References

1 Adelberger, E.G., Heckel, B.R. and Nelson, A.E., “Tests of the Gravitational Inverse-Square Law”, Annu. Rev. Nucl. Part. Sci., 53, 77–121, (2003). [External LinkDOI].
2 Anderson, J.D., Gross, M., Nordtvedt Jr, K.L. and Turyshev, S.G., “The Solar Test of the Equivalence Principle”, Astrophys. J., 459, 365, (1996). [External LinkDOI].
3 Arnold, D.A., Cross section of the APOLLO Lunar retroreflector arrays, (ILRS, Washington, DC, 2005). Online version (accessed 15 March 2010):
External Linkhttp://ilrs.gsfc.nasa.gov/docs/apollo_arrays.pdf.
4 Baeßler, S., Heckel, B.R., Adelberger, E.G., Gundlach, J.H., Schmidt, U. and Swanson, H.E., “Improved Test of the Equivalence Principle for Gravitational Self-Energy”, Phys. Rev. Lett., 83, 3585–3588, (1999). [External LinkDOI].
5 Battat, J.B.R., Chandler, J.F. and Stubbs, C.W., “Testing for Lorentz Violation: Constraints on Standard-Model Extension Parameters via Lunar Laser Ranging”, Phys. Rev. Lett., 99, 241103, (2007). [External LinkDOI], [External LinkarXiv:0710.0702].
6 Battat, J.B.R. et al., “The Apache Point Observatory Lunar Laser-ranging Operation (APOLLO): Two Years of Millimeter-Precision Measurements of the Earth-Moon Range”, Publ. Astron. Soc. Pac., 121, 29, (2009). [External LinkDOI].
7 Bender, P.L. et al., “The Lunar Laser Ranging Experiment: Accurate ranges have given a large improvement in the lunar orbit and new selenophysical information”, Science, 182, 229, (1973). [External LinkDOI].
8 Bertotti, B., Ciufolini, I. and Bender, P.L., “New test of general relativity: Measurement of de Sitter geodetic precession rate for lunar perigee”, Phys. Rev. Lett., 58, 1062, (1987). [External LinkDOI].
9 Bertotti, B., Iess, L. and Tortora, P., “A test of general relativity using radio links with the Cassini spacecraft”, Nature, 425, 374–376, (2003). [External LinkDOI], [External LinkADS].
10 Bills, B.G., Neumann, G.A., Smith, D.E. and Zuber, M.T., “Improved estimate of tidal dissipation within Mars from MOLA observations of the shadow of Phobos”, J. Geophys. Res., 110, E07004, (2005). [External LinkDOI].
11 Currie, D., Dell’Agnello, S. and Delle Monache, G., “A Lunar Laser Ranging Retroreflector Array for the 21st Century”, in Ryan, S., ed., Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS), Wailea, Maui, Hawaii, September 1 – 4, 2009, (Maui Economic Development Board, Kihei, HI, 2009). URL (accessed 15 March 2010):
External Linkhttp://www.amostech.com/TechnicalPapers/2009.cfm.
12 Damour, T., “Testing the equivalence principle: why and how?”, Class. Quantum Grav., 13, A33–A41, (1996). [External LinkDOI].
13 Damour, T. and Nordtvedt Jr, K.L., “Tensor-scalar cosmological models and their relaxation toward general relativity”, Phys. Rev. D, 48, 3436–3450, (1993). [External LinkDOI].
14 Damour, T. and Polyakov, A.M., “The string dilaton and least coupling principle”, Nucl. Phys. B, 423, 532–558, (1994). [External LinkDOI].
15 Damour, T. and Vokrouhlický, D., “Equivalence principle and the Moon”, Phys. Rev. D, 53, 4177–4201, (1996). [External LinkDOI].
16 Damour, T. and Vokrouhlický, D., “Testing for gravitationally preferred directions using the lunar orbit”, Phys. Rev. D, 53, 6740, (1996). [External LinkDOI].
17 Davies, M.E. and Colvin, T.R., “Lunar coordinates in the regions of the Apollo landers”, J. Geophys. Res., 105(E8), 20,277–20,280, (2000). [External LinkDOI].
18 Deffayet, C., Dvali, G. and Gabadadze, G., “Accelerated universe from gravity leaking to extra dimensions”, Phys. Rev. D, 65, 044023, (2002). [External LinkDOI], [External Linkastro-ph/0105068].
19 Deffayet, C., Dvali, G., Gabadadze, G. and Vainshtein, A., “Nonperturbative continuity in graviton mass versus perturbative discontinuity”, Phys. Rev. D, 65, 044026, (2002). [External LinkDOI].
20 Degnan, J.J., “Asynchronous laser transponders for precise interplanetary ranging and time transfer”, J. Geodyn., 34, 551–594, (2002). [External LinkDOI].
21 Degnan, J.J. and McGarry, J.F., “SLR2000: eye-safe and autonomous single-photoelectron satellite laser ranging at kilohertz rates”, in Schreiber, U. and Werner, C., eds., Laser Radar Ranging and Atmospheric Lidar Techniques, London, UK, September 24 – 26, 1997, Proc. SPIE, 3218, pp. 63–77, (SPIE, Bellingham, WA, 1997). [External LinkDOI]. Online version (accessed 15 March 2010):
External Linkhttp://cddis.nasa.gov/slr2000/docs/slr2000_uk.pdf.
22 Degnan, J., McGarry, J.F., Dabney, P. and Zagwodzki, T.W., “Design and Test of a Breadboard Interplanetary Laser Transponder”, in Proceedings of the 11th International Workshop on Laser Ranging, Deggendorf, Germany, September 21 – 25, 1998, (CDDIS/NASA GSFC, Greenbelt, MD, 1998). URL (accessed 15 March 2010):
External Linkhttp://cddis.gsfc.nasa.gov/lw11/.
23 Dell’Agnello, S. et al., “Creation of the New Industry-standard Space Test of Laser Retroreflectors for GNSS, Fundamental Physics and Space Geodesy: the “SCF-Test””, in Schillack, S., ed., Proceedings of the 16th International Laser Ranging Workshop ‘SLR – The Next Generation’, Poznan, Poland, October 13 – 17, 2008, pp. 121–127, (Space Research Centre, Polish Academy of Sciences, Warszawa, 2009). URL (accessed 15 March 2010):
External Linkhttp://cddis.gsfc.nasa.gov/lw16/.
24 Dickey, J.O. et al., “Lunar Laser Ranging: A Continuing Legacy of the Apollo Program”, Science, 265, 482–490, (1994). [External LinkDOI].
25 Flasar, F.M. and Birch, F., “Energetics of Core Formation: A Correction”, J. Geophys. Res., 78, 6101–6103, (1973). [External LinkDOI].
26 Folkner, W.M., Yoder, C.F., Yuan, D.N., Standish, E.M. and Preston, R.A., “Interior Structure and Seasonal Mass Redistribution of Mars from Radio Tracking of Mars Pathfinder”, Science, 278, 1749–1752, (1997). [External LinkDOI].
27 García-Berro, E., Isern, J. and Kubyshin, Y.A., “Astronomical measurements and constraints on the variability of fundamental constants”, Astron. Astrophys. Rev., 14, 113, (2007). [External LinkDOI].
28 Heiken, G.H., Vaniman, D.T. and French, B.M., eds., Lunar Sourcebook: A User’s Guide to the Moon, (Cambridge University Press, Cambridge; New York, 1991). [External LinkGoogle Books].
29 Khan, A. and Mosegaard, K., “Further constraints on the deep lunar interior”, Geophys. Res. Lett., 32, L22203, (2005). [External LinkDOI].
30 Khan, A., Mosegaard, K., Williams, J.G. and Lognonné, P., “Does the Moon possess a molten core? Probing the deep lunar interior using results from LLR and Lunar Prospector”, J. Geophys. Res., 109, E09007, (2004). [External LinkDOI].
31 Konopliv, A.S., Yoder, C.F., Standish, E.M., Yuan, D.N. and Sjogren, W.L., “A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris”, Icarus, 182, 23–50, (2006). [External LinkDOI], [External LinkADS].
32 Langseth, M.G. and Keihmr, S.J., “In-situ measurements of lunar heat flow”, in Pomeroy, J.H. and Hubbard, N.J., eds., The Soviet-American Conference on the Cosmochemistry of the Moon and Planets, Moscow, USSR, June 4 – 8, 1974, NASA Special Publications, 370, p. 283, (NASA, Washington, DC, 1977). Online version (accessed 20 October 2010):
External Linkhttp://hdl.handle.net/2060/19750006612.
33 McGarry, J.F. et al., “NGSLR: Sharing Eye-safe Kilohertz SLR with Transponder Ranging”, in Schillack, S., ed., 16th International Laser Ranging Workshop ‘SLR – The Next Generation’, Poznan, Poland, October 13 – 17, 2008, pp. 326–331, (Space Research Centre, Polish Academy of Sciences, Warszawa, 2009). URL (accessed 15 March 2010):
External Linkhttp://cddis.gsfc.nasa.gov/lw16/.
34 Merkowitz, S.M., Dabney, P.W., Livas, J.C., McGarry, J.F., Neumann, G.A. and Zagwodzki, T.W., “Laser Ranging for Gravitational, Lunar, and Planetary Science”, Int. J. Mod. Phys. D, 16, 2151, (2007). [External LinkDOI], [External LinkarXiv:0712.3539].
35 Müller, J. and Biskupek, L., “Variations of the gravitational constant from lunar laser ranging data”, Class. Quantum Grav., 24, 4533–4538, (2007). [External LinkDOI].
36 Müller, J., Nordtvedt Jr, K.L., Schneider, M. and Vokrouhlický, D., “Improved Determination of Relativistic Quantities from LLR”, in Proceedings of the 11th International Workshop on Laser Ranging, Deggendorf, Germany, September 21 – 25, 1998, (CDDIS/NASA GSFC, Greenbelt, MD, 1998). URL (accessed 15 March 2010):
External Linkhttp://cddis.gsfc.nasa.gov/lw11/.
37 Müller, J., Nordtvedt Jr, K.L. and Vokrouhlický, D., “Improved constraint on the α1 PPN parameter from lunar motion”, Phys. Rev. D, 54, R5927–R5930, (1996). [External LinkDOI].
38 Müller, J., Williams, J.G. and Turyshev, S.G., “Lunar Laser Ranging Contributions to Relativity and Geodesy”, in Dittus, H., Lämmerzahl, C. and Turyshev, S.G., eds., Lasers, Clocks and Drag-Free Control: Exploration of Relativistic Gravity in Space, Astrophysics and Space Science Library, 349, pp. 457–472, (Springer, Berlin; New York, 2008). [External LinkGoogle Books].
39 Murphy Jr, T.W., “Lunar Ranging, Gravitomagnetism, and APOLLO”, Space Sci. Rev., 148, 217–223, (2009). [External LinkDOI].
40 Murphy Jr, T.W., Adelberger, E.G., Battat, J.B.R., Hoyle, C.D., Michelsen, E.L., Stubbs, C.W. and Swanson, H.E., “Absolute Calibration of LLR Signal: Reflector Health Status”, in Proceedings of the 15th International Workshop on Laser Ranging, Canberra, Australia, 15 – 20 October 2006, p. 556, (EOS Space Systems, Griffith, 2006). URL (accessed 15 March 2010):
External Linkhttp://cddis.gsfc.nasa.gov/lw15/.
41 Murphy Jr, T.W., Nordtvedt Jr, K.L. and Turyshev, S.G., “Gravitomagnetic Influence on Gyroscopes and on the Lunar Orbit”, Phys. Rev. Lett., 98, 071102, (2007). [External LinkDOI], [External Linkgr-qc/0702028].
42 Murphy Jr, T.W. et al., “The Apache Point Observatory Lunar Laser-Ranging Operation (APOLLO)”, in Proceedings of the 12th International Workshop on Laser Ranging, Matera, Italy, November 13 – 17, 2000, (CDDIS/NASA GSFC, Greenbelt, MD, 2000). URL (accessed 15 March 2010):
External Linkhttp://cddis.gsfc.nasa.gov/lw12/.
43 Murphy Jr, T.W. et al., “The Apache Point Observatory Lunar Laser-ranging Operation: Instrument Description and First Detections”, Publ. Astron. Soc. Pac., 120, 20–37, (2008). [External LinkDOI], [External LinkarXiv:0710.0890].
44 Murphy Jr, T.W. et al., “Laser Ranging to the Lost Lunokhod 1 Reflector”, Icarus, submitted, (2010). [External LinkADS], [External LinkarXiv:1009.5720 [astro-ph.EP]].
45 Murphy Jr, T.W. et al., “Long-term degradation of optical devices on the Moon”, Icarus, 208(1), 31, (2010). [External LinkDOI], [External Link1003.0713 [astro-ph.EP]].
46 Nesseris, S. and Perivolaropoulos, L., “Limits of extended quintessence”, Phys. Rev. D, 75, 023517, (2007). [External LinkDOI].
47 Nordtvedt Jr, K.L., “Equivalence Principle for Massive Bodies. I. Phenomenology”, Phys. Rev., 169, 1014–1016, (1968). [External LinkDOI], [External LinkADS].
48 Nordtvedt Jr, K.L., “Equivalence Principle for Massive Bodies. II. Theory”, Phys. Rev., 169, 1017–1025, (1968). [External LinkDOI].
49 Nordtvedt Jr, K.L., “Testing Relativity with Laser Ranging to the Moon”, Phys. Rev., 170, 1186–1187, (1968). [External LinkDOI].
50 Nordtvedt Jr, K.L., “Post-Newtonian Gravitational Effects in Lunar Laser Ranging”, Phys. Rev. D, 7, 2347, (1973). [External LinkDOI].
51 Nordtvedt Jr, K.L., “Probing gravity to the second post-Newtonian order and to one part in 107 using the spin axis of the sun”, Astrophys. J., 320, 871–874, (1987). [External LinkDOI], [External LinkADS].
52 Nordtvedt Jr, K.L., “Lunar laser ranging and laboratory Eötvös-type experiments”, Phys. Rev. D, 37, 1070–1071, (1988). [External LinkDOI].
53 Nordtvedt Jr, K.L., “Ġ∕G and a cosmological acceleration of gravitationally compact bodies”, Phys. Rev. Lett., 65, 953–956, (1990). [External LinkDOI].
54 Nordtvedt Jr, K.L., “The Relativistic Orbit Observables in Lunar Laser Ranging”, Icarus, 114, 51–62, (1995). [External LinkDOI].
55 Nordtvedt Jr, K.L., “30 years of lunar laser ranging and the gravitational interaction”, Class. Quantum Grav., 16, A101–A112, (1999). [External LinkDOI].
56 Nordtvedt Jr, K.L., “dG∕dt measurement and the timing of lunar laser ranging observations”, Class. Quantum Grav., 20, L147, (2003). [External LinkDOI].
57 Nordtvedt Jr, K.L. and Will, C.M., “Conservation Laws and Preferred Frames in Relativistic Gravity. II. Experimental Evidence to Rule Out Preferred-Frame Theories of Gravity”, Astrophys. J., 177, 775–792, (1972). [External LinkDOI], [External LinkADS].
58 Pearlman, M.R., Degnan, J.J. and Bosworth, J.M., “The International Laser Ranging Service”, Adv. Space Res., 30, 135, (2002). [External LinkDOI].
59 Samain, E. et al., “Millimetric Lunar Laser Ranging at OCA (Observatoire de la Côte d’Azur)”, Astron. Astrophys. Suppl., 130, 235–244, (1998). [External LinkDOI].
60 Schlamminger, S., Choi, K.-Y., Wagner, T.A., Gundlach, J.H. and Adelberger, E.G., “Test of the Equivalence Principle Using a Rotating Torsion Balance”, Phys. Rev. Lett., 100, 041101, (2008). [External LinkDOI].
61 Sereno, M. and Jetzer, P., “Solar and stellar system tests of the cosmological constant”, Phys. Rev. D, 73, 063004, (2006). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0602438].
62 Shapiro, I.I., “Fourth Test of General Relativity”, Phys. Rev. Lett., 13, 789–791, (1964). [External LinkDOI].
63 Shapiro, I.I., Counselman III, C.C. and King, R.W., “Verification of the Principle of Equivalence for Massive Bodies”, Phys. Rev. Lett., 36, 555–558, (1976). [External LinkDOI].
64 Shapiro, I.I. and Reasenberg, R.D., personal communication.
65 Shelus, P.J., “MLRS: A Lunar/Artificial Satellite Laser Ranging Facility at the McDonald Observatory”, IEEE Trans. Geosci. Remote Sensing, GE-23, 385, (1985). [External LinkDOI].
66 Smith, D.E., Zuber, M.T., Sun, X., Neumann, G.A., Cavanaugh, J.F., McGarry, J.F. and Zagwodzki, T.W., “Two-Way Laser Link over Interplanetary Distance”, Science, 311, 53, (2006). [External LinkDOI].
67 Soffel, M., Klioner, S., Müller, J. and Biskupek, L., “Gravitomagnetism and lunar laser ranging”, Phys. Rev. D, 78, 024033, (2008). [External LinkDOI].
68 Steinhardt, P.J. and Wesley, D., “Dark energy, inflation, and extra dimensions”, Phys. Rev. D, 79, 104026, (2009). [External LinkDOI], [External Link0811.1614 [hep-th]].
69 Turyshev, S.G. and Williams, J.G., “Space-Based Tests of Gravity with Laser Ranging”, Int. J. Mod. Phys. D, 16, 2165–2179, (2007). [External LinkDOI], [External Linkgr-qc/0611095].
70 Turyshev, S.G., Williams, J.G., Shao, M., Anderson, J.D., Nordtvedt Jr, K.L. and Murphy Jr, T.W., “Laser Ranging to the Moon, Mars and Beyond”, Invited talk given at ‘The 2004 NASA/JPL Workshop on Physics for Planetary Exploration’, April 20 – 22, 2004, Solvang, CA, conference paper, (2004). [External Linkgr-qc/0411082].
71 Uzan, J.-P., “The fundamental constants and their variation: observational and theoretical status”, Rev. Mod. Phys., 75, 403–455, (2003). [External LinkDOI].
72 Will, C.M., Theory and Experiment in Gravitational Physics, (Cambridge University Press, Cambridge; New York, 1993), 2nd edition. [External LinkGoogle Books].
73 Will, C.M. and Nordtvedt Jr, K.L., “Conservation Laws and Preferred Frames in Relativistic Gravity. I. Preferred-Frame Theories and an Extended PPN Formalism”, Astrophys. J., 177, 757–774, (1972). [External LinkDOI], [External LinkADS].
74 Williams, J.G., Boggs, D.H. and Folkner, W.M., DE421 Lunar Orbit, Physical Librations, and Surface Coordinates, Interoffice Memorandum, IOM 335-JW,DB,WF-20080314-001, (JPL, Pasadena, CA, 2008). Online version (accessed 11 October 2010):
External Linkhttp://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de421_lunar_ephemeris_and_orientation.pdf.
75 Williams, J.G., Boggs, D.H., Turyshev, S.G. and Ratcliff, J.T., “Lunar Laser Ranging Science”, in Garate, J., Davila, J.M., Noll, C. and Pearlman, M., eds., 14th International Laser Ranging Workshop, San Fernando, Spain, June 7 – 11, 2004, pp. 155–161, (CDDIS/NASA GSFC, Greenbelt, MD, 2005). [External Linkgr-qc/0411095]. Online version (accessed 12 October 2010):
External Linkhttp://cddis.nasa.gov/lw14/.
76 Williams, J.G., Boggs, D.H., Yoder, C.F., Ratcliff, J.T. and Dickey, J.O., “Lunar rotational dissipation in solid body and molten core”, J. Geophys. Res., 106(E11), 27,933–27,968, (2001). [External LinkDOI].
77 Williams, J.G., Newhall, X.X. and Dickey, J.O., “Lunar moments, tides, orientation, and coordinate frames”, Planet. Space Sci., 44, 1077–1080, (1996). [External LinkDOI].
78 Williams, J.G., Newhall, X.X. and Dickey, J.O., “Relativity parameters determined from lunar laser ranging”, Phys. Rev. D, 53, 6730–6739, (1996). [External LinkDOI].
79 Williams, J.G., Turyshev, S.G. and Boggs, D.H., “Progress in Lunar Laser Ranging Tests of Relativistic Gravity”, Phys. Rev. Lett., 93, 261101, (2004). [External LinkDOI], [External Linkgr-qc/0411113].
80 Williams, J.G., Turyshev, S.G. and Boggs, D.H., “Lunar Laser Ranging Tests of the Equivalence Principle with the Earth and Moon”, Int. J. Mod. Phys. D, 18, 1129–1175, (2009). [External LinkDOI], [External Linkgr-qc/0507083].
81 Williams, J.G., Turyshev, S.G., Boggs, D.H. and Ratcliff, J.T., “Lunar laser ranging science: Gravitational physics and lunar interior and geodesy”, Adv. Space Res., 37, 67–71, (2006). [External LinkDOI], [External Linkgr-qc/0412049].
82 Williams, J.G., Turyshev, S.G. and Murphy Jr, T.W., “Improving LLR Tests Of Gravitational Theory”, Int. J. Mod. Phys. D, 13, 567–582, (2004). [External LinkDOI], [External Linkgr-qc/0311021].
83 Williams, J.G. et al., “New Test of the Equivalence Principle from Lunar Laser Ranging”, Phys. Rev. Lett., 36, 551, (1976). [External LinkDOI].
84 Zuber, M.T., “Seconds of Data ... Years of Trying”, Photon. Spectra, 40(5), 56–63, (2006). Online version (accessed 25 October 2010):
External Linkhttp://cddis.gsfc.nasa.gov/ggao/pubs.html.