We have discussed some of the main issues regarding mirrors to be used in a high–optical-power interferometer. These issues are thermal lensing, thermal aberration, thermal noise and thermoelastic noise. These spurious effects do not act at the same level. Thermal issues arise directly from the laser power and make necessary compensation systems more and more difficult as the power increases. Thermal noises (standard and thermoelastic) are not related to the laser power, but dominate the shot noise in the central spectral region, spoiling any gain of sensitivity expected from a higher laser power. An interesting approach to reduce these effects is to change the readout beam from the fundamental currently used, to the more widely spread (“exotic”) light power distributions, (either mesa, conical or high-order Laguerre–Gauss). We have given the formulas for estimating the gains with respect to the above cited issues for these different modes. Thus, we hope to contribute to the design of advanced instruments. It is already possible to point out that exotic beams provide a high gain (up to a factor of five) in thermal noise and thermoelastic noise and a huge gain in spurious thermal effects (up to two orders of magnitude).

http://www.livingreviews.org/lrr-2009-5 |
This work is licensed under a Creative Commons License. Problems/comments to |