Duez et al. [73] found that if a black hole does form, but the disk is spinning rapidly, that the disk will
fragment and its subsequent accretion will be in spurts, causing a “splash” onto the black hole, producing
ringing and GW emission. Their result implies very strong GW amplitudes 10^{–21} at distances of
10 Mpc. Black hole ringing was also estimated by FHH [106], where they too assumed discrete
accretion events. They found that, even with very optimistic accretion scenarios, such radiation
will be of very low amplitude and beyond the upper frequency reach of LIGO-II (see [106] for
details).

The general-relativistic hydrodynamics simulations of Zanotti, Rezzolla, and Font [344] suggest that a
torus of neutron-star matter surrounding a black-hole remnant may be a stronger source of GWs than the
collapse itself. They used a high-resolution shock-capturing hydrodynamics method in conjunction with a
static (Schwarzschild) spacetime to follow the evolution of “toroidal neutron stars”. Their results indicate
that if a toroidal neutron star (with constant specific angular momentum) is perturbed, it could undergo
quasi-periodic oscillations. They estimate that the resulting GW emission would have a characteristic
amplitude ranging from 6 × 10^{–24} – 5 × 10^{–23}, for ratios of torus mass to black-hole mass in the
range 0.1 – 0.5. (These amplitude values are likely underestimated because the simulations of Zanotti et
al. are axisymmetric.) The corresponding frequency of emission is . The values of and
quoted here are for a source located at 10 Mpc. This emission would be just outside
the range of LIGO-II (see Figure 23). Further numerical investigations, which study tori with
non-constant angular momenta and include the effects of self-gravity and black hole rotation, are
needed to confirm these predictions. Movies from the simulations of Zanotti et al. can be viewed
at [247].

Magnetized tori around rapidly-spinning black holes (formed either via core collapse or
neutron-star–black-hole coalescence) have been examined in the theoretical study of van Putten and
Levinson [321]. They find that such a torus–black-hole system can exist in a suspended state of
accretion if the ratio of poloidal magnetic-field energy to kinetic energy is less than
0.1. They estimate that 10% of the spin energy of the black hole will be converted to
gravitational-radiation energy through multipole mass-moment instabilities that develop in the
torus. If a magnetized torus–black-hole system located at 10 Mpc is observed for 2 × 10^{4}
rotation periods, the characteristic amplitude of the GW emission is 6 × 10^{–20}. It is
possible that this emission could take place at several frequencies. Observations of x-ray lines from
GRBs (which are possibly produced by these types of systems) could constrain these frequencies
by providing information regarding the angular velocities of the tori: preliminary estimates
from observations suggest , placing the radiation into a range detectable by
LIGO-I [321].

By studying the results of current stellar-collapse models, FHH [106] predict that a fragmentation instability is unlikely to develop during core-collapse SNe because the cores have central density maxima (see also [108]). However, they do give estimates [calculated via Equations (7) and (6)] for the amplitude, power, and frequency of the emission from such an instability: , , . Again, this signal would fall just beyond the upper limit of LIGO-II’s frequency range.

Three-dimensional models of black-hole formation in a rotating stellar collapse are needed to truly study fragmentation. Zink et al. [348, 349] have found that with appropriate initial conditions, fragmentation can occur with even modest values of : . But for current stellar models, fragmentation remains difficult to achieve. Rockefeller et al. [250] modeled in three dimensions the collapse of a star using a range of angular momenta to study the effects of the spin on the GW signal. For moderate spin rates, the instabilties in the disk grow and form pockets of denser material, but strong fragmentation does not occur (Figure 29). The GW signal is far lower than the upper limits from FHH or those predicted by van Putten. Liu et al. [185] have performed axisymmetric calculations of the collapse of an SMS using a magneto-hydrodynamic code. As this group moves to 3-dimensional calculations, we will be able to test the development of these instabilities within strong magnetic fields.

Living Rev. Relativity 14, (2011), 1
http://www.livingreviews.org/lrr-2011-1 |
This work is licensed under a Creative Commons License. E-mail us: |