physics, 202, pp. 1–21, (Springer, Berlin; New York, 1984). [External LinkDOI].
274 Horowitz, G.T. and Perry, M.J., “Gravitational energy cannot become negative”, Phys. Rev. Lett., 48, 371–374 (1982). [External LinkDOI].
275 Horowitz, G.T. and Schmidt, B.G., “Note on gravitational energy”, Proc. R. Soc. London, Ser. A, 381, 215–224 (1982).
276 Horowitz, G.T. and Tod, K.P., “A relation between local and total energy in general relativity”, Commun. Math. Phys., 85, 429–447 (1982). [External LinkDOI].
277 Hugget, S.A. and Tod, K.P., An Introduction to Twistor Theory, London Mathematical Society Student Texts, 4, (Cambridge University Press, Cambridge; New York, 1985).
278 Huisken, G. and Ilmanen, T., “The Riemannian Penrose inequality”, Int. Math. Res. Notices, 20, 1045–1058 (1997). [External LinkDOI]. Online version (accessed 29 January 2004):
External Linkhttp://www.math.ethz.ch/~ilmanen/papers/hpanno.ps.
279 Huisken, G. and Ilmanen, T., “The inverse mean curvature flow and the Riemannian Penrose inequality”, J. Differ. Geom., 59, 353–437 (2001).
280 Huisken, G. and Yau, S.-T., “Definition of center of mass for isolated physical systems and unique foliations by stable spheres with constant mean curvature”, Invent. Math., 124, 281–311 (1996). [External LinkDOI].
281 Husain, V. and Major, S., “Gravity and BF theory defined in bounded regions”, Nucl. Phys. B, 500, 381–401 (1997). [External LinkDOI], [External Linkgr-qc/9703043].
282 Ikumi, K. and Shiromizu, T., “Freely falling 2-surfaces and the quasi-local energy”, Gen. Relativ. Gravit., 31, 73–90 (1999). [External LinkDOI], [External Linkgr-qc/9704020].
283 Isenberg, J. and Nester, J., “Canonical Gravity”, in Held, A., ed., General Relativity and Gravitation: One Hundred Years after the Birth of Albert Einstein, 1, pp. 23–97, (Plenum Press, New York, 1980).
284 Isham, C.J., “Prima facie questions in quantum gravity”, in Ehlers, J. and Friedrich, H., eds., Canonical Gravity: From Classical to Quantum, Proceedings of the 117th WE Heraeus Seminar, Bad Honnef, Germany, 13 – 17 September 1993, Lecture Notes in Physics, 434, pp. 1–21, (Springer, Berlin; New York, 1994).
285 Israel, W. and Nester, J.M., “Positivity of the Bondi gravitational mass”, Phys. Lett. A, 85, 259–260 (1981). [External LinkDOI].
286 Itin, Y., “Coframe Geometry and Gravity”, in Christiansen, M.N. and Rasmussen, T.L., eds., Classical and Quantum Gravity Research, (Nova Science Publishers, Hauppauge, 2008). [External LinkarXiv:0711.4209].
287 Iyer, V. and Wald, R.M., “Some properties of Noether charge and a proposal for dynamical black hole entropy”, Phys. Rev. D, 50, 846–864 (1994). [External Linkgr-qc/9403028].
288 Iyer, V. and Wald, R.M., “Comparison of Noether charge and Euclidean methods for computing the entropy of stationary black holes”, Phys. Rev. D, 52, 4430–4439 (1995). [External LinkDOI], [External LinkarXiv:gr-qc/9503052 [gr-qc]].
289 Jang, P.S., “On the positivity of energy in general relativity”, J. Math. Phys., 19, 1152–1155 (1978). [External LinkDOI]. Erratum: J. Math. Phys., 20, 217 (1979).
290 Jang, P.S., “Note on cosmic censorship”, Phys. Rev. D, 20, 834–837 (1979).
291 Jang, P.S. and Wald, R.M., “The positive energy conjecture and the cosmic censor hypothesis”, J. Math. Phys., 17, 41–44 (1977). [External LinkDOI].
292 Jaramillo, J.L., “An introduction to local black hole horizons in the 3+1 approach to general relativity”, Int. J. Mod. Phys. D, 20, 2169–2204 (2012). [External LinkDOI], [External LinkarXiv:1108.2408].
293 Jaramillo, J.L. and Gourgoulhon, E., “Mass and Angular Momentum in General Relativity”, arXiv, e-print, (2010). [External LinkarXiv:1001.5429].
294 Jaramillo, J.L., Valiente Kroon, J.A. and Gourgoulhon, E., “From geometry to numerics: interdisciplinary aspects in mathematical and numerical relativity”, Class. Quantum Grav., 25, 093001 (2008). [External LinkDOI], [External LinkarXiv:0712.2332].
295 Jaramillo, J.L., Vasset, N. and Ansorg, M., “A numerical study of Penrose-like inequalities in a family of axially symmetric initial data”, in Oscoz, A., Mediavilla, E. and Serra-Ricart, M., eds., Spanish Relativity Meeting - Encuentros Relativistas Españoles ERE2007 Relativistic Astrophysics and Cosmology, Tenerife, Spring 2008, EAS Publications Series, 30, pp. 257–260, (EDP Sciences, Les Ulis, 2008). [External LinkDOI], [External LinkarXiv:0712.1741].
296 Jeffryes, B.P., “Two-surface twistors and conformal embedding”, in Flaherty, F.J., ed., Asymptotic Behavior of Mass and Spacetime Geometry, Proceedings of the conference, held at Oregon State University, Corvallis, Oregon, USA, October 17 – 21, 1983, Lecture Notes in Physics, 202, pp. 177–184, (Springer, Berlin; New York, 1984).
297 Jeffryes, B.P., “‘Extra’ solutions to the 2-surface twistor equations”, Class. Quantum Grav., 3, L9–L12 (1986).
298 Jeffryes, B.P., “The Newtonian limit of Penrose’s quasi-local mass”, Class. Quantum Grav., 3, 841–852 (1986).
299 Jeffryes, B.P., “2-Surface twistors, embeddings and symmetries”, Proc. R. Soc. London, Ser. A, 411, 59–83 (1987).
300 Jezierski, J., “Positivity of mass for spacetimes with horizons”, Class. Quantum Grav., 6, 1535–1539 (1989). [External LinkDOI].
301 Jezierski, J., “Perturbation of initial data for spherically symmetric charged black hole and Penrose conjecture”, Acta Phys. Pol. B, 25, 1413–1417 (1994).
302 Jezierski, J., “Stability of Reissner–Nordström solution with respect to small perturbations of initial data”, Class. Quantum Grav., 11, 1055–1068 (1994). [External LinkDOI].
303 Jezierski, J. and Kijowski, J., “The localization of energy in gauge field theories and in linear gravitation”, Gen. Relativ. Gravit., 22, 1283–1307 (1990). [External LinkDOI].
304 Julia, B. and Silva, S., “Currents and superpotentials in classical gauge invariant theories I. Local results with applications to perfect fluids and general relativity”, Class. Quantum Grav., 15, 2173–2215 (1998). [External LinkDOI], [External Linkgr-qc/9804029].
305 Katz, J., “A note on Komar’s anomalous factor”, Class. Quantum Grav., 2, 423–425 (1985). [External LinkDOI].
306 Katz, J., Bičák, J. and Lynden-Bell, D., “Relativistic conservation laws and integral constraints for large cosmological perturbations”, Phys. Rev. D, 55, 5957–5969 (1997). [External Linkgr-qc/0504041].
307 Katz, J. and Lerer, D., “On global conservation laws at null infinity”, Class. Quantum Grav., 14, 2249–2266 (1997). [External LinkDOI], [External Linkgr-qc/9612025].
308 Katz, J., Lynden-Bell, D. and Bičák, J., “Gravitational energy in stationary spacetimes”, Class. Quantum Grav., 23, 7111–7127 (2006). [External LinkDOI], [External Linkgr-qc/0610052].
309 Katz, J., Lynden-Bell, D. and Israel, W., “Quasilocal energy in static gravitational fields”, Class. Quantum Grav., 5, 971–987 (1988). [External LinkDOI].
310 Katz, J. and Ori, A., “Localisation of field energy”, Class. Quantum Grav., 7, 787–802 (1990). [External LinkDOI].
311 Katz, N.N. and Khuri, M.A., “Three quasilocal masses”, Mod. Phys. Lett. A, 27, 1250042 (2012). [External LinkDOI], [External LinkarXiv:1201.6636].
312 Kelly, R.M., “Asymptotically anti de Sitter space-times”, Twistor Newsletter, 1985(20), 11–23 (1985).
313 Kelly, R.M., Tod, K.P. and Woodhouse, N.M.J., “Quasi-local mass for small surfaces”, Class. Quantum Grav., 3, 1151–1167 (1986).
314 Kibble, T.W.B., “Lorentz invariance and the gravitational field”, J. Math. Phys., 2, 212–221 (1961). [External LinkDOI].
315 Kijowski, J., “A simple derivation of canonical structure and quasi-local Hamiltonians in general relativity”, Gen. Relativ. Gravit., 29, 307–343 (1997). [External LinkDOI].
316 Kijowski, J., “A consistent canonical approach to gravitational energy”, in Ferrarese, G., ed., Advances in General Relativity and Cosmology, Proceedings of the International Conference in Memory of A. Lichnerowicz, Isola d’Elba, Italy, 12 – 15 June 2002, pp. 129–145, (Pitagora, Bologna, 2002).
317 Kijowski, J. and Tulczyjew, W.M., A Symplectic Framework for Field Theories, Lecture Notes in Physics, 107, (Springer, Berlin; New York, 1979).
318 Kobayashi, S. and Nomizu, K., Foundations of Differential Geometry, Vol. 1, Interscience Tracts in Pure and Applied Mathematics, 15, (John Wiley, New York, 1963).
319 Kobayashi, S. and Nomizu, K., Foundations of Differential Geometry, Vol. 2, Interscience Tracts in Pure and Applied Mathematics, 15, (John Wiley, New York, 1969).
320 Koc, P. and Malec, E., “Trapped surfaces in nonspherical open universes”, Acta Phys. Pol. B, 23, 123–133 (1992).
321 Kodama, H., “Conserved energy flux for the spherically symmetric system and the backreaction problem in the black hole evaporation”, Prog. Theor. Phys., 63, 1217–1228 (1980). [External LinkDOI].
322 Komar, A., “Covariant conservation laws in general relativity”, Phys. Rev., 113, 934–936 (1959). [External LinkDOI].
323 Korzynski, M., “Quasi-local angular momentum of non-symmetric isolated and dynamical horizons from the conformal decomposition of the metric”, Class. Quantum Grav., 24, 5935–5943 (2007). [External LinkarXiv:0707.2824].
324 Kozameh, C.N. and Newman, E.T., “The large footprints of H-space on asymptotically flat spacetimes”, Class. Quantum Grav., 22, 4659–4665 (2005). [External LinkDOI], [External Linkgr-qc/0504022].
325 Kozameh, C.N., Newman, E.T. and Silva-Ortigoza, G., “On extracting physical content from asymptotically flat spacetime metrics”, Class. Quantum Grav., 25, 145001 (2008). [External LinkDOI], [External LinkarXiv:0802.3314].
326 Kozameh, C.N., Newman, E.T. and Silva-Ortigoza, G., “On the physical interpretation of asymptotically flat gravitational fields”, Gen. Relativ. Gravit., 40, 2043–2050 (2008). [External LinkDOI].
327 Krishnasamy, I., “Quasilocal energy and the Bel–Robinson tensor”, Gen. Relativ. Gravit., 17, 621–627 (1985). [External LinkDOI], [External LinkADS].
328 Kulkarni, R., Chellathurai, V. and Dadhich, N., “The effective mass of the Kerr spacetime”, Class. Quantum Grav., 5, 1443–1445 (1988). [External LinkDOI].
329 Kwong, K.-K., “On the positivity of a quasi-local mass in general dimensions”, arXiv, e-print, (2012). [External LinkarXiv:1207.7333].
330 Kwong, K.-K. and Tam, L.-F., “Limit of quasilocal mass integrals in asymptotically hyperbolic manifolds”, Proc. Amer. Math. Soc., 141, S0002-9939(2012)11294-8, 313–324 (2013). [External LinkDOI], [External LinkarXiv:1010.6130].
331 Lau, S.R., “Canonical variables and quasi-local energy in general relativity”, Class. Quantum Grav., 10, 2379–2399 (1993). [External Linkgr-qc/9307026].
332 Lau, S.R., “Spinors and the reference point of quasi-local energy”, Class. Quantum Grav., 12, 1063–1079 (1995). [External Linkgr-qc/9409022].
333 Lau, S.R., “New variables, the gravitational action and boosted quasilocal stress-energy-momentum”, Class. Quantum Grav., 13, 1509–1540 (1996). [External Linkgr-qc/9504026].
334 Lau, S.R., “Light-cone reference for total gravitational energy”, Phys. Rev. D, 60, 104034 (1999). [External LinkDOI], [External Linkgr-qc/9903038].
335 Lau, S.R., “Lightcone embedding for quasilocal energy / Quasilocal boosts in general relativity”, Lectures given at the ‘International Workshop on Geometric Physics’, Physics and Mathematical Divisions, NCTS, Hsinchu, Taiwan, 24 – 26 July 2000, conference paper, (2000).
336 Lee, J. and Wald, R.M., “Local symmetries and constraints”, J. Math. Phys., 31, 725–743 (1990). [External LinkDOI].
337 Lind, R.W., Messmer, J. and Newman, E.T., “Equations of motion for the sources of asymptotically flat spaces”, J. Math. Phys., 13, 1884–1891 (1972). [External LinkDOI].
338 Liu, C.-C.M. and Yau, S.-T., “Positivity of quasilocal mass”, Phys. Rev. Lett., 90, 231102 (2003). [External LinkDOI], [External Linkgr-qc/0303019].
339 Liu, C.-C.M. and Yau, S.-T., “Positivity of quasi-local mass II”, J. Amer. Math. Soc., 19, 181–204 (2006). [External LinkarXiv:math.DG/0412292].
340 Liu, J.-L., On quasi-local energy and the choice of reference, Master’s thesis, (National Central University, Chungli, Taiwan, 2007).
341 Liu, J.-L., Chen, C.-M. and Nester, J.M., “Quasi-local energy and the choice of reference”, Class. Quantum Grav., 28, 195019 (2009). [External LinkDOI], [External LinkarXiv:1105.0502].
342 Ludvigsen, M. and Vickers, J.A.G., “The positivity of the Bondi mass”, J. Phys. A: Math. Gen., 14, L389–L391 (1981).
343 Ludvigsen, M. and Vickers, J.A.G., “A simple proof of the positivity of the Bondi mass”, J. Phys. A: Math. Gen., 15, L67–L70 (1982).
344 Ludvigsen, M. and Vickers, J.A.G., “An inequality relating mass and electric charge in general relativity”, J. Phys. A: Math. Gen., 16, 1169–1174 (1983).
345 Ludvigsen, M. and Vickers, J.A.G., “An inequality relating total mass and the area of a trapped surface in general relativity”, J. Phys. A: Math. Gen., 16, 3349–3353 (1983).
346 Ludvigsen, M. and Vickers, J.A.G., “Momentum, angular momentum and their quasi-local null surface extensions”, J. Phys. A: Math. Gen., 16, 1155–1168 (1983).
347 Lundgren, A.P., Schmekel, B.S. and York Jr, J.W., “Self-renormalization of the classical quasilocal energy”, Phys. Rev. D, 75, 084026 (2007). [External LinkDOI], [External Linkgr-qc/0610088].
348 Lynden-Bell, D., Katz, J. and Bičák, J., “Energy and angular momentum densities of stationary gravitational fields”, Phys. Rev. D, 75, 024040 (2007). [External LinkDOI], [External Linkgr-qc/0701060]. Erratum: Phys. Rev. D, 75, 044901 (2007).
349 Maerten, D., “Positive energy-momentum theorem for AdS-asymptotically hyperbolic manifolds”, Ann. Henri Poincare, 7, 975–1011 (2006). [External Linkmath.DG/0506061].
350 Malec, E., “Hoop conjecture and trapped surfaces in non-spherical massive systems”, Phys. Rev. Lett., 67, 949–952 (1991). [External LinkDOI].
351 Malec, E., Mars, M. and Simon, W., “On the Penrose inequality for general horizons”, Phys. Rev. Lett., 88, 121102 (2002). [External LinkDOI], [External Linkgr-qc/0201024].
352 Malec, E. and Ó Murchadha, N., “Trapped surfaces and the Penrose inequality in spherically symmetric geometries”, Phys. Rev. D, 49, 6931–6934 (1994).
353 Maluf, J.W., “Hamiltonian formulation of the teleparallel description of general relativity”, J. Math. Phys., 35, 335–343 (1994). [External LinkDOI].
354 Mars, M., “An overview on the Penrose inequality”, J. Phys.: Conf. Ser., 66, 012004 (2007). [External LinkDOI], [External LinkADS].
355 Mars, M., “Present status of the Penrose inequality”, Class. Quantum Grav., 26, 193001 (2009). [External LinkDOI], [External LinkarXiv:0906.5566].
356 Martinez, E.A., “Quasilocal energy for a Kerr black hole”, Phys. Rev. D, 50, 4920–4928 (1994). [External Linkgr-qc/9405033].
357 Mason, L.J., “A Hamiltonian interpretation of Penrose’s quasi-local mass”, Class. Quantum Grav., 6, L7–L13 (1989). [External LinkDOI].
358 Mason, L.J. and Frauendiener, J., “The Sparling 3-form, Ashtekar variables and quasi-local mass”, in Bailey, T.N. and Baston, R.J., eds., Twistors in Mathematics and Physics, London Mathematical Society Lecture Note Series, 156, pp. 189–217, (Cambridge University Press, Cambridge; New York, 1990). [External LinkGoogle Books].
359 Matzner, R.A., “Almost Symmetric Spaces and Gravitational Radiation”, J. Math. Phys., 9, 1657–1668 (1968). [External LinkDOI].
360 Miao, P., “On existence of static metric extensions in general relativity”, Commun. Math. Phys., 241, 27–46 (2003). [External Linkmath-ph/0309041].
361 Miao, P., Shi, Y. and Tam, L.-F., “On geometric problems related to Brown-York and Liu-Yau quasilocal mass”, Commun. Math. Phys., 298, 437–459 (2010). [External LinkDOI], [External LinkarXiv:0906.5451].
362 Miao, P., Tam, L.-F. and Xie, N.-Q., “Some estimates of Wang-Yau quasilocal energy”, Class. Quantum Grav., 26, 245017 (2009). [External LinkDOI], [External LinkarXiv:0909.0880].
363 Miao, P., Tam, L.-F. and Xie, N.-Q., “Critical points of Wang-Yau quasi-local energy”, Ann. Henri Poincare, 12, 987–1017 (2011). [External LinkDOI], [External LinkarXiv:1003.5048].
364 Milnor, J., “Spin structures on manifolds”, Enseign. Math., 9, 198–203 (1963).
365 Misner, C.W. and Sharp, D.H., “Relativistic equations for adiabatic, spherically symmetric gravitational collapse”, Phys. Rev., 136, B571–B576 (1964). [External LinkDOI].
366 Misner, C.W., Thorne, K.S. and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, 1973). [External LinkADS].
367 Møller, C., “On the localization of the energy of a physical system in general theory of relativity”, Ann. Phys. (N.Y.), 4, 347–371 (1958). [External LinkDOI].
368 Møller, C., “Conservation laws and absolute parallelism in general relativity”, Mat.-Fys. Skr. K. Danske Vid. Selsk., 1(10), 1–50 (1961).
369 Moreschi, O.M., “Unambiguous angular momentum of radiative spacetimes and asymptotic structure in terms of the center of mass system”, arXiv, e-print, (2003). [External LinkarXiv:gr-qc/0305010].
370 Moreschi, O.M., “Intrinsic angular momentum and centre of mass in general relativity”, Class. Quantum Grav., 21, 5409–5425 (2004). [External LinkDOI], [External Linkgr-qc/0209097].
371 Moreschi, O.M. and Sparling, G.A.J., “On the positive energy theorem involving mass and electromagnetic charges”, Commun. Math. Phys., 95, 113–120 (1984). [External LinkDOI].
372 Mukohyama, S. and Hayward, S.A., “Quasi-local first law of black hole mechanics”, Class. Quantum Grav., 17, 2153–2157 (2000). [External Linkgr-qc/9905085].
373 Nadirashvili, N. and Yuan, Y., “Counterexamples for Local Isometric Embedding”, arXiv, e-print, (2002). [External LinkarXiv:math.DG/0208127].
374 Nahmad-Achar, E., “Is gravitational field energy density well defined for static, spherically symmetric configurations?”, in Blair, D.G. and Buckingham, M.J., eds., The Fifth Marcel Grossmann Meeting on recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories, Proceedings of the meeting held at The University of Western Australia, 8 – 13 August 1988, pp. 1223–1225, (World Scientific, Singapore; River Edge, NJ, 1989).
375 Nakao, K., “On a Quasi-Local Energy Outside the Cosmological Horizon”, arXiv, e-print, (1995). [External LinkarXiv:gr-qc/9507022].
376 Nester, J.M., “A new gravitational energy expression with a simple positivity proof”, Phys. Lett. A, 83, 241–242 (1981). [External LinkDOI].
377 Nester, J.M., “The gravitational Hamiltonian”, in Flaherty, F.J., ed., Asymptotic Behavior of Mass and Spacetime Geometry, Proceedings of the conference, held at Oregon State University, Corvallis, Oregon, USA, October 17 – 21, 1983, Lecture Notes in Physics, 202, pp. 155–163, (Springer, Berlin; New York, 1984).
378 Nester, J.M., “A gauge condition for orthonormal three-frames”, J. Math. Phys., 30, 624–626 (1989). [External LinkDOI].
379 Nester, J.M., “A positive gravitational energy proof”, Phys. Lett. A, 139, 112–114 (1989). [External LinkDOI].
380 Nester, J.M., “A covariant Hamiltonian for gravity theories”, Mod. Phys. Lett. A, 6, 2655–2661 (1991).
381 Nester, J.M., “Special orthonormal frames”, J. Math. Phys., 33, 910–913 (1992). [External LinkDOI].
382 Nester, J.M., “General pseudotensors and quasilocal quantities”, Class. Quantum Grav., 21, S261–S280 (2004). [External LinkDOI].
383 Nester, J.M., “A manifestly covariant Hamiltonian formalism for dynamical geometry”, Prog. Theor. Phys. Suppl., No 172, 30–39 (2008). [External LinkDOI].
384 Nester, J.M., “On the Zeros of Spinor Fields and an Orthonormal Frame Gauge Condition”, in Kleinert, H., Jantzen, R.T. and Ruffini, R., eds., The Eleventh Marcel Grossmann Meeting on General Relativity, Proceedings of the MG11 Meeting on General Relativity, Berlin, Germany, 23 – 29 July 2006, pp. 1332–1334, (World Scientific, Singapore; Hackensack, NJ, 2008).
385 Nester, J.M., Chen, C.-M. and Liu, J.-L., “Quasi-Local Energy for Cosmological Models”, in Kleinert, H., Jantzen, R.T. and Ruffini, R., eds., The Eleventh Marcel Grossmann Meeting on General Relativity, Proceedings of the MG11 Meeting on General Relativity, Berlin, Germany, 23 – 29 July 2006, pp. 2149–2151, (World Scientific, Singapore; Hackensack, NJ, 2008).
386 Nester, J.M., Chen, C.-M., Liu, J.-L. and Gang, S., “A reference for the covariant Hamiltonian boundary term”, arXiv, e-print, (2011). [External LinkarXiv:1210.6148].
387 Nester, J.M., Chen, C.-M. and Tung, R.-S., “The Hamiltonian Boundary Term”, in Nester, J.M., Chen, C.-M. and Hsu, J.-P., eds., Gravitation and Astrophysics: On the Occasion of the 90th Year of General Relativity, Proceedings of the VII Asia-Pacific International Conference, National Central University, Taiwan, 23 – 26 November 2005, pp. 396–402, (World Scientific, Singapore; Hackensack, NJ, 2007).
388 Nester, J.M., Chen, C.-M. and Tung, R.-S., “Quasi-Local Energy Flux”, in Nester, J.M., Chen, C.-M. and Hsu, J.-P., eds., Gravitation and Astrophysics: On the Occasion of the 90th Year of General Relativity, Proceedings of the VII Asia-Pacific International Conference, National Central University, Taiwan, 23 – 26 November 2005, pp. 389–395, (World Scientific, Singapore; Hackensack, NJ, 2007).
389 Nester, J.M., Ho, F.-H. and Chen, C.-M., “Quasilocal Center-of-Mass for Teleparallel Gravity”, in Novello, M., Bergliaffa, S.P. and Ruffini, R., eds., The Tenth Marcel Grossmann Meeting on General Relativity, Proceedings of the MG10 Meeting held at Brazilian Center for Research in Physics (CBPF), Rio de Janeiro, Brazil, 20 – 26 July 2003, pp. 1483–1494, (World Scientific, Singapore; Hackensack, NJ, 2005). [External Linkgr-qc/0403101].
390 Nester, J.M., Meng, F.F. and Chen, C.-M., “Quasi-local center-of-mass”, J. Korean Phys. Soc., 45, S22–S25 (2004). [External Linkgr-qc/0403103].
391 Nester, J.M., So, L.L. and Vargas, T., “Energy of homogeneous cosmologies”, Phys. Rev. D, 78, 044035 (2008). [External LinkDOI], [External LinkarXiv:0803.0181].
392 Nester, J.M. and Tung, R.-S., “A quadratic spinor Lagrangian for general relativity”, Gen. Relativ. Gravit., 27, 115–119 (1995). [External LinkDOI], [External Linkgr-qc/9407004].
393 Newman, E.T. and Tod, K.P., “Asymptotically flat space-times”, in Held, A., ed., General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, 2, pp. 1–36, (Plenum Press, New York, 1980).
394 Newman, E.T. and Unti, T.W.J., “Behavior of Asymptotically Flat Empty Spaces”, J. Math. Phys., 3, 891–901 (1962). [External LinkDOI], [External LinkADS].
395 Nielsen, A.B., “Black holes and black hole thermodynamics without event horizons”, arXiv, e-print, (2008). [External LinkarXiv:0809.3850 [hep-th]].
396 Nielsen, A.B. and Yoon, J.H., “Dynamical surface gravity”, Class. Quantum Grav., 25, 085010 (2008). [External LinkDOI], [External LinkarXiv:0711.1445].
397 Nirenberg, L., “The Weyl and Minkowski problems in differential geometry in the large”, Commun. Pure Appl. Math., 6, 337–394 (1953). [External LinkDOI].
398 Nucamendi, U. and Sudarsky, D., “Quasi-asymptotically flat spacetimes and their ADM mass”, Class. Quantum Grav., 14, 1309–1327 (1997). [External LinkDOI], [External Linkgr-qc/9611043].
399 Ó Murchadha, N., “Total energy-momentum in general relativity”, J. Math. Phys., 27, 2111–2128 (1986).
400 Ó Murchadha, N., “The Liu–Yau mass as a good quasi-local energy in general relativity”, arXiv, e-print, (2007). [External LinkarXiv:0706.1166 [gr-qc]].