References

1 Abdelwahab, M., Carloni, S. and Dunsby, P.K.S., “Cosmological dynamics of ‘exponential gravity”’, Class. Quantum Grav., 25, 135002, (2008). [External LinkDOI].
2 Acquaviva, V., Baccigalupi, C. and Perrotta, F., “Weak lensing in generalized gravity theories”, Phys. Rev. D, 70, 023515, (2004). [External LinkDOI].
3 Acquaviva, V. and Verde, L., “Observational signatures of Jordan-Brans-Dicke theories of gravity”, J. Cosmol. Astropart. Phys., 2007(12), 001, (2007). [External LinkDOI].
4 Afonso, V.I., Bazeia, D., Menezes, R. and Petrov, A.Y., “f(R)-brane”, Phys. Lett. B, 658, 71–76, (2007). [External LinkDOI].
5 Agarwal, N. and Bean, R., “The dynamical viability of scalar-tensor gravity theories”, Class. Quantum Grav., 25, 165001, (2008). [External LinkDOI], [External LinkarXiv:0708.3967 [astro-ph]].
6 Akbar, M. and Cai, R.-G., “Friedmann equations of FRW universe in scalar-tensor gravity, f(R) gravity and first law of thermodynamics”, Phys. Lett. B, 635, 7–10, (2006). [External LinkDOI], [External Linkhep-th/0602156].
7 Akbar, M. and Cai, R.-G., “Thermodynamic Behavior of Field Equations for f(R) Gravity”, Phys. Lett. B, 648, 243–248, (2007). [External LinkDOI], [External Linkgr-qc/0612089].
8 Akbar, M. and Cai, R.-G., “Thermodynamic behavior of the Friedmann equation at the apparent horizon of the FRW universe”, Phys. Rev. D, 75, 084003, (2007). [External LinkDOI].
9 Alam, U. and Sahni, V., “Confronting braneworld cosmology with supernova data and baryon oscillations”, Phys. Rev. D, 73, 084024, (2006). [External LinkDOI].
10 Alam, U., Sahni, V. and Starobinsky, A.A., “The case for dynamical dark energy revisited”, J. Cosmol. Astropart. Phys., 2004(06), 008, (2004). [External LinkDOI].
11 Alam, U., Sahni, V. and Starobinsky, A.A., “Exploring the properties of dark energy using type-Ia supernovae and other datasets”, J. Cosmol. Astropart. Phys., 2007(02), 011, (2007). [External LinkDOI], [External LinkADS].
12 Alexeyev, S., Toporensky, A. and Ustiansky, V., “The nature of singularity in Bianchi I cosmological string gravity model with second order curvature corrections”, Phys. Lett. B, 509, 151, (2001).
13 Ali, A., Gannouji, R., Sami, M. and Sen, A.A., “Background cosmological dynamics in f(R) gravity and observational constraints”, arXiv e-print, (2010). [External LinkarXiv:1001.5384 [astro-ph.CO]].
14 Alimohammadi, M. and Ghalee, A., “Phase space of generalized Gauss-Bonnet dark energy”, Phys. Rev. D, 80, 043006, (2009). [External LinkDOI], [External LinkarXiv:0908.1150 [gr-qc]].
15 Alimohammadi, M. and Ghalee, A., “Remarks on generalized Gauss-Bonnet dark energy”, Phys. Rev. D, 79, 063006, (2009). [External LinkDOI], [External LinkarXiv:0811.1286 [gr-qc]].
16 Allemandi, G., Borowiec, A. and Francaviglia, M., “Accelerated cosmological models in first-order nonlinear gravity”, Phys. Rev. D, 70, 043524, (2004). [External LinkDOI].
17 Allemandi, G., Borowiec, A. and Francaviglia, M., “Accelerated cosmological models in Ricci squared gravity”, Phys. Rev. D, 70, 103503, (2004). [External LinkDOI].
18 Allemandi, G., Francaviglia, M., Ruggiero, M.L. and Tartaglia, A., “Post-Newtonian parameters from alternative theories of gravity”, Gen. Relativ. Gravit., 37, 1891–1904, (2005). [External LinkDOI].
19 Allemandi, G. and Ruggiero, M.L., “Constraining extended theories of gravity using solar system tests”, Gen. Relativ. Gravit., 39, 1381–1388, (2007). [External LinkDOI].
20 Alves, M.E.S., Miranda, O.D. and de Araujo, J.C.N., “Probing the f(R) formalism through gravitational wave polarizations”, Phys. Lett. B, 679, 401–406, (2009). [External LinkDOI], [External LinkarXiv:0908.0861 [gr-qc]].
21 Amarzguioui, M., Elgarøy, Ø., Mota, D.F. and Multamäki, T., “Cosmological constraints on f(R) gravity theories within the Palatini approach”, Astron. Astrophys., 454, 707–714, (2006). [External LinkDOI].
22 Amendola, L., “Scaling solutions in general non-minimal coupling theories”, Phys. Rev. D, 60, 043501, (1999). [External LinkDOI], [External Linkastro-ph/9904120].
23 Amendola, L., “Coupled quintessence”, Phys. Rev. D, 62, 043511, (2000). [External LinkDOI].
24 Amendola, L., Capozziello, S., Litterio, M. and Occhionero, F., “Coupling first-order phase transitions to curvature-squared inflation”, Phys. Rev. D, 45, 417–425, (1992). [External LinkDOI].
25 Amendola, L., Charmousis, C. and Davis, S.C., “Constraints on Gauss-Bonnet gravity in dark energy cosmologies”, J. Cosmol. Astropart. Phys., 2006(12), 020, (2006). [External LinkDOI].
26 Amendola, L., Gannouji, R., Polarski, D. and Tsujikawa, S., “Conditions for the cosmological viability of f(R) dark energy models”, Phys. Rev. D, 75, 083504, (2007). [External LinkDOI].
27 Amendola, L., Kunz, M. and Sapone, D., “Measuring the dark side (with weak lensing)”, J. Cosmol. Astropart. Phys., 2008(04), 013, (2008). [External LinkDOI].
28 Amendola, L., Polarski, D. and Tsujikawa, S., “Are f(R) dark energy models cosmologically viable?”, Phys. Rev. Lett., 98, 131302, (2007). [External LinkDOI].
29 Amendola, L., Polarski, D. and Tsujikawa, S., “Power-laws f(R) theories are cosmologically unacceptable”, Int. J. Mod. Phys. D, 16, 1555–1561, (2007). [External LinkDOI].
30 Amendola, L. and Quercellini, C., “Skewness as a test of the equivalence principle”, Phys. Rev. Lett., 92, 181102, (2004). [External LinkDOI].
31 Amendola, L. and Tsujikawa, S., “Phantom crossing, equation-of-state singularities, and local gravity constraints in f(R) models”, Phys. Lett. B, 660, 125–132, (2008). [External LinkDOI].
32 Amendola, L. and Tsujikawa, S., Dark Energy: Theory and Observations, (Cambridge University Press, Cambridge; New York, 2010). [External LinkGoogle Books].
33 Ananda, K.N., Carloni, S. and Dunsby, P.K.S., “Evolution of cosmological gravitational waves in f(R) gravity”, Phys. Rev. D, 77, 024033, (2008). [External LinkDOI].
34 Antoniadis, I., Rizos, J. and Tamvakis, K., “Singularity-free cosmological solutions of the superstring effective action”, Nucl. Phys. B, 415, 497–514, (1994). [External LinkDOI].
35 Appleby, S.A. and Battye, R.A., “Do consistent F(R) models mimic general relativity plus Λ?”, Phys. Lett. B, 654, 7–12, (2007). [External LinkDOI].
36 Appleby, S.A. and Battye, R.A., “Aspects of cosmological expansion in F(R) gravity models”, J. Cosmol. Astropart. Phys., 2008(05), 019, (2008). [External LinkDOI].
37 Appleby, S., Battye, R. and Starobinsky, A., “Curing singularities in cosmological evolution of F(R) gravity”, arXiv e-print, (2009). [External LinkarXiv:0909.1737 [astro-ph.CO]].
38 Arkani-Hamed, N., Cheng, H.-C., Luty, M.A. and Mukohyama, S., “Ghost condensation and a consistent infrared modification of gravity”, J. High Energy Phys., 2004(05), 074, (2004). [External LinkDOI].
39 Astier, P. et al. (The SNLS Collaboration), “The Supernova Legacy Survey: Measurement of ΩM, ΩΛ and w from the first year data set”, Astron. Astrophys., 447, 31–48, (2006). [External LinkDOI].
40 Atazadeh, K., Farhoudi, M. and Sepangi, H.R., “Accelerating universe in f() brane gravity”, Phys. Lett. B, 660, 275–281, (2008). [External LinkDOI].
41 Atazadeh, K. and Sepangi, H.R., “Accelerated expansion in modified gravity with a Yukawa-like term”, Int. J. Mod. Phys. D, 16, 687–697, (2007). [External LinkDOI], [External Linkgr-qc/0602028].
42 Babichev, E. and Langlois, D., “Relativistic stars in f(R) and scalar-tensor theories”, arXiv e-print, (2009). [External LinkarXiv:0911.1297 [gr-qc]].
43 Babichev, E. and Langlois, D., “Relativistic stars in f(R) gravity”, Phys. Rev. D, 80, 121501, (2009). [External LinkDOI].
44 Baccigalupi, C., Matarrese, S. and Perrotta, F., “Tracking extended quintessence”, Phys. Rev. D, 62, 123510, (2000). [External LinkDOI].
45 Baghram, S., Farhang, M. and Rahvar, S., “Modified gravity with f(R) = ∘ -------2- R2 − R 0”, Phys. Rev. D, 75, 044024, (2007). [External LinkDOI].
46 Baghram, S., Movahed, M.S. and Rahvar, S., “Observational tests of a two parameter power-law class modified gravity in Palatini formalism”, Phys. Rev. D, 80, 064003, (2009). [External LinkDOI], [External LinkarXiv:0904.4390 [astro-ph.CO]].
47 Baghram, S. and Rahvar, S., “Inverse problem: Reconstruction of the modified gravity action in the Palatini formalism by supernova type Ia data”, Phys. Rev. D, 80, 124049, (2009). [External LinkDOI].
48 Balcerzak, A. and Dabrowski, M.P., “Generalized Israel junction conditions for a fourth-order brane world”, Phys. Rev. D, 77, 023524, (2008). [External LinkDOI].
49 Balcerzak, A. and Dabrowski, M.P., “Gibbons-Hawking boundary terms and junction conditions for higher-order brane gravity models”, J. Cosmol. Astropart. Phys., 2009(01), 018, (2009). [External LinkDOI], [External LinkarXiv:0804.0855 [hep-th]].
50 Bamba, K., “Behavior of F(R) gravity around a crossing of the phantom divide”, arXiv e-print, (2009). [External LinkarXiv:0909.2991 [astro-ph.CO]].
51 Bamba, K. and Geng, C.-Q., “Thermodynamics in F(R) gravity with phantom crossing”, Phys. Lett. B, 679, 282–287, (2009). [External LinkDOI].
52 Bamba, K., Geng, C.-Q., Nojiri, S. and Odintsov, S.D., “Crossing of the phantom divide in modified gravity”, Phys. Rev. D, 79, 083014, (2009). [External LinkDOI].
53 Bamba, K., Geng, C.-Q. and Tsujikawa, S., “Equilibrium thermodynamics in modified gravitational theories”, Phys. Lett. B, 688, 101–109, (2010). [External LinkDOI].
54 Bamba, K., Nojiri, S. and Odintsov, S.D., “The future of the universe in modified gravitational theories: approaching a finite-time future singularity”, J. Cosmol. Astropart. Phys., 2008(10), 045, (2008). [External LinkDOI].
55 Barausse, E., Sotiriou, T.P. and Miller, J.C., “Curvature singularities, tidal forces and the viability of Palatini f(R) gravity”, Class. Quantum Grav., 25, 105008, (2008). [External LinkDOI].
56 Barausse, E., Sotiriou, T.P. and Miller, J.C., “A no-go theorem for polytropic spheres in Palatini f(R) gravity”, Class. Quantum Grav., 25, 062001, (2008). [External LinkDOI].
57 Bardeen, J.M., “Gauge-invariant cosmological perturbations”, Phys. Rev. D, 22, 1882–1905, (1980). [External LinkDOI].
58 Bardeen, J.M., Bond, J.R., Kaiser, N. and Szalay, A.S., “The Statistics of Peaks of Gaussian Random Fields”, Astrophys. J., 304, 15–61, (1986). [External LinkDOI].
59 Bardeen, J.M., Carter, B. and Hawking, S.W., “The four laws of black hole mechanics”, Commun. Math. Phys., 31, 161–170, (1973). [External LinkDOI].
60 Barragán, C., Olmo, G.J. and Sanchis-Alepuz, H., “Bouncing cosmologies in Palatini f(R) gravity”, Phys. Rev. D, 80, 024016, (2009). [External LinkDOI].
61 Barrow, J.D., “The premature recollapse problem in closed inflationary universes”, Nucl. Phys. B, 296, 697–709, (1988). [External LinkDOI].
62 Barrow, J.D. and Clifton, T., “Exact cosmological solutions of scale-invariant gravity theories”, Class. Quantum Grav., 23, L1–L6, (2006). [External LinkDOI].
63 Barrow, J.D. and Cotsakis, S., “Inflation and the Conformal Structure of Higher-Order Gravity Theories”, Phys. Lett. B, 214, 515–518, (1988). [External LinkDOI].
64 Barrow, J.D. and Hervik, S., “Evolution of universes in quadratic theories of gravity”, Phys. Rev. D, 74, 124017, (2006). [External LinkDOI].
65 Barrow, J.D. and Maeda, K.-I., “Extended inflationary universes”, Nucl. Phys. B, 341, 294–308, (1990). [External LinkDOI].
66 Bartelmann, M. and Schneider, P., “Weak gravitational lensing”, Phys. Rep., 340, 291–472, (2001). [External LinkDOI].
67 Barth, N.H. and Christensen, S.M., “Quantizing Fourth Order Gravity Theories. 1. The Functional Integral”, Phys. Rev. D, 28, 1876–1893, (1983). [External LinkDOI].
68 Bartolo, N. and Pietroni, M., “Scalar-tensor gravity and quintessence”, Phys. Rev. D, 61, 023518, (1999). [External LinkDOI].
69 Barvinsky, A.O. and Solodukhin, S.N., “Non-minimal coupling, boundary terms and renormalization of the Einstein-Hilbert action and black hole entropy”, Nucl. Phys. B, 479, 305–318, (1996). [External LinkDOI].
70 Bassett, B.A. and Liberati, S., “Geometric reheating after inflation”, Phys. Rev. D, 58, 021302, (1998). [External LinkDOI].
71 Bassett, B.A., Tsujikawa, S. and Wands, D., “Inflation dynamics and reheating”, Rev. Mod. Phys., 78, 537–589, (2006). [External LinkDOI].
72 Bazeia, D., Carneiro da Cunha, B., Menezes, R. and Petrov, A.Y., “Perturbative aspects and conformal solutions of F(R) gravity”, Phys. Lett. B, 649, 445–453, (2007). [External LinkDOI], [External Linkhep-th/0701106].
73 Bean, R., “A weak lensing detection of a deviation from General Relativity on cosmic scales”, arXiv e-print, (2009). [External LinkarXiv:0909.3853 [astro-ph.CO]].
74 Bean, R., Bernat, D., Pogosian, L., Silvestri, A. and Trodden, M., “Dynamics of Linear Perturbations in f(R) Gravity”, Phys. Rev. D, 75, 064020, (2007). [External LinkDOI].
75 Bekenstein, J.D., “Black holes and entropy”, Phys. Rev. D, 7, 2333–2346, (1973). [External LinkDOI].
76 Bekenstein, J.D., “Erratum: Relativistic gravitation theory for the modified Newtonian dynamics paradigm”, Phys. Rev. D, 71, 069901, (2005). [External LinkDOI].
77 Bergmann, P.G., “Comments on the scalar-tensor theory”, Int. J. Theor. Phys., 1, 25–36, (1968). [External LinkDOI].
78 Berkin, A.L., Maeda, K.-I. and Yokoyama, J., “Soft Inflation”, Phys. Rev. Lett., 65, 141–144, (1990). [External LinkDOI].
79 Bernardeau, F., Colombi, S., Gaztañaga, E. and Scoccimarro, R., “Large-scale structure of the Universe and cosmological perturbation theory”, Phys. Rep., 367, 1–248, (2002). [External LinkDOI].
80 Bertolami, O., Boehmer, C.G., Harko, T. and Lobo, F.S.N., “Extra force in f(R) modified theories of gravity”, Phys. Rev. D, 75, 104016, (2007). [External LinkDOI].
81 Bertolami, O. and Paramos, J., “Do f(R) theories matter?”, Phys. Rev. D, 77, 084018, (2008). [External LinkDOI].
82 Bertolami, O. and Sequeira, M.C., “Energy Conditions and Stability in f(R) theories of gravity with non-minimal coupling to matter”, Phys. Rev. D, 79, 104010, (2009). [External LinkDOI].
83 Bertotti, B., Iess, L. and Tortora, P., “A test of general relativity using radio links with the Cassini spacecraft”, Nature, 425, 374–376, (2003). [External LinkDOI].
84 Bertschinger, E. and Zukin, P., “Distinguishing modified gravity from dark energy”, Phys. Rev. D, 78, 024015, (2008). [External LinkDOI].
85 Billyard, A., Coley, A. and Ibáñez, J., “Asymptotic behavior of cosmological models in scalar-tensor theories of gravity”, Phys. Rev. D, 59, 023507, (1998). [External LinkDOI], [External Linkgr-qc/9807055].
86 Binétruy, P., Deffayet, C., Ellwanger, U. and Langlois, D., “Brane cosmological evolution in a bulk with cosmological constant”, Phys. Lett. B, 477, 285–291, (2000). [External LinkDOI].
87 Binétruy, P., Deffayet, C. and Langlois, D., “Non-conventional cosmology from a brane universe”, Nucl. Phys. B, 565, 269–287, (2000). [External LinkDOI], [External Linkhep-th/9905012].
88 Birrell, N.D. and Davis, P.C.W., Quantum fields in curved space, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 1982). [External LinkGoogle Books].
89 Bisabr, Y., “Solar system constraints on a cosmologically viable f(R) theory”, Phys. Lett. B, 683, 96–100, (2010). [External LinkDOI].
90 Boehmer, C.G., Harko, T. and Lobo, F.S.N., “Dark matter as a geometric effect in f(R) gravity”, Astropart. Phys., 29, 386–392, (2008). [External LinkDOI].
91 Boehmer, C.G., Hollenstein, L. and Lobo, F.S.N., “Stability of the Einstein static universe in f(R) gravity”, Phys. Rev. D, 76, 084005, (2007). [External LinkDOI].
92 Böhmer, C.G., Harko, T. and Lobo, F.S.N., “The generalized virial theorem in f(R) gravity”, J. Cosmol. Astropart. Phys., 2008(03), 024, (2008). [External LinkDOI].
93 Boisseau, B., Esposito-Farèse, G., Polarski, D. and Starobinsky, A.A., “Reconstruction of a scalar-tensor theory of gravity in an accelerating universe”, Phys. Rev. Lett., 85, 2236–2239, (2000). [External LinkDOI].
94 Borisov, A. and Jain, B., “Three-point correlations in f(R) models of gravity”, Phys. Rev. D, 79, 103506, (2009). [External LinkDOI].
95 Borunda, M., Janssen, B. and Bastero-Gil, M., “Palatini versus metric formulation in higher-curvature gravity”, J. Cosmol. Astropart. Phys., 2008(11), 008, (2008). [External LinkDOI].
96 Borzou, A., Sepangi, H.R., Shahidi, S. and Yousefi, R., “Brane f() gravity”, Europhys. Lett., 88, 29001, (2009). [External LinkDOI].
97 Bouhmadi-López, M., “f(R) brane cosmology”, arXiv e-print, (2010). [External LinkarXiv:1001.3028 [astro-ph.CO]].
98 Boulanger, N., Damour, T., Gualtieri, L. and Henneaux, M., “Inconsistency of interacting, multi-graviton theories”, Nucl. Phys. B, 597, 127–171, (2001). [External LinkDOI].
99 Boulanger, N., Damour, T., Gualtieri, L. and Henneaux, M., “Inconsistency of interacting, multi-graviton theories”, Nucl. Phys. B, 597, 127–171, (2001). [External LinkDOI].
100 Brans, C. and Dicke, R.H., “Mach’s Principle and a Relativistic Theory of Gravitation”, Phys. Rev., 124, 925–935, (1961). [External LinkDOI].
101 Brax, P., van de Bruck, C., Davis, A.C. and Shaw, D.J., “f(R) Gravity and Chameleon Theories”, Phys. Rev. D, 78, 104021, (2008). [External LinkDOI].
102 Breizman, B.N., Gurovich, V.T. and Sokolov, V.P., “On the Possibility of Setting up Regular Cosmological Solutions”, Zh. Eksp. Teor. Fiz., 59, 288, (1970). Sov. Phys. JETP, 32, 155, (1971).
103 Briscese, F. and Elizalde, E., “Black hole entropy in modified-gravity models”, Phys. Rev. D, 77, 044009, (2008). [External LinkDOI].
104 Brookfield, A.W., van de Bruck, C. and Hall, L.M.H., “Viability of f(R) theories with additional powers of curvature”, Phys. Rev. D, 74, 064028, (2006). [External LinkDOI].
105 Brustein, R. and Madden, R., “Model of graceful exit in string cosmology”, Phys. Rev. D, 57, 712–724, (1998). [External LinkDOI].
106 Buchdahl, H.A., “Non-linear Lagrangians and cosmological theory”, Mon. Not. R. Astron. Soc., 150, 1–8, (1970). [External LinkADS].
107 Bustelo, A.J. and Barraco, D.E., “Hydrostatic equilibrium equation and Newtonian limit of the singular f(R) gravity”, Class. Quantum Grav., 24, 2333–2342, (2007). [External LinkDOI].
108 Cai, R.-G. and Cao, L.-M., “Unified first law and thermodynamics of apparent horizon in FRW universe”, Phys. Rev. D, 75, 064008, (2007). [External LinkDOI].
109 Calcagni, G., de Carlos, B. and De Felice, A., “Ghost conditions for Gauss-Bonnet cosmologies”, Nucl. Phys. B, 752, 404–438, (2006). [External LinkDOI].
110 Calcagni, G., Tsujikawa, S. and Sami, M., “Dark energy and cosmological solutions in second-order string gravity”, Class. Quantum Grav., 22, 3977–4006, (2005). [External LinkDOI].
111 Caldwell, R.R., Dave, R. and Steinhardt, P.J., “Cosmological Imprint of an Energy Component with General Equation of State”, Phys. Rev. Lett., 80, 1582–1585, (1998). [External LinkDOI], [External Linkastro-ph/9708069].
112 Capone, M. and Ruggiero, M.L., “Jumping from metric f(R) to scalar-tensor theories and the relations between post-Newtonian parameters”, Class. Quantum Grav., 27, 125006, (2010). [External LinkDOI], [External LinkarXiv:0910.0434 [gr-qc]].
113 Capozziello, S., “Curvature Quintessence”, Int. J. Mod. Phys. D, 11, 483–491, (2002). [External LinkDOI].
114 Capozziello, S., Cardone, V.F., Carloni, S. and Troisi, A., “Curvature quintessence matched with observational data”, Int. J. Mod. Phys. D, 12, 1969–1982, (2003). [External LinkDOI].
115 Capozziello, S., Cardone, V.F., Carloni, S. and Troisi, A., “Can higher order curvature theories explain rotation curves of galaxies?”, Phys. Lett. A, 326, 292–296, (2004). [External LinkDOI].
116 Capozziello, S., Cardone, V.F. and Francaviglia, M., “f(R) theories of gravity in the Palatini approach matched with observations”, Gen. Relativ. Gravit., 38, 711–734, (2006). [External LinkDOI].
117 Capozziello, S., Cardone, V.F. and Troisi, A., “Reconciling dark energy models with f(R) theories”, Phys. Rev. D, 71, 043503, (2005). [External LinkDOI].
118 Capozziello, S., Cardone, V.F. and Troisi, A., “Dark energy and dark matter as curvature effects?”, J. Cosmol. Astropart. Phys., 2006(08), 001, (2006). [External LinkDOI].
119 Capozziello, S., Cardone, V.F. and Troisi, A., “Low surface brightness galaxy rotation curves in the low energy limit of Rn gravity: No need for dark matter?”, Mon. Not. R. Astron. Soc., 375, 1423–1440, (2007). [External LinkDOI].
120 Capozziello, S., Carloni, S. and Troisi, A., “Quintessence without scalar fields”, in Recent Research Developments in Astronomy and Astrophysics 1, p. 625, (Research Signpost, Trivandrum, India, 2003).
121 Capozziello, S., Cianci, R., Stornaiolo, C. and Vignolo, S., “f(R) gravity with torsion: the metric-affine approach”, Class. Quantum Grav., 24, 6417–6430, (2007). [External LinkDOI].
122 Capozziello, S., Corda, C. and De Laurentis, M.F., “Stochastic background of relic scalar gravitational waves from scalar-tensor gravity”, Mod. Phys. Lett. A, 22, 2647–2655, (2007). [External LinkDOI], [External LinkarXiv:0707.0368 [gr-qc]].
123 Capozziello, S., Corda, C. and De Laurentis, M.F., “Massive gravitational waves from f(R) theories of gravity: Potential detection with LISA”, Phys. Lett. B, 669, 255–259, (2008). [External LinkDOI].
124 Capozziello, S. and De Felice, A., “f(R) cosmology from Noether’s symmetry”, J. Cosmol. Astropart. Phys., 2008(08), 016, (2008). [External LinkDOI].
125 Capozziello, S., de Ritis, R., Rubano, C. and Scudellaro, P., “Nöther symmetries in cosmology”, Riv. Nuovo Cimento, 19, 1–114, (1996).
126 Capozziello, S. and Francaviglia, M., “Extended theories of gravity and their cosmological and astrophysical applications”, Gen. Relativ. Gravit., 40, 357–420, (2008). [External LinkDOI].
127 Capozziello, S. and Garattini, R., “The cosmological constant as an eigenvalue of f(R)-gravity Hamiltonian constraint”, Class. Quantum Grav., 24, 1627–1645, (2007). [External LinkDOI].
128 Capozziello, S. and Lambiase, G., “Higher-order corrections to the effective gravitational action from Noether symmetry approach”, Gen. Relativ. Gravit., 32, 295–311, (2000). [External LinkDOI], [External Linkgr-qc/9912084].
129 Capozziello, S., Nesseris, S. and Perivolaropoulos, L., “Reconstruction of the scalar–tensor Lagrangian from a ΛCDM background and Noether symmetry”, J. Cosmol. Astropart. Phys., 2007(12), 009, (2007). [External LinkDOI].
130 Capozziello, S., Nojiri, S., Odintsov, S.D. and Troisi, A., “Cosmological viability of f(R)-gravity as an ideal fluid and its compatibility with a matter dominated phase”, Phys. Lett. B, 639, 135–143, (2006). [External LinkDOI], [External Linkastro-ph/0604431].
131 Capozziello, S., Occhionero, F. and Amendola, L., “The Phase-Space View of Inflation II: Fourth-Order Models”, Int. J. Mod. Phys. D, 1, 615–639, (1992). [External LinkDOI].
132 Capozziello, S., Piedipalumbo, E., Rubano, C. and Scudellaro, P., “Noether symmetry approach in phantom quintessence cosmology”, Phys. Rev. D, 80, 104030, (2009). [External LinkDOI].
133 Capozziello, S., Stabile, A. and Troisi, A., “Newtonian limit of f(R) gravity”, Phys. Rev. D, 76, 104019, (2007). [External LinkDOI].
134 Capozziello, S. and Tsujikawa, S., “Solar system and equivalence principle constraints on f(R) gravity by chameleon approach”, Phys. Rev. D, 77, 107501, (2008). [External LinkDOI].
135 Capozziello, S. and Vignolo, S., “The Cauchy problem for metric-affine f(R)-gravity in presence of perfect-fluid matter”, Class. Quantum Grav., 26, 175013, (2009). [External LinkDOI].
136 Cardone, V.F., Diaferio, A. and Camera, S., “Constraining f(R) theories with Type Ia Supernovae and Gamma Ray Bursts”, arXiv e-print, (2009). [External LinkarXiv:0907.4689 [astro-ph.CO]].
137 Carloni, S., Dunsby, P.K.S., Capozziello, S. and Troisi, A., “Cosmological dynamics of Rn gravity”, Class. Quantum Grav., 22, 4839–4868, (2005). [External LinkDOI].
138 Carloni, S., Dunsby, P.K.S. and Troisi, A., “Evolution of density perturbations in f(R) gravity”, Phys. Rev. D, 77, 024024, (2008). [External LinkDOI].
139 Carloni, S., Leach, J.A., Capozziello, S. and Dunsby, P.K.S., “Cosmological dynamics of scalar-tensor gravity”, Class. Quantum Grav., 25, 035008, (2008). [External LinkDOI].
140 Carroll, S.M., “Quintessence and the Rest of the World: Suppressing Long-Range Interactions”, Phys. Rev. Lett., 81, 3067–3070, (1998). [External LinkDOI].
141 Carroll, S.M., “The Cosmological Constant”, Living Rev. Relativity, 4, lrr-2001-1, (2001). URL (accessed 25 February 2010):
http://www.livingreviews.org/lrr-2001-1.
142 Carroll, S.M., De Felice, A., Duvvuri, V., Easson, D.A., Trodden, M. and Turner, M.S., “The cosmology of generalized modified gravity models”, Phys. Rev. D, 71, 063513, (2005). [External LinkDOI].
143 Carroll, S.M., Duvvuri, V., Trodden, M. and Turner, M.S., “Is cosmic speed-up due to new gravitational physics?”, Phys. Rev. D, 70, 043528, (2004). [External LinkDOI].
144 Carroll, S.M., Harvey, J.A., Kostelecky, V.A., Lane, C.D. and Okamoto, T., “Noncommutative field theory and Lorentz violation”, Phys. Rev. Lett., 87, 141601, (2001). [External LinkDOI].
145 Carroll, S.M., Hoffman, M. and Trodden, M., “Can the dark energy equation-of-state parameter w be less than 1?”, Phys. Rev. D, 68, 023509, (2003). [External LinkDOI].
146 Carroll, S.M., Sawicki, I., Silvestri, A. and Trodden, M., “Modified-source gravity and cosmological structure formation”, New J. Phys., 8, 323, (2006). [External LinkDOI]. URL (accessed 25 February 2010):
External Linkhttp://stacks.iop.org/1367-2630/8/i=12/a=323.
147 Cartier, C., Copeland, E.J. and Madden, R., “The graceful exit in string cosmology”, J. High Energy Phys., 2000(01), 035, (2000). [External LinkDOI].
148 Carvalho, F.C., Santos, E.M., Alcaniz, J.S. and Santos, J., “Cosmological constraints from the Hubble parameter on f(R) cosmologies”, J. Cosmol. Astropart. Phys., 2008(09), 008, (2008). [External LinkDOI].
149 Cembranos, J.A.R., “The Newtonian limit at intermediate energies”, Phys. Rev. D, 73, 064029, (2006). [External LinkDOI].
150 Cherubini, C., Bini, D., Capozziello, S. and Ruffini, R., “Second Order Scalar Invariants of the Riemann Tensor: Applications to Black Hole Spacetimes”, Int. J. Mod. Phys. D, 11, 827–841, (2002). [External LinkDOI].
151 Chiba, T., “Quintessence, the gravitational constant, and gravity”, Phys. Rev. D, 60, 083508, (1999). [External LinkDOI], [External Linkgr-qc/9903094].
152 Chiba, T., “1∕R gravity and scalar-tensor gravity”, Phys. Lett. B, 575, 1–3, (2003). [External LinkDOI].
153 Chiba, T., “Generalized gravity and ghost”, J. Cosmol. Astropart. Phys., 2005(03), 008, (2005). [External LinkDOI].
154 Chiba, T., Smith, T.L. and Erickcek, A.L., “Solar System constraints to general f(R) gravity”, Phys. Rev. D, 75, 124014, (2007). [External LinkDOI].
155 Chiba, T., Sugiyama, N. and Nakamura, T., “Cosmology with x-matter”, Mon. Not. R. Astron. Soc., 289, L5–L9, (1997). [External LinkADS].
156 Chiba, T., Sugiyama, N. and Yokoyama, J., “Imprints of the metrically coupled dilaton on density perturbations in inflationary cosmology”, Nucl. Phys. B, 530, 304–324, (1998). [External LinkDOI].
157 Chirco, G. and Liberati, S., “Nonequilibrium thermodynamics of spacetime: The role of gravitational dissipation”, Phys. Rev. D, 81, 024016, (2010). [External LinkDOI].
158 Chow, N. and Khoury, J., “Galileon Cosmology”, Phys. Rev. D, 80, 024037, (2009). [External LinkDOI].
159 Clifton, T., “Higher powers in gravitation”, Phys. Rev. D, 78, 083501, (2008). [External LinkDOI].
160 Clifton, T. and Barrow, J.D., “The Power of General Relativity”, Phys. Rev. D, 72, 103005, (2005). [External LinkDOI].
161 Cline, J.M., Jeon, S. and Moore, G.D., “The phantom menaced: Constraints on low-energy effective ghosts”, Phys. Rev. D, 70, 043543, (2004). [External LinkDOI].
162 Clunan, T. and Sasaki, M., “Tensor ghosts in the inflationary cosmology”, arXiv e-print, (2009). [External LinkarXiv:0907.3868 [hep-th]].
163 Codello, A. and Percacci, R., “Fixed Points of Nonlinear Sigma Models in d > 2”, Phys. Lett. B, 672, 280–283, (2009). [External LinkDOI].
164 Cognola, G., Elizalde, E., Nojiri, S., Odintsov, S.D., Sebastiani, L. and Zerbini, S., “A class of viable modified f(R) gravities describing inflation and the onset of accelerated expansion”, Phys. Rev. D, 77, 046009, (2008). [External LinkDOI].
165 Cognola, G., Elizalde, E., Nojiri, S., Odintsov, S. and Zerbini, S., “String-inspired Gauss-Bonnet gravity reconstructed from the universe expansion history and yielding the transition from matter dominance to dark energy”, Phys. Rev. D, 75, 086002, (2007). [External LinkDOI].
166 Cognola, G., Gastaldi, M. and Zerbini, S., “On the Stability of a Class of Modified Gravitational Models”, Int. J. Theor. Phys., 47, 898–910, (2008). [External LinkDOI].
167 Cooney, A., DeDeo, S. and Psaltis, D., “Neutron Stars in f(R) Gravity with Perturbative Constraints”, arXiv e-print, (2009). [External LinkarXiv:0910.5480 [astro-ph.HE]].
168 Cooper, F. and Venturi, G., “Cosmology and broken scale invariance”, Phys. Rev. D, 24, 3338–3340, (1981). [External LinkDOI].
169 Cooray, A. and Sheth, R.K., “Halo models of large scale structure”, Phys. Rep., 372, 1–129, (2002). [External LinkDOI], [External Linkastro-ph/0206508].
170 Copeland, E.J., Liddle, A.R. and Wands, D., “Exponential potentials and cosmological scaling solutions”, Phys. Rev. D, 57, 4686–4690, (1998). [External LinkDOI], [External Linkgr-qc/9711068].
171 Copeland, E.J., Sami, M. and Tsujikawa, S., “Dynamics of dark energy”, Int. J. Mod. Phys. D, 15, 1753–1935, (2006). [External LinkDOI].
172 Corda, C., “The production of matter from curvature in a particular linearized high order theory of gravity and the longitudinal response function of interferometers”, J. Cosmol. Astropart. Phys., 2007(04), 009, (2007). [External LinkDOI].
173 Corda, C., “Interferometric detection of gravitational waves: the definitive test for General Relativity”, Int. J. Mod. Phys. D, 18, 2275–2282, (2009). [External LinkDOI], [External LinkarXiv:0905.2502 [gr-qc]].
174 Corda, C., “A review of the stochastic background of gravitational waves in f(R) gravity with WMAP constrains”, arXiv e-print, (2009). [External LinkarXiv:0901.1193 [astro-ph]].
175 Damour, T. and Nordtvedt, K., “Tensor-scalar cosmological models and their relaxation toward general relativity”, Phys. Rev. D, 48, 3436–3450, (1993). [External LinkDOI].
176 Damour, T., Piazza, F. and Veneziano, G., “Runaway dilaton and equivalence principle violations”, Phys. Rev. Lett., 89, 081601, (2002). [External LinkDOI].
177 Daniel, S.F., Caldwell, R.R., Cooray, A. and Melchiorri, A., “Large scale structure as a probe of gravitational slip”, Phys. Rev. D, 77, 103513, (2008). [External LinkDOI].
178 Davis, S.C., “Solar System Constraints on f(𝒢) Dark Energy”, arXiv e-print, (2007). [External LinkarXiv:0709.4453 [hep-th]].
179 Davoudiasl, H., Kitano, R., Kribs, G.D., Murayama, H. and Steinhardt, P.J., “Gravitational baryogenesis”, Phys. Rev. Lett., 93, 201301, (2004). [External LinkDOI].
180 De Felice, A. and Hindmarsh, M., “Unsuccessful cosmology with modified gravity models”, J. Cosmol. Astropart. Phys., 2007(06), 028, (2007). [External LinkDOI].
181 De Felice, A., Hindmarsh, M. and Trodden, M., “Ghosts, instabilities, and superluminal propagation in modified gravity models”, J. Cosmol. Astropart. Phys., 2006(08), 005, (2006). [External LinkDOI].
182 De Felice, A., Mota, D.F. and Tsujikawa, S., “Matter instabilities in general Gauss-Bonnet gravity”, arXiv e-print, (2009). [External LinkarXiv:0911.1811 [gr-qc]].
183 De Felice, A., Nasri, S. and Trodden, M., “Quintessential baryogenesis”, Phys. Rev. D, 67, 043509, (2003). [External LinkDOI].
184 De Felice, A. and Ringeval, C., “Massive gravitons trapped inside a hypermonopole”, Phys. Lett. B, 671, 158–161, (2009). [External LinkDOI].
185 De Felice, A. and Suyama, T., “Scalar mode propagation in modified gravity with a scalar field”, Phys. Rev. D, 80, 083523, (2009). [External LinkDOI].
186 De Felice, A. and Suyama, T., “Vacuum structure for scalar cosmological perturbations in modified gravity models”, J. Cosmol. Astropart. Phys., 2009(06), 034, (2009). [External LinkDOI].
187 De Felice, A. and Trodden, M., “Baryogenesis after hyperextended inflation”, Phys. Rev. D, 72, 043512, (2005). [External LinkDOI].
188 De Felice, A. and Tsujikawa, S., “Construction of cosmologically viable f(𝒢) gravity models”, Phys. Lett. B, 675, 1–8, (2009). [External LinkDOI], [External LinkarXiv:0810.5712 [hep-th]].
189 De Felice, A. and Tsujikawa, S., “Solar system constraints on f(𝒢) gravity models”, Phys. Rev. D, 80, 063516, (2009). [External LinkDOI], [External LinkarXiv:0907.1830 [hep-th]].
190 De Felice, A. and Tsujikawa, S., “Generalized Brans-Dicke theories”, arXiv e-print, (2010). [External LinkarXiv:1005.0868 [astro-ph.CO]].
191 de la Cruz-Dombriz, Á. and Dobado, A., “f(R) gravity without a cosmological constant”, Phys. Rev. D, 74, 087501, (2006). [External LinkDOI].
192 de la Cruz-Dombriz, A., Dobado, A. and Maroto, A.L., “Evolution of density perturbations in f(R) theories of gravity”, Phys. Rev. D, 77, 123515, (2008). [External LinkDOI].
193 de la Cruz-Dombriz, A., Dobado, A. and Maroto, A.L., “Black Holes in f(R) theories”, Phys. Rev. D, 80, 124011, (2009). [External LinkDOI].
194 de la Cruz-Dombriz, A., Dobado, A. and Maroto, A.L., “Comment on ‘Viable singularity-free f(R) gravity without a cosmological constant”’, Phys. Rev. Lett., 103, 179001, (2009). [External LinkDOI], [External LinkarXiv:0905.1941].
195 de la Macorra, A. and Piccinelli, G., “Cosmological evolution of general scalar fields and quintessence”, Phys. Rev. D, 61, 123503, (2000). [External LinkDOI], [External Linkhep-ph/9909459].
196 De Laurentis, M., Capozziello, S. and Izzo, L., “Stochastic background of gravitational waves ‘tuned’ by f(R) gravity”, arXiv e-print, (2009). [External LinkarXiv:0902.3153 [gr-qc]].
197 de Rham, C., Dvali, G., Hofmann, S., Khoury, J., Pujolàs, O., Redi, M. and Tolley, A.J., “Cascading gravity: Extending the Dvali-Gabadadze-Porrati model to higher dimension”, Phys. Rev. Lett., 100, 251603, (2008). [External LinkDOI].
198 de Souza, J.C.C. and Faraoni, V., “The phase-space view of f(R) gravity”, Class. Quantum Grav., 24, 3637–3648, (2007). [External LinkDOI].
199 de Souza, R.C. and Kremer, G.M., “Noether symmetry for non-minimally coupled fermion fields”, Class. Quantum Grav., 25, 225006, (2008). [External LinkDOI].
200 de Souza, R.C. and Kremer, G.M., “Constraining non-minimally coupled tachyon fields by the Noether symmetry”, Class. Quantum Grav., 26, 135008, (2009). [External LinkDOI].
201 Deffayet, C., “Cosmology on a brane in Minkowski bulk”, Phys. Lett. B, 502, 199–208, (2001). [External LinkDOI].
202 Deffayet, C., Deser, S. and Esposito-Farèse, G., “Generalized Galileons: All scalar models whose curved background extensions maintain second-order field equations and stress-tensors”, Phys. Rev. D, 80, 064015, (2009). [External LinkDOI].
203 Deffayet, C., Dvali, G. and Gabadadze, G., “Accelerated universe from gravity leaking to extra dimensions”, Phys. Rev. D, 65, 044023, (2002). [External LinkDOI].
204 Deffayet, C., Dvali, G., Gabadadze, G. and Vainshtein, A.I., “Nonperturbative continuity in graviton mass versus perturbative discontinuity”, Phys. Rev. D, 65, 044026, (2002). [External LinkDOI].
205 Deffayet, C., Esposito-Farèse, G. and Vikman, A., “Covariant Galileon”, Phys. Rev. D, 79, 084003, (2009). [External LinkDOI].
206 Deruelle, N., Sasaki, M. and Sendouda, Y., “ ‘Detuned’ f(R) gravity and dark energy”, Phys. Rev. D, 77, 124024, (2008). [External LinkDOI].
207 Deruelle, N., Sasaki, M. and Sendouda, Y., “Junction Conditions in f(R) Theories of Gravity”, Prog. Theor. Phys., 119, 237–251, (2008). [External LinkDOI].
208 Deruelle, N., Sasaki, M., Sendouda, Y. and Yamauchi, D., “Hamiltonian formulation of f(Riemann) theories of gravity”, Prog. Theor. Phys., 123, 169–185, (2010). [External LinkDOI].
209 Deruelle, N., Sendouda, Y. and Youssef, A., “Various Hamiltonian formulations of f(R) gravity and their canonical relationships”, Phys. Rev. D, 80, 084032, (2009). [External LinkDOI].
210 Dev, A., Jain, D., Jhingan, S., Nojiri, S., Sami, M. and Thongkool, I., “Delicate f(R) gravity models with disappearing cosmological constant and observational constraints on the model parameters”, Phys. Rev. D, 78, 083515, (2008). [External LinkDOI].
211 Di Porto, C. and Amendola, L., “Observational constraints on the linear fluctuation growth rate”, Phys. Rev. D, 77, 083508, (2008). [External LinkDOI].
212 Dick, R., “Letter: On the Newtonian limit in gravity models with inverse powers of R”, Gen. Relativ. Gravit., 36, 217–224, (2004). [External LinkDOI].
213 Dicke, R.H., “Mach’s Principle and Invariance under Transformation of Units”, Phys. Rev., 125, 2163–2167, (1962). [External LinkDOI].
214 Dodelson, S., Modern Cosmology, (Academic Press, London; Burlington, MA, 2003). [External LinkGoogle Books].
215 Dolgov, A.D. and Kawasaki, M., “Can modified gravity explain accelerated cosmic expansion?”, Phys. Lett. B, 573, 1–4, (2003). [External LinkDOI].
216 Domínguez, A.E. and Barraco, D.E., “Newtonian limit of the singular f(R) gravity in the Palatini formalism”, Phys. Rev. D, 70, 043505, (2004). [External LinkDOI].
217 Durrer, R. and Maartens, R., “Dark Energy and Modified Gravity”, arXiv e-print, (2008). [External LinkarXiv:0811.4132 [astro-ph]].
218 Dvali, G., “Predictive power of strong coupling in theories with large distance modified gravity”, New J. Phys., 8, 326, (2006). [External LinkDOI]. URL (accessed 25 February 2010):
External Linkhttp://stacks.iop.org/1367-2630/8/i=12/a=326.
219 Dvali, G.R. and Gabadadze, G., “Gravity on a brane in infinite-volume extra space”, Phys. Rev. D, 63, 065007, (2001). [External LinkDOI].
220 Dvali, G.R., Gabadadze, G. and Porrati, M., “4D gravity on a brane in 5D Minkowski space”, Phys. Lett. B, 485, 208–214, (2000). [External LinkDOI], [External LinkADS], [External Linkhep-th/0005016].
221 Dvali, G. and Turner, M.S., “Dark energy as a modification of the Friedmann equation”, arXiv e-print, (2003). [External Linkastro-ph/0301510].
222 Dyer, E. and Hinterbichler, K., “Boundary terms, variational principles, and higher derivative modified gravity”, Phys. Rev. D, 79, 024028, (2009). [External LinkDOI].
223 Easson, D.A., “Modified gravitational theories and cosmic acceleration”, Int. J. Mod. Phys. A, 19, 5343–5350, (2004). [External LinkDOI].
224 Easther, R. and Maeda, K.=I., “One-loop superstring cosmology and the nonsingular universe”, Phys. Rev. D, 54, 7252–7260, (1996). [External LinkDOI].
225 Einstein, A., “Die Feldgleichungen der Gravitation”, Sitzungsber. K. Preuss. Akad. Wiss., Phys.-Math. Kl., 1915, 844–847, (1915). Online version (accessed 12 May 2010):
External Linkhttp://einstein-annalen.mpiwg-berlin.mpg.de/related_texts/sitzungsberichte/6E3MAXK4.
226 Einstein, A., “Die Grundlage der allgemeinen Relativitätstheorie”, Ann. Phys. (Leipzig), 49, 769–822, (1916). [External LinkDOI].
227 Eisenstein, D.J., et al. (SDSS Collaboration), “Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies”, Astrophys. J., 633, 560–574, (2005). [External LinkDOI], [External LinkADS].
228 Eling, C., Guedens, R. and Jacobson, T., “Nonequilibrium Thermodynamics of Spacetime”, Phys. Rev. Lett., 96, 121301, (2006). [External LinkDOI].
229 Elizalde, E., Myrzakulov, R., Obukhov, V.V. and Sáez-Gómez, D., “ΛCDM epoch reconstruction from F(R,G) and modified Gauss-Bonnet gravities”, Class. Quantum Grav., 27, 095007, (2010). [External LinkDOI], [External LinkarXiv:1001.3636 [gr-qc]].
230 Elizalde, E. and Silva, P.J., “f(R) gravity equation of state”, Phys. Rev. D, 78, 061501, (2008). [External LinkDOI].
231 Ellis, G.F.R. and Bruni, M., “Covariant and gauge-invariant approach to cosmological density fluctuations”, Phys. Rev. D, 40, 1804–1818, (1989). [External LinkDOI].
232 Ellis, G.F.R., Bruni, M. and Hwang, J., “Density-gradient-vorticity relation in perfect-fluid Robertson-Walker perturbations”, Phys. Rev. D, 42, 1035–1046, (1990). [External LinkDOI].
233 Erickcek, A.L., Smith, T.L. and Kamionkowski, M., “Solar system tests do rule out 1∕R gravity”, Phys. Rev. D, 74, 121501, (2006). [External LinkDOI].
234 Esposito-Farèse, G. and Polarski, D., “Scalar-tensor gravity in an accelerating universe”, Phys. Rev. D, 63, 063504, (2001). [External LinkDOI].
235 Evans, J.D., Hall, L.M.H. and Caillol, P., “Standard cosmological evolution in a wide range of f(R) models”, Phys. Rev. D, 77, 083514, (2008). [External LinkDOI].
236 Exirifard, Q. and Sheikh-Jabbari, M.M., “Lovelock gravity at the crossroads of Palatini and metric formulations”, Phys. Lett. B, 661, 158–161, (2008). [External LinkDOI].
237 Ezawa, Y., Kajihara, M., Kiminami, M., Soda, J. and Yano, T., “A canonical formalism for a higher-curvature gravity”, Class. Quantum Grav., 16, 1127–1135, (1999). [External LinkDOI], [External Linkgr-qc/9801084].
238 Fairbairn, M. and Goobar, A., “Supernova limits on brane world cosmology”, Phys. Lett. B, 642, 432–435, (2006). [External LinkDOI].
239 Fairbairn, M. and Rydbeck, S., “Expansion history and f(R) modified gravity”, J. Cosmol. Astropart. Phys., 2007(12), 005, (2007). [External LinkDOI].
240 Fakir, R., Habib, S. and Unruh, W., “Cosmological density perturbations with modified gravity”, Astrophys. J., 394, 396–400, (1992). [External LinkDOI].
241 Fakir, R. and Unruh, W.G., “Improvement on cosmological chaotic inflation through nonminimal coupling”, Phys. Rev. D, 41, 1783–1791, (1990). [External LinkDOI].
242 Faraoni, V., “de Sitter attractors in generalized gravity”, Phys. Rev. D, 70, 044037, (2004). [External LinkDOI].
243 Faraoni, V., “Modified gravity and the stability of de Sitter space”, Phys. Rev. D, 72, 061501, (2005). [External LinkDOI].
244 Faraoni, V., “Matter instability in modified gravity”, Phys. Rev. D, 74, 104017, (2006). [External LinkDOI], [External Linkgr-qc/9710089].
245 Faraoni, V., “Solar system experiments do not yet veto modified gravity models”, Phys. Rev. D, 74, 023529, (2006). [External LinkDOI].
246 Faraoni, V., “de Sitter space and the equivalence between f(R) and scalar-tensor gravity”, Phys. Rev. D, 75, 067302, (2007). [External LinkDOI].
247 Faraoni, V., “Palatini f(R) gravity as a fixed point”, Phys. Lett. B, 665, 135–138, (2008). [External LinkDOI].
248 Faraoni, V., “The Lagrangian description of perfect fluids and modified gravity with an extra force”, Phys. Rev. D, 80, 124040, (2009). [External LinkDOI].
249 Faraoni, V., Gunzig, E. and Nardone, P., “Conformal transformations in classical gravitational theories and in cosmology”, Fundam. Cosmic Phys., 20, 121–175, (1999). [External Linkgr-qc/9811047].
250 Faraoni, V. and Nadeau, S., “Stability of modified gravity models”, Phys. Rev. D, 72, 124005, (2005). [External LinkDOI].
251 Faulkner, T., Tegmark, M., Bunn, E.F. and Mao, Y., “Constraining f(R) gravity as a scalar tensor theory”, Phys. Rev. D, 76, 063505, (2007). [External LinkDOI].
252 Fay, S., Nesseris, S. and Perivolaropoulos, L., “Can f(R) modified gravity theories mimic a ΛCDM cosmology?”, Phys. Rev. D, 76, 063504, (2007). [External LinkDOI].
253 Fay, S., Tavakol, R. and Tsujikawa, S., “f(R) gravity theories in Palatini formalism: Cosmological dynamics and observational constraints”, Phys. Rev. D, 75, 063509, (2007). [External LinkDOI].
254 Felder, G.N. and Kofman, L., “The development of equilibrium after preheating”, Phys. Rev. D, 63, 103503, (2001). [External LinkDOI].
255 Felder, G.N. and Tkachev, I., “LATTICEEASY: A program for lattice simulations of scalar fields in an expanding universe”, arXiv e-print, (2000). [External Linkhep-ph/0011159].
256 Ferraris, M., Francaviglia, M. and Volovich, I., “The universality of vacuum Einstein equations with cosmological constant”, Class. Quantum Grav., 11, 1505–1517, (1994). [External LinkDOI].
257 Ferreira, P.G. and Joyce, M., “Structure formation with a self-tuning scalar field”, Phys. Rev. Lett., 79, 4740–4743, (1997). [External LinkDOI].
258 Fierz, M., “Über die relativistische Theorie kräfterfreier Teilchen mit beliebigem Spin”, Helv. Phys. Acta, 12, 3–37, (1939).
259 Fierz, M. and Pauli, W., “On Relativistic Wave Equations for Particles of Arbitrary Spin in an Electromagnetic Field”, Proc. R. Soc. London, Ser. A, 173, 211–232, (1939). [External LinkDOI].
260 Flanagan, É.É., “The conformal frame freedom in theories of gravitation”, Class. Quantum Grav., 21, 3817–3829, (2004). [External LinkDOI].
261 Flanagan, É.É., “Higher-order gravity theories and scalar-tensor theories”, Class. Quantum Grav., 21, 417–426, (2004). [External LinkDOI].
262 Flanagan, É.É., “Palatini Form of 1∕R gravity”, Phys. Rev. Lett., 92, 071101, (2004). [External LinkDOI], [External Linkastro-ph/0308111].
263 Ford, L.H., “Cosmological-constant damping by unstable scalar fields”, Phys. Rev. D, 35, 2339–2344, (1987). [External LinkDOI].
264 Freedman, W.L., et al. (HST Collaboration), “Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant”, Astrophys. J., 553, 47–72, (2001). [External LinkDOI], [External LinkADS].
265 Frigerio Martins, C. and Salucci, P., “Analysis of rotation curves in the framework of Rn gravity”, Mon. Not. R. Astron. Soc., 381, 1103–1108, (2007). [External LinkDOI].
266 Frolov, A.V., “A Singularity Problem with f(R) Dark Energy”, Phys. Rev. Lett., 101, 061103, (2008). [External LinkDOI].
267 Fujii, Y., “Origin of the gravitational constant and particle masses in a scale-invariant scalar-tensor theory”, Phys. Rev. D, 26, 2580–2588, (1982). [External LinkDOI].
268 Fujii, Y. and Maeda, K.-I., The Scalar–Tensor Theory of Gravitation, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 2003). [External LinkGoogle Books].
269 Futamase, T. and Maeda, K.-I., “Chaotic inflationary scenario of the Universe with a nonminimally coupled ‘inflaton’ field”, Phys. Rev. D, 39, 399–404, (1989). [External LinkDOI].
270 Gannouji, R., Moraes, B. and Polarski, D., “The growth of matter perturbations in f(R) models”, J. Cosmol. Astropart. Phys., 2009(02), 034, (2009). [External LinkDOI].
271 Gannouji, R., Polarski, D., Ranquet, A. and Starobinsky, A.A., “Scalar-tensor models of normal and phantom dark energy”, J. Cosmol. Astropart. Phys., 2006(09), 016, (2006). [External LinkDOI].
272 García-Bellido, J. and Wands, D., “Constraints from inflation on scalar-tensor gravity theories”, Phys. Rev. D, 52, 6739–6749, (1995). [External LinkDOI].
273 Gasperini, M., Maggiore, M. and Veneziano, G., “Towards a non-singular pre-big-bang cosmology”, Nucl. Phys. B, 494, 315–328, (1997). [External LinkDOI].
274 Gasperini, M., Piazza, F. and Veneziano, G., “Quintessence as a runaway dilaton”, Phys. Rev. D, 65, 023508, (2002). [External LinkDOI].
275 Gasperini, M. and Veneziano, G., “Pre-big-bang in string cosmology”, Astropart. Phys., 1, 317–339, (1993). [External LinkDOI].
276 Gasperini, M. and Veneziano, G., “The pre-big bang scenario in string cosmology”, Phys. Rep., 373, 1–212, (2003). [External LinkDOI], [External Linkhep-th/0207130].
277 Gérard, J.-M., “The strong equivalence principle from a gravitational gauge structure”, Class. Quantum Grav., 24, 1867–1877, (2007). [External LinkDOI].
278 Gironés, Z., Marchetti, A., Mena, O., Peña Garay, C. and Rius, N., “Cosmological data analysis of f(R) gravity models”, arXiv e-print, (2009). [External LinkarXiv:0912.5474 [astro-ph.CO]].
279 Goheer, N., Goswami, R. and Dunsby, P.K.S., “Dynamics of f(R)-cosmologies containing Einstein static models”, Class. Quantum Grav., 26, 105003, (2009). [External LinkDOI].
280 Goheer, N., Leach, J.A. and Dunsby, P.K.S., “Dynamical systems analysis of anisotropic cosmologies in Rn-gravity”, Class. Quantum Grav., 24, 5689–5708, (2007). [External LinkDOI].
281 Gong, Y. and Wang, A., “The Friedmann equations and thermodynamics of apparent horizons”, Phys. Rev. Lett., 99, 211301, (2007). [External LinkDOI].
282 Gripaios, B.M., “Modified gravity via spontaneous symmetry breaking”, J. High Energy Phys., 2004(10), 069, (2004). [External LinkDOI].
283 Gross, D.J. and Sloan, J.H., “The Quartic Effective Action for the Heterotic String”, Nucl. Phys. B, 291, 41–89, (1987). [External LinkDOI].
284 Gross, D.J. and Witten, E., “Superstring Modifications of Einstein’s Equations”, Nucl. Phys. B, 277, 1–10, (1986). [External LinkDOI].
285 Gruzinov, A., “On the graviton mass”, New Astronomy, 10, 311–314, (2005). [External LinkDOI].
286 Guarnizo, A., Castaneda, L. and Tejeiro, J.M., “Boundary Term in Metric f(R) Gravity: Field Equations in the Metric Formalism”, arXiv e-print, (2010). [External LinkarXiv:1002.0617 [gr-qc]].
287 Günther, U., Moniz, P. and Zhuk, A., “Asymptotical AdS space from nonlinear gravitational models with stabilized extra dimensions”, Phys. Rev. D, 66, 044014, (2002). [External LinkDOI].
288 Günther, U., Zhuk, A., Bezerra, V.B. and Romero, C., “AdS and stabilized extra dimensions in multi-dimensional gravitational models with nonlinear scalar curvature terms R1 and R4”, Class. Quantum Grav., 22, 3135–3167, (2005). [External LinkDOI].
289 Gunzig, E., Faraoni, V., Figueiredo, A., Rocha Filho, T.M. and Brenig, L., “The dynamical system approach to scalar field cosmology”, Class. Quantum Grav., 17, 1783–1814, (2000). [External LinkDOI].
290 Guo, Z.-K., Ohta, N. and Tsujikawa, S., “Realizing scale-invariant density perturbations in low-energy effective string theory”, Phys. Rev. D, 75, 023520, (2007). [External LinkDOI].
291 Guth, A.H., “The inflationary universe: A possible solution to the horizon and flatness problems”, Phys. Rev. D, 23, 347–356, (1981). [External LinkDOI].
292 Guzik, J., Jain, B. and Takada, M., “Tests of gravity from imaging and spectroscopic surveys”, Phys. Rev. D, 81, 023503, (2010). [External LinkDOI].
293 Hawking, S.W., “Particle creation by black holes”, Commun. Math. Phys., 43, 199–220, (1975). [External LinkDOI]. Online version (accessed 25 February 2010):
External Linkhttp://projecteuclid.org/euclid.cmp/1103899181.
294 Hawking, S.W. and Hertog, T., “Living with ghosts”, Phys. Rev. D, 65, 103515, (2002). [External LinkDOI].
295 Hawking, S.W. and Luttrell, J.C., “Higher Derivatives In Quantum Cosmology: (I). The Isotropic Case”, Nucl. Phys. B, 247, 250–260, (1984). [External LinkDOI].
296 Hayward, S.A., “General laws of black-hole dynamics”, Phys. Rev. D, 49, 6467–6474, (1994). [External LinkDOI], [External Linkgr-qc/9303006].
297 Hayward, S.A., “Unified first law of black-hole dynamics and relativistic thermodynamics”, Class. Quantum Grav., 15, 3147–3162, (1998). [External LinkDOI].
298 Hayward, S.A., Mukohyama, S. and Ashworth, M.C., “Dynamic black-hole entropy”, Phys. Lett. A, 256, 347–350, (1999). [External LinkDOI], [External Linkgr-qc/9810006].
299 Hehl, F.W. and Kerlick, G.D., “Metric-affine variational principles in general relativity. I. Riemannian space-time”, Gen. Relativ. Gravit., 9, 691–710, (1978). [External LinkDOI].
300 Henttunen, K., Multamäki, T. and Vilja, I., “Stellar configurations in f(R) theories of gravity”, Phys. Rev. D, 77, 024040, (2008). [External LinkDOI].
301 Hilbert, D., “Die Grundlagen der Physik (Erste Mitteilung.)”, Nachr. Koenigl. Gesellsch. Wiss. Goettingen, Math.-Phys. Kl., 1915, 395–407, (1915). Online version (accessed 25 February 2010):
External Linkhttp://echo.mpiwg-berlin.mpg.de/content/modernphysics/hilbert/hilbert_grundlagen_1915.
302 Hindawi, A., Ovrut, B.A. and Waldram, D., “Consistent Spin-Two Coupling and Quadratic Gravitation”, Phys. Rev. D, 53, 5583–5596, (1996). [External LinkDOI].
303 Hindawi, A., Ovrut, B.A. and Waldram, D., “Nontrivial vacua in higher-derivative gravitation”, Phys. Rev. D, 53, 5597–5608, (1996). [External LinkDOI].
304 Hinterbichler, K., Nicolis, A. and Porrati, M., “Superluminality in DGP”, J. High Energy Phys., 2009(09), 089, (2009). [External LinkDOI].
305 Hořava, P., “Quantum gravity at a Lifshitz point”, Phys. Rev. D, 79, 084008, (2009).
306 Hu, W. and Sawicki, I., “Models of f(R) Cosmic Acceleration that Evade Solar-System Tests”, Phys. Rev. D, 76, 064004, (2007). [External LinkDOI].
307 Hu, W. and Sawicki, I., “Parametrized post-Friedmann framework for modified gravity”, Phys. Rev. D, 76, 104043, (2007). [External LinkDOI].
308 Hu, W. and Sugiyama, N., “Anisotropies in the cosmic microwave background: An analytic approach”, Astrophys. J., 444, 489–506, (1995). [External LinkDOI].
309 Hui, L., Nicolis, A. and Stubbs, C.W., “Equivalence principle implications of modified gravity models”, Phys. Rev. D, 80, 104002, (2009). [External LinkDOI], [External LinkarXiv:0905.2966 [astro-ph.CO]].
310 Huterer, D. and Turner, M.S., “Prospects for probing the dark energy via supernova distance measurements”, Phys. Rev. D, 60, 081301, (1999). [External LinkDOI], [External Linkastro-ph/9808133].
311 Hwang, J.C., “Quantum fluctuations of cosmological perturbations in generalized gravity”, Class. Quantum Grav., 14, 3327–3336, (1997). [External LinkDOI], [External Linkgr-qc/9607059].
312 Hwang, J.-C., “Cosmological perturbations in generalized gravity theories: Formulation”, Class. Quantum Grav., 7, 1613–1631, (1990). [External LinkDOI].
313 Hwang, J.-C., “Cosmological perturbations in generalized gravity theories: Inflationary spectrum”, Class. Quantum Grav., 8, 195–202, (1991). [External LinkDOI].
314 Hwang, J.-C. and Noh, H., “Cosmological perturbations in generalized gravity theories”, Phys. Rev. D, 54, 1460–1473, (1996). [External LinkDOI].
315 Hwang, J.-C. and Noh, H., “f(R) gravity theory and CMBR constraints”, Phys. Lett. B, 506, 13–19, (2001). [External LinkDOI].
316 Hwang, J.-C. and Noh, H., “Gauge-ready formulation of the cosmological kinetic theory in generalized gravity theories”, Phys. Rev. D, 65, 023512, (2001). [External LinkDOI].
317 Hwang, J.-C. and Noh, H., “Classical evolution and quantum generation in generalized gravity theories including string corrections and tachyons: Unified analyses”, Phys. Rev. D, 71, 063536, (2005). [External LinkDOI].
318 Iglesias, A., Kaloper, N., Padilla, A. and Park, M., “How (not) to use the Palatini formulation of scalar-tensor gravity”, Phys. Rev. D, 76, 104001, (2007). [External LinkDOI].
319 Iorio, L. and Ruggiero, M.L., “Constraining models of modified gravity with the double pulsar PSR J0737-3039A/B system”, Int. J. Mod. Phys. A, 22, 5379–5389, (2007). [External LinkDOI].
320 Ishak, M., Hirata, C.M., McDonald, P. and Seljak, U., “Weak Lensing and CMB: Parameter forecasts including a running spectral index”, Phys. Rev. D, 69, 083514, (2004). [External LinkDOI].
321 Ishak, M. and Moldenhauer, J., “A minimal set of invariants as a systematic approach to higher order gravity models”, J. Cosmol. Astropart. Phys., 2009(01), 024, (2009). [External LinkDOI].
322 Ishak, M., Upadhye, A. and Spergel, D.N., “Probing cosmic acceleration beyond the equation of state: Distinguishing between dark energy and modified gravity models”, Phys. Rev. D, 74, 043513, (2006). [External LinkDOI].
323 Israel, W., “Singular hypersurfaces and thin shells in general relativity”, Nuovo Cimento B, 44, 1–14, (1966). [External LinkDOI].
324 Jacobson, T., “Thermodynamics of Spacetime: The Einstein Equation of State”, Phys. Rev. Lett., 75, 1260–1263, (1995). [External LinkDOI].
325 Jacobson, T. and Mattingly, D., “Gravity with a dynamical preferred frame”, Phys. Rev. D, 64, 024028, (2001). [External LinkDOI].
326 Jain, B. and Zhang, P., “Observational tests of modified gravity”, Phys. Rev. D, 78, 063503, (2008). [External LinkDOI].
327 Järv, L., Kuusk, P. and Saal, M., “Scalar-tensor cosmologies: Fixed points of the Jordan frame scalar field”, Phys. Rev. D, 78, 083530, (2008). [External LinkDOI].
328 Ji, X.-D. and Wang, T., “Curvature and entropy perturbations in generalized gravity”, Phys. Rev. D, 79, 103525, (2009). [External LinkDOI].
329 Jin, X.-H., Liu, D.-J. and Li, X.-Z., “Solar System tests disfavor f(R) gravities”, arXiv e-print, (2006). [External Linkastro-ph/0610854].
330 Kainulainen, K., Piilonen, J., Reijonen, V. and Sunhede, D., “Spherically symmetric spacetimes in f(R) gravity theories”, Phys. Rev. D, 76, 024020, (2007). [External LinkDOI].
331 Kainulainen, K., Reijonen, V. and Sunhede, D., “Interior spacetimes of stars in Palatini f(R) gravity”, Phys. Rev. D, 76, 043503, (2007). [External LinkDOI].
332 Kainulainen, K. and Sunhede, D., “Stability of spherically symmetric spacetimes in metric f(R) gravity”, Phys. Rev. D, 78, 063511, (2008). [External LinkDOI].
333 Kaloper, N., “Brane Induced Gravity: Codimension-2”, Mod. Phys. Lett. A, 23, 781–796, (2008). [External LinkDOI].
334 Kaloper, N. and Kiley, D., “Charting the landscape of modified gravity”, J. High Energy Phys., 2007(05), 045, (2007). [External LinkDOI].
335 Kamionkowski, M. and Buchalter, A., “Weakly nonlinear clustering for arbitrary expansion histories”, Astrophys. J., 514, 7–11, (1999). [External LinkDOI].
336 Kanti, P., Rizos, J. and Tamvakis, K., “Singularity-free cosmological solutions in quadratic gravity”, Phys. Rev. D, 59, 083512, (1999). [External LinkDOI].
337 Kawai, S., Sakagami, M. and Soda, J., “Instability of 1-loop superstring cosmology”, Phys. Lett. B, 437, 284, (1998).
338 Kawai, S. and Soda, J., “Nonsingular Bianchi type I cosmological solutions from 1-loop superstring effective action”, Phys. Rev. D, 59, 063506, (1999). [External LinkDOI].
339 Kazanas, D., “Dynamics Of The Universe And Spontaneous Symmetry Breaking”, Astrophys. J., 241, L59–L63, (1980). [External LinkDOI].
340 Kazanas, D. and Mannheim, P.D., “General structure of the gravitational equations of motion in conformal Weyl gravity”, Astrophys. J. Suppl. Ser., 76, 431–453, (1991). [External LinkDOI].
341 Ketov, S.V., “Scalar potential in F(R) supergravity”, Class. Quantum Grav., 26, 135006, (2009). [External LinkDOI].
342 Khlebnikov, S.Y. and Tkachev, I., “Resonant Decay of Cosmological Bose Condensates”, Phys. Rev. Lett., 79, 1607–1610, (1997). [External LinkDOI].
343 Khoury, J. and Weltman, A., “Chameleon Cosmology”, Phys. Rev. D, 69, 044026, (2004). [External LinkDOI].
344 Khoury, J. and Weltman, A., “Chameleon Fields: Awaiting Surprises for Tests of Gravity in Space”, Phys. Rev. Lett., 93, 171104, (2004). [External LinkDOI].
345 Klinkhamer, F.R. and Volovik, G.E., “f(R) Cosmology from q-Theory”, J. Exp. Theor. Phys. Lett., 88, 289–294, (2008). [External LinkDOI].
346 Klusoň, J., “Hořava-Lifshitz f(R) gravity”, J. High Energy Phys., 2009(11), 078, (2009). [External LinkDOI].
347 Klusoň, J., “New models of f(R) theories of gravity”, Phys. Rev., 81, 064028, (2010). [External LinkDOI], [External LinkarXiv:0910.5852 [hep-th]].
348 Knox, L., Song, Y.-S. and Tyson, J.A., “Distance-redshift and growth-redshift relations as two windows on acceleration and gravitation: Dark energy or new gravity?”, Phys. Rev. D, 74, 023512, (2006). [External LinkDOI].
349 Kobayashi, T. and Maeda, K., “Relativistic stars in f(R) gravity, and absence thereof”, Phys. Rev. D, 78, 064019, (2008). [External LinkDOI].
350 Kobayashi, T. and Maeda, K., “Can higher curvature corrections cure the singularity problem in f(R) gravity?”, Phys. Rev. D, 79, 024009, (2009). [External LinkDOI].
351 Kobayashi, T., Tashiro, H. and Suzuki, D., “Evolution of linear cosmological perturbations and its observational implications in Galileon-type modified gravity”, Phys. Rev. D, 81, 063513, (2010). [External LinkDOI], [External LinkarXiv:0912.4641 [astro-ph.CO]].
352 Kodama, H. and Sasaki, M., “Cosmological Perturbation Theory”, Prog. Theor. Phys. Suppl., 78, 1–166, (1984). [External LinkDOI].
353 Kofman, L., Linde, A.D. and Starobinsky, A.A., “Reheating after inflation”, Phys. Rev. Lett., 73, 3195–3198, (1994). [External LinkDOI].
354 Kofman, L., Linde, A.D. and Starobinsky, A.A., “Towards the theory of reheating after inflation”, Phys. Rev. D, 56, 3258–3295, (1997). [External LinkDOI].
355 Kofman, L.A., Mukhanov, V.F. and Pogosian, D.Y., “Evolution of inhomogeneities in inflationary models in a theory of gravitation with higher derivatives”, Sov. Phys. JETP, 66, 433, (1987). Zh. Eksp. Teor. Fiz., 93, 769, (1987).
356 Koivisto, T., “Matter power spectrum in f(R) gravity”, Phys. Rev. D, 73, 083517, (2006). [External LinkDOI].
357 Koivisto, T., “A note on covariant conservation of energy-momentum in modified gravities”, Class. Quantum Grav., 23, 4289–4296, (2006). [External LinkDOI].
358 Koivisto, T., “Viable Palatini-f(R) cosmologies with generalized dark matter”, Phys. Rev. D, 76, 043527, (2007). [External LinkDOI].
359 Koivisto, T. and Kurki-Suonio, H., “Cosmological perturbations in the Palatini formulation of modified gravity”, Class. Quantum Grav., 23, 2355–2369, (2006). [External LinkDOI], [External Linkastro-ph/0509422].
360 Koivisto, T. and Mota, D.F., “Cosmology and astrophysical constraints of Gauss-Bonnet dark energy”, Phys. Lett. B, 644, 104–108, (2007). [External LinkDOI].
361 Koivisto, T. and Mota, D.F., “Gauss-Bonnet quintessence: Background evolution, large scale structure, and cosmological constraints”, Phys. Rev. D, 75, 023518, (2007). [External LinkDOI].
362 Kolanović, M., “Gravity induced over a smooth soliton”, Phys. Rev. D, 67, 106002, (2003). [External LinkDOI].
363 Kolanovic, M., Porrati, M. and Rombouts, J.-W., “Regularization of brane induced gravity”, Phys. Rev. D, 68, 064018, (2003). [External LinkDOI].
364 Kolb, E.W. and Turner, M.S., The Early Universe, Frontiers in Physics,  69, (Addison-Wesley, Reading, MA, 1990).
365 Kolda, C.F. and Lyth, D.H., “Quintessential difficulties”, Phys. Lett. B, 458, 197–201, (1999). [External LinkDOI], [External Linkhep-ph/9811375].
366 Komatsu, E. and Futamase, T., “Complete constraints on a nonminimally coupled chaotic inflationary scenario from the cosmic microwave background”, Phys. Rev. D, 59, 064029, (1999). [External LinkDOI].
367 Komatsu, E., et al. (WMAP Collaboration), “Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations:Cosmological Interpretation”, Astrophys. J. Suppl. Ser., 180, 330–376, (2009). [External LinkDOI].
368 Kowalski, M. et al. (Supernova Cosmology Project Collaboration), “Improved cosmological constraints from new, old and combined supernova data sets”, Astrophys. J., 686, 749–778, (2008). [External LinkDOI].
369 Koyama, K. and Maartens, R., “Structure formation in the Dvali-Gabadadze-Porrati cosmological model”, J. Cosmol. Astropart. Phys., 2006(01), 016, (2006). [External LinkDOI].
370 Koyama, K. and Silva, F.P., “Nonlinear interactions in a cosmological background in the Dvali-Gabadadze-Porrati braneworld”, Phys. Rev. D, 75, 084040, (2007). [External LinkDOI].
371 Koyama, K., Taruya, A. and Hiramatsu, T., “Nonlinear evolution of the matter power spectrum in modified theories of gravity”, Phys. Rev. D, 79, 123512, (2009). [External LinkDOI].
372 Kretschmann, E., “Über den physikalischen Sinn der Relativitätspostulate, A. Einsteins neue und seine ursprüngliche Relativitätstheorie”, Ann. Phys. (Leipzig), 53(16), 575–614, (1917).
373 Kunz, M. and Sapone, D., “Dark energy versus modified gravity”, Phys. Rev. Lett., 98, 121301, (2007). [External LinkDOI].
374 La, D. and Steinhardt, P.J., “Extended Inflationary Cosmology”, Phys. Rev. Lett., 62, 376–378, (1989). [External LinkDOI].
375 La, D., Steinhardt, P.J. and Bertschinger, E.W., “Prescription for successful extended inflation”, Phys. Lett. B, 231, 231–236, (1989). [External LinkDOI].
376 Lambiase, G. and Scarpetta, G., “Baryogenesis in f(R) theories of gravity”, Phys. Rev. D, 74, 087504, (2006). [External LinkDOI].
377 Lanahan-Tremblay, N. and Faraoni, V., “The Cauchy problem of f(R) gravity”, Class. Quantum Grav., 24, 5667–5679, (2007). [External LinkDOI], [External LinkarXiv:0709.4414 [gr-qc]].
378 Lanczos, C., “A Remarkable Property of the Riemann-Christoffel Tensor in Four Dimensions”, Ann. Math., 39, 842–850, (1938). [External LinkDOI].
379 Laszlo, I. and Bean, R., “Nonlinear growth in modified gravity theories of dark energy”, Phys. Rev. D, 77, 024048, (2008). [External LinkDOI].
380 Lee, S., “Palatini f(R) Cosmology”, Mod. Phys. Lett. A, 23, 1388–1396, (2008). [External LinkDOI].
381 Leith, B.M. and Neupane, I.P., “Gauss-Bonnet cosmologies: crossing the phantom divide and the transition from matter dominance to dark energy”, J. Cosmol. Astropart. Phys., 2007(05), 019, (2007). [External LinkDOI].
382 Li, B. and Barrow, J.D., “The Cosmology of f(R) Gravity in the Metric Variational Approach”, Phys. Rev. D, 75, 084010, (2007). [External LinkDOI].
383 Li, B., Barrow, J.D. and Mota, D.F., “The Cosmology of Modified Gauss-Bonnet Gravity”, Phys. Rev. D, 76, 044027, (2007). [External LinkDOI].
384 Li, B., Barrow, J.D. and Mota, D.F., “The cosmology of Ricci-tensor-squared gravity in the Palatini variational approach”, Phys. Rev. D, 76, 104047, (2007). [External LinkDOI].
385 Li, B., Chan, K.C. and Chu, M.-C., “Constraints on f(R) Cosmology in the Palatini Formalism”, Phys. Rev. D, 76, 024002, (2007). [External LinkDOI].
386 Li, B. and Chu, M.-C., “CMB and matter power spectra of early f(R) cosmology in the Palatini formulation”, Phys. Rev. D, 74, 104010, (2006). [External LinkDOI].
387 Li, B., Mota, D.F. and Shaw, D.J., “Microscopic and macroscopic behaviors of Palatini modified gravity theories”, Phys. Rev. D, 78, 064018, (2008). [External LinkDOI].
388 Li, B., Mota, D.F. and Shaw, D.J., “Indistinguishable macroscopic behaviour of Palatini gravities and general relativity”, Class. Quantum Grav., 26, 055018, (2009). [External LinkDOI].
389 Libanov, M., Rubakov, V., Papantonopoulos, E., Sami, M. and Tsujikawa, S., “Ultraviolet stable, Lorentz-violating dark energy with transient phantom era”, J. Cosmol. Astropart. Phys., 2007(08), 010, (2007). [External LinkDOI].
390 Liddle, A.R. and Lyth, D.H., “Cobe, Gravitational Waves, Inflation And Extended Inflation”, Phys. Lett. B, 291, 391–398, (1992). [External LinkDOI].
391 Liddle, A.R. and Lyth, D.H., Cosmological inflation and Large-Scale Structure, (Cambridge University Press, Cambridge; New York, 2000). [External LinkGoogle Books].
392 Liddle, A.R. and Ureña López, L.A., “Inflation, dark matter, and dark energy in the string landscape”, Phys. Rev. Lett., 97, 161301, (2006). [External LinkDOI].
393 Linde, A.D., “Chaotic Inflation”, Phys. Lett. B, 129, 177–181, (1983). [External LinkDOI].
394 Linde, A., “Eternal extended inflation and graceful exit from old inflation without Jordan-Brans-Dicke”, Phys. Lett. B, 249, 18–26, (1990). [External LinkDOI].
395 Linder, E.V., “Cosmic growth history and expansion history”, Phys. Rev. D, 72, 043529, (2005). [External LinkDOI].
396 Linder, E.V., “Exponential gravity”, Phys. Rev. D, 80, 123528, (2009). [External LinkDOI].
397 Lobo, F.S.N., “The dark side of gravity: Modified theories of gravity”, arXiv e-print, (2008). [External LinkarXiv:0807.1640 [gr-qc]].
398 Lobo, F.S.N. and Oliveira, M.A., “Wormhole geometries in f(R) modified theories of gravity”, Phys. Rev. D, 80, 104012, (2009). [External LinkDOI].
399 Lovelock, D., “The Einstein tensor and its generalizations”, J. Math. Phys., 12, 498–501, (1971). [External LinkDOI].
400 Lue, A., Scoccimarro, R. and Starkman, G.D., “Probing Newton’s constant on vast scales: Dvali-Gabadadze-Porrati gravity, cosmic acceleration, and large scale structure”, Phys. Rev. D, 69, 124015, (2004). [External LinkDOI].
401 Luty, M.A., Porrati, M. and Rattazzi, R., “Strong interactions and stability in the DGP model”, J. High Energy Phys., 2003(09), 029, (2003). [External LinkDOI].
402 Lyth, D.H. and Riotto, A., “Particle physics models of inflation and the cosmological density perturbation”, Phys. Rep., 314, 1–146, (1999). [External LinkDOI].
403 Ma, C.-P., Caldwell, R.R., Bode, P. and Wang, L., “The mass power spectrum in quintessence cosmological models”, Astrophys. J., 521, L1–L4, (1999). [External LinkDOI], [External Linkastro-ph/9906174].
404 Maartens, R., “Brane-World Gravity”, Living Rev. Relativity, 7, lrr-2004-7, (2004). URL (accessed 25 February 2010):
http://www.livingreviews.org/lrr-2004-7.
405 Maartens, R. and Majerotto, E., “Observational constraints on self-accelerating cosmology”, Phys. Rev. D, 74, 023004, (2006). [External LinkDOI].
406 Machado, P.F. and Saueressig, F., “On the renormalization group flow of f(R)-gravity”, Phys. Rev. D, 77, 124045, (2008). [External LinkDOI].
407 Maeda, K.-I., “Inflation as a transient attractor in R2 cosmology”, Phys. Rev. D, 37, 858–862, (1988). [External LinkDOI].
408 Maeda, K.-I., “Towards the Einstein-Hilbert Action via Conformal Transformation”, Phys. Rev. D, 39, 3159–3162, (1989). [External LinkDOI].
409 Maeda, K.-I. and Ohta, N., “Inflation from M-theory with fourth-order corrections and large extra dimensions”, Phys. Lett. B, 597, 400–407, (2004). [External LinkDOI].
410 Magnano, G. and Sokolowski, L.M., “Physical equivalence between nonlinear gravity theories and a general-relativistic self-gravitating scalar field”, Phys. Rev. D, 50, 5039–5059, (1994). [External LinkDOI].
411 Makino, N. and Sasaki, M., “The Density perturbation in the chaotic inflation with non-minimal coupling”, Prog. Theor. Phys., 86, 103–118, (1991). [External LinkDOI].
412 Malik, K.A. and Wands, D., “Cosmological perturbations”, Phys. Rep., 475, 1–51, (2009). [External LinkDOI].
413 Mannheim, P.D., “Conformal cosmology with no cosmological constant”, Gen. Relativ. Gravit., 22, 289–298, (1990). [External LinkDOI].
414 Mannheim, P.D. and Kazanas, D., “Exact Vacuum Solution To Conformal Weyl Gravity And Galactic Rotation Curves”, Astrophys. J., 342, 635–638, (1989). [External LinkDOI].
415 Marmo, G., Saletan, E., Simoni, A. and Vitale, B., Dynamical systems: a differential geometric approach to symmetry and reduction, (Wiley, Chichester; New York, 1985).
416 Martin, J., Schimd, C. and Uzan, J.-P., “Testing for w < 1 in the Solar System”, Phys. Rev. Lett., 96, 061303, (2006). [External LinkDOI].