References

1 Abel, T., Bryan, G.L. and Norman, M.L., “The Formation and Fragmentation of Primordial Molecular Clouds”, Astrophys. J., 540, 39–44, (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0002135].
2 Akiyama, S. and Wheeler, J.C., “Magnetic Fields in Supernovae”, in Fryer, C.L., ed., Stellar Collapse, Proceedings of ‘Core Collapse of Massive Stars’, 200th AAS meeting, Albuquerque, NM, June 2002, Astrophysics and Space Science Library, 302, pp. 259–275, (Kluwer Academic Publishers, Dordrecht; Boston, 2004). [External LinkADS], [External Linkastro-ph/0211458], [External LinkGoogle Books].
3 Akiyama, S., Wheeler, J.C., Meier, D.L. and Lichtenstadt, I., “The Magnetorotational Instability in Core-Collapse Supernova Explosions”, Astrophys. J., 584, 954–970, (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0208128].
4 Andersson, N., “A New Class of Unstable Modes of Rotating Relativistic Stars”, Astrophys. J., 502, 708–713, (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9706075].
5 Andersson, N., “Gravitational waves from instabilities in relativistic stars”, Class. Quantum Grav., 20, R105–R144, (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0211057].
6 Ardeljan, N.V., Bisnovatyi-Kogan, G.S. and Moiseenko, S.G., “Magnetorotational supernovae”, Mon. Not. R. Astron. Soc., 359, 333–344, (2005). [External LinkDOI], [External LinkADS].
7 Arnaud, N. et al., “Detection of a close supernova gravitational wave burst in a network of interferometers, neutrino and optical detectors”, Astropart. Phys., 21, 201–221, (2004). [External LinkDOI], [External LinkADS].
8 Arras, P., Flanagan, É.É., Morsink, S.M., Schenk, A.K., Teukolsky, S.A. and Wasserman, I., “Saturation of the r-mode instability”, Astrophys. J., 591, 1129–1151, (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0202345].
9 Baiotti, L., Hawke, I. and Rezzolla, L., “On the gravitational radiation from the collapse of neutron stars to rotating black holes”, Class. Quantum Grav., 24, S187–S206, (2007). [External LinkDOI], [External LinkADS].
10 Bardeen, J.M. and Piran, T., “General relativistic axisymmetric rotating systems: Coordinates and equations”, Phys. Rep., 96, 205–250, (1983). [External LinkDOI], [External LinkADS].
11 Baron, E., Cooperstein, J., Kahana, S. and Nomoto, K., “Collapsing white dwarfs”, Astrophys. J., 320, 304–307, (1987). [External LinkDOI], [External LinkADS].
12 Baumgarte, T.W. and Shapiro, S.L., “Evolution of Rotating Supermassive Stars to the Onset of Collapse”, Astrophys. J., 526, 941–952, (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9909237].
13 Bazan, G. and Arnett, D., “Convection, Nucleosynthesis, and Core Collapse”, Astrophys. J. Lett., 433, L41–L43, (1994). [External LinkDOI], [External LinkADS].
14 Begelman, M.C. and Rees, M.J., “The fate of dense stellar systems”, Mon. Not. R. Astron. Soc., 185, 847–859, (1978). [External LinkADS].
15 Begelman, M.C., Volunteri, M. and Rees, M.J., “Formation of supermassive black holes by direct collapse in pre-galactic haloes”, Mon. Not. R. Astron. Soc., 370, 289–298, (2006). [External LinkADS].
16 Benz, W., Bowers, R.L., Cameron, A.G.W. and Press, W.H., “Dynamic Mass Exchange in Doubly Degenerate Binaries. I. 0.9 and 1.2 M Stars”, Astrophys. J., 348, 647–667, (1990). [External LinkDOI], [External LinkADS].
17 Berti, E. and Cardoso, V., “Quasinormal ringing of Kerr black holes: The excitation factors”, Phys. Rev. D, 74, 104020, (2006). [External LinkDOI], [External LinkADS].
18 Berti, E., Cardoso, V. and Will, C.M., “Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA”, Phys. Rev. D, 73, 064030, (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0512160].
19 Bethe, H.A. and Wilson, J.R., “Revival of a stalled supernova shock by neutrino heating”, Astrophys. J., 295, 14–23, (1985). [External LinkDOI], [External LinkADS].
20 Blondin, J.M. and Mezzacappa, A., “The Spherical Accretion Shock Instability in the Linear Regime”, Astrophys. J., 642, 401–409, (2006). [External LinkDOI], [External LinkADS].
21 Blondin, J.M., Mezzacappa, A. and DeMarino, C., “Stability of Standing Accretion Shocks, with an Eye toward Core-Collapse Supernovae”, Astrophys. J., 584, 971–980, (2003). [External LinkDOI], [External LinkADS].
22 Bodenheimer, P. and Ostriker, J.P., “Rapidly Rotating Stars. VIII. Zero-viscosity Polytropic Sequences”, Astrophys. J., 180, 159–169, (1973). [External LinkDOI], [External LinkADS].
23 Bonazzola, S. and Marck, J.-A., “Efficiency of gravitational radiation from axisymmetric and 3D stellar collapse. I. Polytropic case”, Astron. Astrophys., 267, 623–633, (1993). [External LinkADS].
24 Bondarescu, R., Teukolsky, S.A. and Wasserman, I., “Spinning down newborn neutron stars: Nonlinear development of the r-mode instability”, Phys. Rev. D, 79, 104003, (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0809.3448].
25 Braginsky, V.B. and Thorne, K.S., “Gravitational-wave bursts with memory and experimental prospects”, Nature, 327, 123–125, (1987). [External LinkDOI].
26 Brink, J., Teukolsky, S.A. and Wasserman, I., “Nonlinear coupling network to simulate the development of the r mode instability in neutron stars. I. Construction”, Phys. Rev. D, 70, 124017, (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0409048].
27 Brink, J., Teukolsky, S.A. and Wasserman, I., “Nonlinear couplings of R-modes: Energy transfer and saturation amplitudes at realistic timescales”, Phys. Rev. D, 70, 121501, (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0406085].
28 Brink, J., Teukolsky, S.A. and Wasserman, I., “Nonlinear coupling network to simulate the development of the r mode instability in neutron stars. II. Dynamics”, Phys. Rev. D, 71, 064029, (2005). [External LinkDOI], [External LinkADS].
29 Bromm, V., Coppi, P.S. and Larson, R.B., “Forming the First Stars in the Universe: The Fragmentation of Primordial Gas”, Astrophys. J., 527, L5–L8, (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9910224].
30 Brown, J.D., “Gravitational waves from the dynamical bar instability in a rapidly rotating star”, Phys. Rev. D, 62, 084024, 1–11, (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0004002].
31 Brown, J.D., “Rotational instabilities in post-collapse stellar cores”, in Centrella, J.M., ed., Astrophysical Sources for Ground-Based Gravitational Wave Detectors, Philadelphia, Pennsylvania, 30 October – 1 November 2000, AIP Conference Proceedings, 575, pp. 234–245, (American Institute of Physics, Melville, 2001). [External Linkgr-qc/0012084].
32 Bruenn, S.W., “Numerical simulations of core collapse supernovae”, in Guidry, M.W. and Strayer, M.R., eds., Nuclear Physics in the Universe, Proceedings of the First Symposium on Nuclear Physics in the Universe held in Oak Ridge, Tennessee, USA, 24 – 26 September 1992, pp. 31–50, (Institute of Physics, Bristol; Philadelphia, 1993). [External LinkADS].
33 Bruenn, S.W., De Nisco, K.R. and Mezzacappa, A., “General Relativistic Effects in the Core Collapse Supernova Mechanism”, Astrophys. J., 560, 326–338, (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0101400].
34 Buras, R., Janka, H.-T., Rampp, M. and Kifonidis, K., “Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport. II. Models for different progenitor stars”, Astron. Astrophys., 457, 281–308, (2006). [External LinkADS].
35 Burrows, A., Dessart, L., Livne, E., Ott, C.D. and Murphy, J., “Simulations of Magnetically Driven Supernova and Hypernova Explosions in the Context of Rapid Rotation”, Astrophys. J., 664, 416–434, (2007). [External LinkDOI], [External LinkADS].
36 Burrows, A. and Goshy, J., “A Theory of Supernova Explosions”, Astrophys. J. Lett., 416, L75–L78, (1993). [External LinkADS].
37 Burrows, A. and Hayes, J., “Pulsar recoil and gravitational radiation due to asymmetrical stellar collapse and explosion”, Phys. Rev. Lett., 76, 352–355, (1996). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9511106].
38 Burrows, A., Livne, E., Dessart, L., Ott, C.D. and Murphy, J., “An acoustic mechanism for core-collapse supernova explosions”, New Astron. Rev., 50, 487–491, (2006). [External LinkDOI], [External LinkADS].
39 Burrows, A., Livne, E., Dessart, L., Ott, C.D. and Murphy, J., “Features of the Acoustic Mechanism of Core-Collapse Supernova Explosions”, Astrophys. J., 655, 416–433, (2006). [External LinkDOI], [External LinkADS].
40 Burrows, A., Livne, E., Dessart, L., Ott, C.D. and Murphy, J., “A New Mechanism for Core-Collapse Supernova Explosions”, Astrophys. J., 640, 878–890, (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0510687].
41 Calder, A.C. et al., “On Validating an Astrophysical Simulation Code”, Astrophys. J. Suppl. Ser., 143, 201–229, (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0206251].
42 Cantiello, M., Yoon, S.-C., Langer, N. and Livio, M., “Binary star progenitors of long gamma-ray bursts”, Astron. Astrophys., 465, L29–L33, (2007). [External LinkDOI], [External LinkADS].
43 Cappellaro, E., Evans, R. and Turatto, M., “A new determination of supernova rates and a comparison with indicators for galactic star formation”, Astron. Astrophys., 351, 459–466, (1999). [External LinkADS].
44 Cappellaro, E. et al., “Death rate of massive stars at redshift 0.3”, Astron. Astrophys., 430, 83–93, (2005). [External LinkDOI], [External LinkADS].
45 Centrella, J.M. and McMillan, S.L.W., “Gravitational Radiation from Nonaxisymmetric Collisions of Neutron Stars”, Astrophys. J., 416, 719–732, (1993). [External LinkDOI], [External LinkADS].
46 Centrella, J.M., New, K.C.B., Lowe, L.L. and Brown, J.D., “Dynamical rotational instability at low T∕W”, Astrophys. J. Lett., 550, L193–L196, (2001). [External LinkDOI], [External LinkADS].
47 Cerdá-Durán, P., Font, J.A., Antón, L. and Müller, E., “A new general relativistic magnetohydrodynamics code for dynamical spacetimes”, Astron. Astrophys., 492, 937–953, (2008). [External LinkDOI], [External LinkADS].
48 Cerdá-Durán, P., Quilis, V. and Font, J.A., “AMR simulations of the low T∕|W| bar-mode instability of neutron stars”, Comput. Phys. Commun., 177, 288–297, (2007). [External LinkDOI], [External LinkADS].
49 Chandrasekhar, S., “Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity”, Phys. Rev. Lett., 12, 114–116, (1964). [External LinkDOI].
50 Chandrasekhar, S., “The Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity”, Astrophys. J., 140, 417–433, (1964). [External LinkDOI], [External LinkADS].
51 Chandrasekhar, S., An Introduction to the Study of Stellar Structure, (Dover, New York, 1967).
52 Chandrasekhar, S., “The Effect of Gravitational Radiation on the Secular Stability of the Maclaurin Spheroid”, Astrophys. J., 161, 561–569, (1970). [External LinkDOI], [External LinkADS].
53 Chatterjee, D. and Bandyopadhyay, D., “Role of antikaon condensation in r-mode instability”, in Santra, A.B., ed., Physics and Astrophysics of Hadrons and Hadronic Matter, Shantiniketan, India, 6 – 10 Nov 2006, p. 237, (Narosa Publishing House, New Delhi, 2008). [External LinkADS], [External LinkarXiv:0712.4347].
54 Chevalier, R.A., “Neutron star accretion in a supernova”, Astrophys. J., 346, 847–859, (1989). [External LinkDOI], [External LinkADS].
55 Colgate, S.A., “Neutron-Star Formation, Thermonuclear Supernovae, and Heavy-Element Reimplosion”, Astrophys. J., 163, 221–230, (1971). [External LinkDOI], [External LinkADS].
56 Colgate, S.A. and White, R.H., “The Hydrodynamic Behavior of Supernovae Explosions”, Astrophys. J., 143, 626–681, (1966). [External LinkDOI], [External LinkADS].
57 Cook, G.B., Shapiro, S.L. and Teukolsky, S.A., “Testing a simplified version of Einstein’s equations for numerical relativity”, Phys. Rev. D, 53, 5533–5540, (1996). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9512009].
58 Couch, R.G. and Arnett, W.D., “On the Thermal Properties of the Convective URCA Process”, Astrophys. J., 194, 537–539, (1974). [External LinkDOI], [External LinkADS].
59 Dahlen, T. et al., “High-Redshift Supernova Rates”, Astrophys. J., 613, 189–199, (2004). [External LinkDOI], [External LinkADS].
60 Dessart, L., Burrows, A., Livne, E. and Ott, C.D., “Multidimensional Radiation/Hydrodynamic Simulations of Proto-Neutron Star Convection”, Astrophys. J., 645, 534–550, (2006). [External LinkDOI], [External LinkADS].
61 Dessart, L., Burrows, A., Livne, E. and Ott, C.D., “Magnetically Driven Explosions of Rapidly Rotating White Dwarfs Following Accretion-Induced Collapse”, Astrophys. J., 669, 585–599, (2007). [External LinkDOI], [External LinkADS].
62 Dessart, L., Burrows, A., Livne, E. and Ott, C.D., “The Proto-Neutron Star Phase of the Collapsar Model and the Route to Long-Soft Gamma-Ray Bursts and Hypernovae”, Astrophys. J., 673, L43–L46, (2008). [External LinkDOI], [External LinkADS].
63 Dessart, L., Burrows, A., Ott, C.D., Livne, E., Yoon, S.-C. and Langer, N., “Multidimensional Simulations of the Accretion-induced Collapse of White Dwarfs to Neutron Stars”, Astrophys. J., 644, 1063–1084, (2006). [External LinkDOI], [External LinkADS].
64 Detweiler, S. and Lindblom, L., “On the Evolution of the Homogeneous Ellipsoidal Figures. II. Gravitational Collapse and Gravitational Radiation”, Astrophys. J., 250, 739–749, (1981). [External LinkDOI], [External LinkADS].
65 Dimmelmeier, H., Font, J.A. and Müller, E., “Gravitational Waves from Relativistic Rotational Core Collapse”, Astrophys. J. Lett., 560, L163–L166, (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0103088].
66 Dimmelmeier, H., Font, J.A. and Müller, E., “Relativistic simulations of rotational core collapse I. Methods, initial models, and code tests”, Astron. Astrophys., 388, 917–935, (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0204288].
67 Dimmelmeier, H., Font, J.A. and Müller, E., “Relativistic simulations of rotational core collapse II. Collapse dynamics and gravitational radiation”, Astron. Astrophys., 393, 523–542, (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0204289].
68 Dimmelmeier, H., Ott, C.D., Janka, H.T., Marek, A. and Müller, E., “Generic Gravitational-Wave Signals from the Collapse of Rotating Stellar Cores”, Phys. Rev. D, 98, 251101, (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0702305].
69 Dimmelmeier, H., Ott, C.D., Marek, A. and Janka, H.-T., “Gravitational wave burst signal from core collapse of rotating stars”, Phys. Rev. D, 78, 064056, (2008). [External LinkDOI], [External LinkADS].
70 Dimonte, G. et al., “A comparative study of turbulent Rayleigh–Taylor instability using high-resolution three-dimensional numerical simulations: The Alpha-Group collaboration”, Phys. Fluids, 16, 1668–1693, (2002). [External LinkDOI], [External LinkADS].
71 Drago, A., Pagliara, G. and Parenti, I., “A Compact Star Rotating at 1122 Hz and the r-Mode Instability”, Astrophys. J. Lett., 678, L117–L120, (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0704.1510].
72 D’Souza, M.C.R., Motl, P.M., Tohline, J.E. and Frank, J., “Numerical Simulatons of the Onset and Stability of Dynamical Mass Transfer in Binaries”, Astrophys. J., 643, 381–401, (2006). [External LinkDOI], [External LinkarXiv:astro-ph/0512137].
73 Duez, M.D., Shapiro, S.L. and Yo, H.-J., “Relativistic hydrodynamic evolutions with black hole excision”, Phys. Rev. D, 69, 104016, 1–16, (2004). [External LinkDOI], [External LinkADS].
74 Durisen, R.H. and Tohline, J.E., “Fission of rapidly rotating fluid systems”, in Black, D. and Matthews, M., eds., Protostars and Planets II, pp. 534–575, (University of Arizona Press, Tucson, 1985). [External LinkADS].
75 Eisenstein, D.J. and Loeb, A., “Origin of Quasar Progenitors From The Collapse of Low-spin Cosmological Perturbations”, Astrophys. J., 443, 11–17, (1995). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9401016].
76 Epstein, R., “The generation of gravitational radiation by escaping supernova neutrinos”, Astrophys. J., 223, 1037–1045, (1976). [External LinkDOI], [External LinkADS].
77 Epstein, R., The post-Newtonian theory of the generation of gravitational radiation and its application to stellar collapse, Ph.D. Thesis, (Stanford University, Stanford, 1976). [External LinkADS].
78 Epstein, R. and Wagoner, R.V., “Post-Newtonian Generation of Gravitational Waves”, Astrophys. J., 197, 717–723, (1975). [External LinkDOI], [External LinkADS].
79 Eriguchi, Y. and Müller, E., “Equilibrium models of differentially rotating polytropes and the collapse of rotating stellar cores”, Astron. Astrophys., 147, 161–168, (1985). [External LinkADS].
80 Favata, M., “Post-Newtonian corrections to the gravitational-wave memory for quasicircular, inspiralling compact binaries”, Phys. Rev. D, 80, 024002, (2009). [External LinkDOI], [External LinkADS].
81 Fernández, R. and Thompson, C., “Dynamics of a Spherical Accretion Shock with Neutrino Heating and Alpha-Particle Recombination”, Astrophys. J., 703, 1464–1485, (2009). [External LinkDOI], [External LinkADS].
82 Fernández, R. and Thompson, C., “Stability of a Spherical Accretion Shock with Nuclear Dissociation”, Astrophys. J., 697, 1827–1841, (2009). [External LinkDOI], [External LinkADS].
83 Ferrarese, L. and Merritt, D., “A fundamental relation between supermassive black holes and their host galaxies”, Astrophys. J. Lett., 539, L9–L12, (2000). [External LinkDOI], [External LinkADS].
84 Ferrari, V. and Galtieri, L., “Quasi-normal modes and gravitational wave astronomy”, Gen. Relativ. Gravit., 40, 945–970, (2008). [External LinkDOI], [External LinkADS].
85 Ferrari, V., Miniutti, G. and Pons, J.A., “Gravitational waves from newly born, hot neutron stars”, Mon. Not. R. Astron. Soc., 342, 629–638, (2003). [External LinkDOI], [External LinkADS].
86 Finn, L.S., “Supernovae, Gravitational Radiation, and the Quadrupole Formula”, in Evans, C.R., Finn, L.S. and Hobill, D.W., eds., Frontiers in Numerical Relativity, International workshop devoted to research in numerical relativity, held in Urbana-Champaign in May 1988, pp. 126–145, (Cambridge University Press, Cambridge; New York, 1989). [External LinkGoogle Books].
87 Finn, L.S., “Detectability of gravitational radiation from stellar-core collapse”, in Buchler, J.R., Detweiler, S. and Ipser, J.R., eds., Nonlinear problems in relativity and cosmology, 6th Florida Workshop in Nonlinear Astronomy, held on October 2 – 4, 1990 in Gainesville, Florida, Ann. N.Y. Acad. Sci., 631, pp. 156–172, (New York Academy of Sciences, New York, 1991). [External LinkDOI].
88 Finn, L.S., “Gravitional Radiation Sources and Signatures”, in Dixon, L.J., ed., Gravity: From the Hubble Length to the Planck Length, Proceedings of the 26th SLAC Summer Institute on Particle Physics (SSI 98), Stanford, USA, 3 – 14 August 1998, SLAC-R, 538, (SLAC, Springfield, 2001). URL (accessed 30 March 1999):
External Linkhttp://www.slac.stanford.edu/pubs/confproc/ssi98/ssi98-007.html.
89 Finn, L.S. and Evans, C.R., “Determining Gravitational Radiation from Newtonian Self-Gravitating Systems”, Astrophys. J., 351, 588–600, (1990). [External LinkDOI], [External LinkADS].
90 Fischer, T., Whitehouse, S.C., Mezzacappa, A., Thielemann, F.-K. and Liebendörfer, M., “The neutrino signal from protoneutron star accretion and black hole formation”, Astron. Astrophys., 499, 1–15, (2009). [External LinkDOI], [External LinkADS].
91 Fisker, J.L., Balsara, D.S. and Burger, T., “The accretion and spreading of matter on white dwarfs”, New Astron. Rev., 50, 509–515, (2006). [External LinkDOI], [External LinkADS].
92 Foglizzo, T., “A Simple Toy Model of the Advective-Acoustic Instability. I. Perturbative Approach”, Astrophys. J., 694, 820–832, (2009). [External LinkDOI], [External LinkADS].
93 Foglizzo, T., Galletti, P., Scheck, L. and Janka, H.-T., “Instability of a Stalled Accretion Shock: Evidence for the Advective-Acoustic Cycle”, Astrophys. J., 654, 1006–1021, (2007). [External LinkDOI], [External LinkADS].
94 Foglizzo, T., Scheck, L. and Janka, H.-T., “Neutrino-driven Convection versus Advection in Core-Collapse Supernovae”, Astrophys. J., 652, 1436–1450, (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0507636].
95 Folkner, W.M., ed., Laser Interferometer Space Antenna: Second International LISA Symposium on the Detection and Observation of Gravitational Waves in Space, Pasadena 1998, AIP Conference Proceedings, 456, (Springer, New York, 1993).
96 Friedman, J.L. and Morsink, S.M., “Axial Instability of Rotating Relativistic Stars”, Astrophys. J., 502, 714–720, (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9706073].
97 Fryer, C.L., “Mass Limits For Black Hole Formation”, Astrophys. J., 522, 413–418, (1999). [External LinkDOI], [External LinkADS].
98 Fryer, C.L., “Neutron Star Kicks from Asymmetric Collapse”, Astrophys. J. Lett., 601, L175–L178, (2004). [External LinkDOI], [External LinkADS].
99 Fryer, C.L., “Fallback in stellar collapse”, New Astron. Rev., 50, 492–495, (2006). [External LinkDOI], [External LinkADS].
100 Fryer, C.L., “Neutrinos from Fallback onto Newly Formed Neutron Stars”, Astrophys. J., 699, 409–420, (2009). [External LinkDOI], [External LinkADS].
101 Fryer, C.L., Benz, W. and Herant, M., “The Dynamics and Outcomes of Rapid Infall onto Neutron Stars”, Astrophys. J., 460, 801–826, (1996). [External LinkDOI], [External LinkADS].
102 Fryer, C.L., Benz, W., Herant, M. and Colgate, S.A., “What can the accretion-induced collapse of white dwarfs really explain?”, Astrophys. J., 516, 892–899, (1999). [External LinkDOI], [External LinkADS].
103 Fryer, C.L. and Heger, A., “Core-Collapse Simulations of Rotating Stars”, Astrophys. J., 541, 1033–1050, (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9907433].
104 Fryer, C.L. and Heger, A., “Binary Merger Progenitors for Gamma-Ray Bursts and Hypernovae”, Astrophys. J., 623, 302–313, (2005). [External LinkDOI], [External LinkADS].
105 Fryer, C.L., Herwig, F., Hungerford, A. and Timmes, F.X., “Supernova Fallback: A Possible Site for the r-Process”, Astrophys. J. Lett., 646, L131–L134, (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0606450].
106 Fryer, C.L., Holz, D.E. and Hughes, S.A., “Gravitational Wave Emission from Core Collapse of Massive Stars”, Astrophys. J., 565, 430–446, (2002). [External LinkDOI], [External LinkADS].
107 Fryer, C.L., Holz, D.E. and Hughes, S.A., “Gravitational Waves from Stellar Collapse: Correlations to Explosion Asymmetries”, Astrophys. J., 609, 288–300, (2004). [External LinkDOI], [External LinkADS].
108 Fryer, C.L., Holz, D.E., Hughes, S.A. and Warren, M.S., “Stellar collapse and gravitational waves”, in Fryer, C.L., ed., Stellar Collapse, Proceedings of ‘Core Collapse of Massive Stars’, 200th AAS meeting, Albuquerque, NM, June 2002, Astrophysics and Space Science Library, 302, pp. 373–401, (Kluwer Academic Publishers, Dordrecht; Boston, 2004). [External LinkADS], [External Linkastro-ph/0211609].
109 Fryer, C.L. and Kalogera, V., “Theoretical Black Hole Mass Distributions”, Astrophys. J., 554, 548–560, (2001). [External LinkDOI], [External LinkADS].
110 Fryer, C.L. and Kusenko, A., “Effects of Neutrino-driven Kicks on the Supernova Explosion Mechanism”, Astrophys. J., 163, 335–343, (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0512033].
111 Fryer, C.L. and New, K.C.B, “Gravitational Waves from Gravitational Collapse”, Living Rev. Relativity, 6, lrr-2003-2, (2003). URL (accessed 18 May 2009):
http://www.livingreviews.org/lrr-2003-2.
112 Fryer, C.L. and Warren, M.S., “Modeling Core-Collapse Supernovae in Three Dimensions”, Astrophys. J. Lett., 574, L65–L68, (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0206017].
113 Fryer, C.L. and Warren, M.S., “The Collapse of Rotating Massive Stars in Three Dimensions”, Astrophys. J., 601, 391–404, (2004). [External LinkDOI], [External LinkADS].
114 Fryer, C.L., Woosley, S.E. and Hartmann, D.H., “Formation Rates of Black Hole Accretion Disk Gamma-Ray Bursts”, Astrophys. J., 526, 152–177, (1999). [External LinkDOI], [External LinkADS].
115 Fryer, C.L., Woosley, S.E. and Heger, A., “Pair-Instability Supernovae, Gravity Waves, and Gamma-Ray Transients”, Astrophys. J., 550, 372–382, (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0007176].
116 Fryer, C.L. and Young, P.A., “Late-Time Convection in the Collapse of a 23 M Star”, Astrophys. J., 659, 1438–1448, (2007). [External LinkDOI], [External LinkADS].
117 Fryer, C.L. et al., “The Supernova Gamma-Ray Burst Connection”, Publ. Astron. Soc. Pac., 119, 1211–1232, (2007). [External LinkDOI], [External LinkADS].
118 Fryer, C.L. et al., “Spectra and Light Curves of Failed Supernovae”, Astrophys. J., 707, 193–207, (2009). [External LinkDOI], [External LinkADS].
119 Fu, W. and Lai, D., “Low=T∕|W| instabilities in differentially rotating proto-neutron stars with magnetic fields”, Mon. Not. R. Astron. Soc., submitted, (2010). [External LinkarXiv:1011.4887].
120 Fuller, G.M., Kusenko, A., Mociouiu, I. and Pascoli, S., “Pulsar kicks from a dark-matter sterile neutrino”, Phys. Rev. D, 68, 103002, (2003). [External LinkDOI], [External LinkADS].
121 Gentle, A.P. and Miller, W.A., “A fully (3+1)-dimensional Regge calculus model of the Kasner cosmology”, Class. Quantum Grav., 15, 389–405, (1965). [External LinkDOI], [External LinkADS].
122 “GEO600: The German-British Gravitational Wave Detector”, project homepage, MPI for Gravitational Physics (Albert Einstein Institute). URL (accessed 19 January 2010):
External Linkhttp://www.geo600.org/.
123 Goldreich, P. and Lynden-Bell, D., “I. Gravitational stability of uniformly rotating disks”, Mon. Not. R. Astron. Soc., 130, 97–124, (1965). [External LinkADS].
124 “Gravitational Radiation from General Relativistic Rotational Core Collapse”, project homepage, Max Planck Institute for Astrophysics, (2002). URL (accessed 7 January 2009):
External Linkhttp://www.mpa-garching.mpg.de/rel_hydro/axi_core_collapse/index.shtml.
125 Gressman, P., Lin, L.-M., Suen, W.-M., Stergioulas, N. and Friedman, J.L., “Nonlinear r-modes in neutron stars: Instability of an unstable mode”, Phys. Rev. D, 66, 041303, 1–5, (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0301014].
126 Guerrero, J., García-Berro, E. and Isern, J., “Smoothed Particle Hydrodynamics simulations of merging white dwarfs”, Astron. Astrophys., 413, 257–272, (2004). [External LinkDOI], [External LinkADS].
127 Gutiérrez, J., Canal, R. and García-Berro, E., “The gravitational collapse of ONe electron-degenerate cores and white dwarfs: The role of 24Mg and 12C revisited”, Astron. Astrophys., 435, 231–237, (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0502021].
128 Hachisu, I., “A versatile method for obtaining structures of rapidly rotating stars”, Astrophys. J. Suppl. Ser., 61, 479–507, (1986). [External LinkDOI], [External LinkADS].
129 Haehnelt, M.G., “Low-frequency gravitational waves from supermassive black holes”, Mon. Not. R. Astron. Soc., 269, 199–208, (1994). [External LinkADS].
130 Haehnelt, M.G., Natarajan, P. and Rees, M.J., “High-redshift galaxies, their active nuclei and central black holes”, Mon. Not. R. Astron. Soc., 300, 817–827, (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9712259].
131 Haehnelt, M.G. and Rees, M.J., “The formation of nuclei in newly formed galaxies and the evolution of the quasar population”, Mon. Not. R. Astron. Soc., 263, 168–178, (1993). [External LinkADS].
132 Haensel, P., Levenfish, K.P. and Yakovlev, D.G., “Bulk viscosity in superfluid neutron star cores. III. Effects of Σ hyperons”, Astron. Astrophys., 381, 1080–1089, (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0110575].
133 Hayashi, A., Eriguchi, Y. and Hashimoto, M., “On the Possibility of the Nonexplosive Core Contraction of Massive Stars: New Evolutionary Paths from Rotating White Dwarfs to Rotating Neutron Stars”, Astrophys. J., 492, 286–297, (1998). [External LinkDOI], [External LinkADS].
134 Hayashi, A., Eriguchi, Y. and Hashimoto, M., “On the Possibility of the Nonexplosive Core Contraction of Massive Stars. II. General Relativistic Analysis”, Astrophys. J., 521, 376–381, (1999). [External LinkDOI], [External LinkADS].
135 Heger, A., The presupernova evolution of rotating massive stars, Ph.D. Thesis, (Technische Universität München, Munich, 1998).
136 Heger, A., Fryer, C.L., Woosley, S.E., Langer, N. and Hartmann, D.H., “How Massive Single Stars End Their Life”, Astrophys. J., 591, 288–300, (2003). [External LinkDOI], [External LinkADS].
137 Heger, A., Langer, N. and Woosley, S.E., “Presupernova Evolution of Rotating Massive Stars. I. Numerical Method and Evolution of the Internal Stellar Structure”, Astrophys. J., 528, 368–396, (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9904132].
138 Heger, A., Woosley, S.E. and Spruit, H.C., “Presupernova Evolution of Differentially Rotating Massive Stars Including Magnetic Fields”, Astrophys. J., 626, 350–363, (2005). [External LinkDOI], [External LinkADS].
139 Herant, M., “The convective engine paradigm for the supernova explosion mechanism and its consequences”, Phys. Rep., 256, 117–133, (1995). [External LinkDOI], [External LinkADS].
140 Herant, M., Benz, W., Hix, W.R., Fryer, C.L. and Colgate, S.A., “Inside the supernova: A powerful convective engine”, Astrophys. J., 435, 339–361, (1994). [External LinkDOI], [External LinkADS].
141 Herwig, F., “Evolution of Asymptotic Giant Branch Stars”, Annu. Rev. Astron. Astrophys., 43, 435–479, (2005). [External LinkDOI], [External LinkADS].
142 Hillebrandt, W., “Stellar Collapse and Supernova Explosions”, in Pacini, F., ed., High Energy Phenomena around Collapsed Stars, Proceedings of the NATO Advanced Study Institute, Cargèse, Corsica, France, September 2 – 13, 1985, NATO Science Series, 195, pp. 73–104, (Reidel, Dordrecht; Boston, 1987).
143 Ho, W.C.G. and Lai, D., “r-Mode Oscillations and Spin-down of Young Rotating Magnetic Neutron Stars”, Astrophys. J., 543, 386–394, (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9912296].
144 Houck, J.C. and Chevalier, R.A., “Linear stability analysis of spherical accretion flows onto compact objects”, Astrophys. J., 395, 592–603, (1992). [External LinkDOI], [External LinkADS].
145 Hough, J. and Rowan, S., “Laser interferometry for the detection of gravitational waves”, J. Opt. A, 7, S257–S264, (2005). [External LinkDOI], [External LinkADS].
146 Houser, J.L., “The effect of rotation on the gravitational radiation and dynamical stability of stiff stellar cores”, Mon. Not. R. Astron. Soc., 299, 1069–1086, (1998). [External LinkDOI], [External LinkADS].
147 Houser, J.L., Centrella, J.M. and Smith, S.C., “Gravitational radiation from nonaxisymmetric instability in a rotating star”, Phys. Rev. Lett., 72, 1314–1317, (1994). [External LinkDOI], [External LinkADS].
148 Houser, J.L., Centrella, J.M. and Smith, S.C., “Gravitational radiation from rotational instabilities in compac stellar cores with stiff equations of state”, Phys. Rev. D, 54, 7278–7297, (1996). [External LinkDOI], [External LinkADS].
149 Hughes, S.A., “Untangling the merger history of massive black holes with LISA”, Mon. Not. R. Astron. Soc., 331, 805–816, (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0108483].
150 Hughes, S.A., Márka, S., Bender, P.L. and Hogan, C.J., “New physics and astronomy with the new gravitational-wave observatories”, in Graf, N., ed., Proceedings of Snowmass 2001, The Future of Particle Physics, 30 June – 21 July 2001, Snowmass Village, Colorado, C010630, p. P402, (SLAC eConf, Stanford, 2001). URL (accessed 15 October 2001):
External Linkhttp://www.slac.stanford.edu/econf/C010630/proceedings.shtml.
151 Iben Jr, I., “Massive stars in quasi-static equilibrium”, Astrophys. J., 138, 1090–1096, (1963). [External LinkDOI], [External LinkADS].
152 Iben Jr, I. and Renzini, A., “Asymptotic Giant Branch Evolution and Beyond”, Annu. Rev. Astron. Astrophys., 21, 271–342, (1983). [External LinkDOI], [External LinkADS].
153 Imamura, J.N. and Durisen, R.H., “The Dominance of Dynamic Barlike Instabilities in the Evolution of a Massive Stellar Core Collapse That ‘Fizzles”’, Astrophys. J., 549, 1062–1075, (2001). [External LinkDOI], [External LinkADS].
154 Imamura, J.N., Durisen, R.H. and Pickett, B.K., “Nonaxisymmetric Dynamic Instabilities of Rotating Polytropes. II. Torques, Bars, and Mode Saturation with Applications to Protostars and Fizzlers”, Astrophys. J., 528, 946–964, (2000). [External LinkDOI], [External LinkADS].
155 Janka, H.-T., “Supermassive Stars: Fact or Fiction?”, in Chui, C.K., Siuniaev, R.A. and Churazov, E., eds., Lighthouses of the Universe: The Most Luminous Celestial Objects and Their Use for Cosmology, Proceedings of the MPA/ESO/MPE/USM Joint Astronomy Conference, held in Garching, Germany, 6 – 10 August 2001, ESO Astrophysics Symposia, pp. 357–368, (Springer, Berlin; New York, 2002). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0202028].
156 Janka, H.-T., Langanke, K., Marek, A., Martinez-Pinedo, G. and Müller, B., “Theory of Core-Collapse Supernovae”, Phys. Rep., 442, 38–74, (2007). [External LinkDOI], [External LinkADS].
157 Jenet, F.A. and Prince, T.A., “Detection of variable frequency signals using a fast chirp transform”, Phys. Rev. D, 62, 122001, 1–10, (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0012029].
158 Jones, P.B., “Bulk viscosity of neutron-star matter”, Phys. Rev. D, 64, 084003, 1–7, (2001). [External LinkDOI], [External LinkADS].
159 Jones, P.B., “Comment on ‘Gravitational radiation instability in hot young neutron stars”’, Phys. Rev. Lett., 86, 1384, (2001). [External LinkDOI], [External LinkADS].
160 Keil, W., Janka, H.-T. and Müller, E., “Ledoux Convection in Protoneutron Stars—A Clue to Supernova Nucleosynthesis?”, Astrophys. J., 473, 111–114, (1996). [External LinkDOI], [External LinkADS].
161 Kitaura, F.S., Janka, H.-T. and Hillebrandt, W., “Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae”, Astron. Astrophys., 450, 345–350, (2006). [External LinkDOI], [External LinkADS].
162 Kokkotas, K.D. and Schmidt, B., “Quasi-Normal Modes of Stars and Black Holes”, Living Rev. Relativity, 2, lrr-1999-2, (1999). URL (accessed 18 May 2009):
http://www.livingreviews.org/lrr-1999-2.
163 Kormendy, J., “Supermassive Black Holes in Disk Galaxies”, in Funes, J.G. and Corsini, E.M., eds., Galaxy Disks and Disk Galaxies, Proceedings of a conference sponsored by the Vatican Observatory, held at the Pontifical Gregorian University in Rome, Italy, 12 – 16 June 2000, ASP Conference Series, 230, pp. 247–256, (Astronomical Society of the Pacific, San Francisco, 2001). [External LinkADS].
164 Kotake, K., Iwakami, W., Ohnishi, N. and Yamada, S., “Gravitational Radiation from Standing Accretion Shock Instability in Core-Collapse Supernovae”, Astrophys. J. Lett., 697, L133–L136, (2009). [External LinkDOI], [External LinkADS].
165 Kotake, K., Ohnishi, N. and Yamada, S., “Gravitational Radiation from Standing Accretion Shock Instability in Core-Collapse Supernovae”, Astrophys. J., 655, 406–415, (2007). [External LinkDOI], [External LinkADS].
166 Kotake, K., Sato, K. and Takahashi, K., “Explosion mechanism, neutrino burst and gravitational wave in core-collapse supernovae”, Rep. Prog. Phys., 69, 971–1143, (2006). [External LinkDOI], [External LinkADS].
167 Kotake, K., Sato, K. and Takahashi, K., “Gravitational Radiation from Standing Accretion Shock Instability in Core-Collapse Supernovae”, Rep. Prog. Phys., 69, 971–1143, (2006). [External LinkADS].
168 Kotake, K., Yamada, S. and Sato, K., “Gravitational radiation from axisymmetric rotational core collapse”, Phys. Rev. D, 68, 044023, (2003). [External LinkDOI], [External LinkADS].
169 Kotake, K., Yamada, S., Sato, K., Sumiyoshi, K., Ono, H. and Suzuki, H., “Gravitational radiation from rotational core collapse: Effects of magnetic fields and realistic equations of state”, Phys. Rev. D, 69, 124004, 1–11, (2004). [External LinkDOI], [External LinkADS].
170 Kusenko, A. and Segre, G., “Pulsar Velocities and Neutrino Oscillations”, Phys. Rev. Lett., 77, 4872–4875, (1996). [External LinkDOI], [External LinkADS].
171 Lai, D., “Secular bar-mode evolution and gravitational waves from neutron stars”, in Centrella, J.M., ed., Astrophysical Sources for Ground-based Gravitational Wave Detectors, Philadelphia, PA, USA, 30 October – 1 November 2000, AIP Conference Proceedings, 575, pp. 246–257, (American Institute of Physics, Melville, N.Y., 2001). [External LinkDOI], [External LinkADS].
172 Lai, D. and Goldreich, P., “Growth of Perturbations in Gravitational Collapse and Accretion”, Astrophys. J., 535, 402–411, (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9906400].
173 Lai, D. and Shapiro, S.L., “Gravitational Radiation from Rapidly Rotating Nascent Neutron Stars”, Astrophys. J., 442, 259–272, (1995). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9408053].
174 Leaver, E.W., “An analytic representation for the quasi-normal modes of Kerr black holes”, Proc. R. Soc. London, Ser. A, 402, 285–298, (1985). [External LinkADS].
175 LeBlanc, J.M. and Wilson, J.R., “An analytic representation for the quasi-normal modes of Kerr black holes”, Astrophys. J., 161, 541–551, (1985). [External LinkDOI], [External LinkADS].
176 Li, H., Finn, J.M., Lovelace, R.V.E. and Colgate, S.A., “Rossby Wave Instability of Thin Accretion Disks. II. Detailed Linear Theory”, Astrophys. J., 533, 1023–1034, (2000). [External LinkDOI], [External LinkADS].
177 “LIGO Laboratory Home Page”, project homepage, California Institute of Technology. URL (accessed 4 October 2002):
External Linkhttp://www.ligo.caltech.edu.
178 Lindblom, L. and Owen, B.J., “Effect of hyperon bulk viscosity on neutron-star r-modes”, Phys. Rev. D, 65, 063006, 1–15, (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0110558].
179 Lindblom, L., Owen, B.J. and Morinsk, S.M., “Gravitational Radiation Instability in Hot Young Neutron Stars”, Phys. Rev. Lett., 80, 4843–4846, (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9803053].
180 Lindblom, L., Tohline, J.E. and Vallisneri, M., “Nonlinear Evolution of the r-Modes in Neutron Stars”, Phys. Rev. Lett., 86, 1152–1155, (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0010653].
181 Lindblom, L., Tohline, J.E. and Vallisneri, M., “Numerical evolutions of nonlinear r-modes in neutron stars”, Phys. Rev. D, 65, 084039, 1–15, (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0109352].
182 “LISA: Laser Interferometer Space Antenna”, project homepage, NASA. URL (accessed 4 October 2002):
External Linkhttp://lisa.nasa.gov.
183 Liu, Y.T., “Dynamical instability of new-born neutron stars as sources of gravitational radiation”, Phys. Rev. D, 65, 124003, 1–14, (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0109078].
184 Liu, Y.T. and Lindblom, L., “Models of rapidly rotating neutron stars: remnants of accretion-induced collapse”, Mon. Not. R. Astron. Soc., 324, 1063–1073, (2001). [External LinkDOI], [External LinkADS].
185 Liu, Y.T., Shapiro, S.L. and Stephens, B.C., “Magnetorotational collapse of very massive stars to black holes in full general relativity”, Phys. Rev. D, 76, 084017, (2007). [External LinkDOI], [External LinkADS].
186 Loeb, A. and Rasio, F.A., “Collapse of Primordial Gas Clouds and the Formation of Quasar Black Holes”, Astrophys. J., 432, 52–61, (1994). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9401026].
187 Loveridge, L.C., “Gravitational waves from a pulsar kick caused by neutrino conversions”, Phys. Rev. D, 69, 024008, 1–8, (2004). [External LinkDOI], [External LinkADS].
188 Macchetto, F.D., “Supermassive Black Holes and Galaxy Morphology”, Astrophys. Space Sci., 269, 269–291, (1999). [External LinkDOI], [External LinkarXiv:astro-ph/9910089].
189 MacFadyen, A.I. and Woosley, S.E., “Collapsars: Gamma-Ray Bursts and Explosions in ‘Failed Supernovae”’, Astrophys. J., 524, 262–289, (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9810274].
190 MacFadyen, A.I., Woosley, S.E. and Heger, A., “Supernovae, Jets, and Collapsars”, Astrophys. J., 550, 410–425, (2001). [External LinkDOI], [External LinkADS].
191 Maeda, K. et al., “The Unique Type Ib Supernova 2005bf at Nebular Phases: A Possible Birth Event of a Strongly Magnetized Neutron Star”, Astrophys. J., 666, 1069–1082, (2007). [External LinkDOI], [External LinkADS].
192 Managan, R.A., “On the Secular Instability of Axisymmetric Rotating Stars to Gravitational Radiation Reaction”, Astrophys. J., 294, 463–473, (1985). [External LinkDOI], [External LinkADS].
193 Mannucci, F., Della Valle, M. and Panagia, N., “How many supernovae are we missing at high redshift”, Mon. Not. R. Astron. Soc., 377, 1229–1235, (2007). [External LinkDOI], [External LinkarXiv:astro-ph/0702355].
194 Marck, J.-A. and Bonazzola, S., “Gravitational radiation from three-dimensional gravitational stellar core collapse”, in D’Inverno, R., ed., Approaches to Numerical Relativity, Proceedings of the International Workshop on Numerical Relativity, Southampton, England, 16 – 20 December 1991, p. 247, (Cambridge University Press, Cambridge, 1992).
195 Marek, A. and Janka, H.-T., “Delayed Neutrino-Driven Supernova Explosions Aided by the Standing Accretion-Shock Instability”, Astrophys. J., 694, 664–696, (2009). [External LinkDOI], [External LinkADS].
196 Marek, A., Janka, H.-T. and Müller, E., “Equation-of-state dependent features in shock-oscillation modulated neutrino and gravitational-wave signals from supernovae”, Astron. Astrophys., 496, 475–494, (2009). [External LinkDOI], [External LinkADS].
197 Miyaji, S. and Nomoto, K., “On the collapse of 8–10 M stars due to electron capture”, Astrophys. J., 318, 307–315, (1987). [External LinkDOI], [External LinkADS].
198 Mochkovitch, R. and Livio, M., “The coalescence of white dwarfs and type I supernovae”, Astron. Astrophys., 209, 111–118, (1989). [External LinkADS].
199 Mochkovitch, R. and Livio, M., “The coalescence of white dwarfs and type I supernovae. The merged configuration”, Astron. Astrophys., 236, 378–384, (1990). [External LinkADS].
200 Moe, M. and De Marco, O., “Do Most Planetary Nebulae Derive from Binaries? I. Population Synthesis Model of the Galactic Planetary Nebula Population Produced by Single Stars and Binaries”, Astrophys. J., 650, 916–932, (2006). [External LinkDOI], [External LinkADS].
201 Mönchmeyer, R., Schäfer, G., Müller, E. and Kates, R.E., “Gravitational waves from the collapse of rotating stellar cores”, Astron. Astrophys., 246, 417–440, (1991). [External LinkADS].
202 Moncrief, V., “Reduction of the Einstein equations in 2+1 dimensions to a Hamiltonian system over Teichmüller space”, J. Math. Phys., 30, 2907–2914, (1989). [External LinkDOI], [External LinkADS].
203 Motl, P.M., Tohline, J.E. and Frank, J., “Numerical Methods for the Simulation of Dynamical Mass Transfer in Binaries”, Astrophys. J. Suppl. Ser., 138, 121–148, (2002). [External LinkDOI], [External LinkADS].
204 Müller, E., “Gravitational Radiation from Collapsing Rotating Stellar Cores”, Astron. Astrophys., 114, 53–59, (1982). [External LinkADS].
205 Müller, E., “Gravitational waves from core collapse supernovae”, in Marck, J.-A. and Lasota, J.-P., eds., Relativistic Gravitation and Gravitational Radiation, Proceedings of the Les Houches School of Physics, held in Les Houches, Haute Savoie, 26 September – 6 October, 1995, Cambridge Contemporary Astrophysics, pp. 273–308, (Cambridge University Press, Cambridge, 1997).
206 Müller, E., “Simulation of Astrophysical Fluid Flow”, in LeVeque, R.J., Mihalas, D., Dorfi, E.A., Müller, E., Steiner, O. and Gautschy, A., eds., Computational Methods for Astrophysical Fluid Flow, Lecture Notes of the Saas-Fee Advanced Course 27, Les Diablerets, Switzerland, March 3 – 8, 1997, Saas-Fee Advanced Courses,  27, pp. 343–494, (Springer, Berlin; New York, 1998). [External LinkADS].
207 Müller, E. and Hillebrandt, W., “The Collapse of Rotating Stellar Cores”, Astron. Astrophys., 103, 358–366, (1981). [External LinkADS].
208 Müller, E. and Janka, H.-T., “Gravitational radiation from convective instabilities in Type II supernova explosions”, Astron. Astrophys., 317, 140–163, (1997). [External LinkADS].
209 Müller, E., Rampp, M., Buras, R., Janka, H.-T. and Shoemaker, D.H., “Toward Gravitational Wave Signals from Realistic Core-Collapse Supernova Models”, Astrophys. J., 603, 221–230, (2004). [External LinkDOI], [External LinkADS].
210 Müller, E., Rózyczka, M. and Hillebrandt, W., “Stellar Collapse: Adiabatic Hydrodynamics and Shock Wave Propagation”, Astron. Astrophys., 81, 288–292, (1980). [External LinkADS].
211 Murphy, J.W. and Burrows, A., “Criteria for Core-Collapse Supernova Explosions by the Neutrino Mechanism”, Astrophys. J., 688, 1159–1175, (2008). [External LinkDOI], [External LinkADS].
212 Murphy, J.W., Burrows, A. and Heger, A., “Pulsational Analysis of the Cores of Massive Stars and Its Relevance to Pulsar Kicks”, Astrophys. J., 615, 460–474, (2004). [External LinkDOI], [External LinkADS].
213 Murphy, J.W., Ott, C.D. and Burrows, A., “A Model for Gravitational Wave Emission from Neutrino-Driven Core-Collapse Supernovae”, Astrophys. J., 707, 1173–1190, (2009). [External LinkDOI], [External LinkADS].
214 Nagar, A. and Rezzolla, L., “Gauge-invariant non-spherical metric perturbations of Schwarzschild black-hole spacetimes”, Class. Quantum Grav., 22, R167–R192, (2005). [External LinkDOI], [External LinkADS].
215 Nagar, A., Zanotti, O., Font, J.A. and Rezzolla, L., “Accretion-driven gravitational radiation from nonrotating compact objects: Infalling quadrupolar shells”, Phys. Rev. D, 69, 124028, (2004). [External LinkDOI], [External LinkADS].
216 Nagar, A., Zanotti, O., Font, J.A. and Rezzolla, L., “Accretion-induced quasinormal mode excitation of a Schwarzschild black hole”, Phys. Rev. D, 75, 044016, (2007). [External LinkDOI], [External LinkADS].
217 Nakazato, K., Sumiyoshi, K. and Yamada, S., “Gravitational Collapse and Neutrino Emission of Population III Massive Stars”, Astrophys. J., 645, 519–533, (2006). [External LinkDOI], [External LinkADS].
218 Nakazato, K., Sumiyoshi, K. and Yamada, S., “Numerical Study of Stellar Core Collapse and Neutrino Emission: Probing the Spherically Symmetric Black Hole Progenitors with 3–30 M Iron Cores”, Astrophys. J., 666, 1140–1151, (2007). [External LinkDOI], [External LinkADS].
219 Narayan, R., Paczyński, B. and Piran, T., “Gamma-Ray Bursts as the Death Throes of Massive Binary Stars”, Astrophys. J. Lett., 395, L83–L86, (1992). [External LinkDOI], [External LinkADS].
220 Nazin, S.N. and Postnov, K.A., “High neutron star birth velocities and gravitational radiation during supernova explosions”, Astron. Astrophys., 317, L79–L81, (1997). [External LinkADS], [External LinkarXiv:astro-ph/9701073].
221 New, K.C.B., Centrella, J.M. and Tohline, J.E., “Gravitational waves from long-duration simulations of the dynamical bar instability”, Phys. Rev. D, 62, 064019, 1–16, (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/9911525].
222 New, K.C.B. and Shapiro, S.L., “Evolution of Differentially Rotating Supermassive Stars to the Onset of Bar Instability”, Astrophys. J., 548, 439–446, (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0010172].
223 New, K.C.B. and Shapiro, S.L., “The formation of supermassive black holes and the evolution of supermassive stars”, Class. Quantum Grav., 18, 3965–3975, (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0009095].
224 Nomoto, K. and Kondo, Y., “Conditions for accretion-induced collapse of white dwarfs”, Astrophys. J. Lett., 367, L19–L22, (1991). [External LinkDOI], [External LinkADS].
225 Novikov, I.D., “Gravitational radiation from a star collapsing into a disk”, Sov. Astron., 19, 398–399, (1976). [External LinkADS].
226 Obergaulinger, M., Aloy, M.A., Dimmelmeier, H. and Müller, E., “Axisymmetric simulations of magnetorotational core collapse: approximate inclusion of general relativistic effects”, Astron. Astrophys., 457, 209–222, (2006). [External LinkDOI], [External LinkADS].
227 Obergaulinger, M., Aloy, M.A. and Müller, E., “Axisymmetric simulations of magneto-rotational core collapse: dynamics and gravitational wave signal”, Astron. Astrophys., 450, 1107–1134, (2006). [External LinkDOI], [External LinkADS].
228 Ott, C.D., “The gravitational-wave signature of core-collapse supernovae”, Class. Quantum Grav., 26, 063001, (2009). [External LinkDOI], [External LinkADS].
229 Ott, C.D., Burrows, A., Dessart, L. and Livne, E., “A New Mechanism for Gravitational-Wave Emission in Core-Collapse Supernovae”, Phys. Rev. Lett., 96, 201102, (2006). [External LinkDOI], [External LinkADS].
230 Ott, C.D., Burrows, A., Livne, E. and Walder, R., “Gravitational Waves from Axisymmetric, Rotating Stellar Core Collapse”, Astrophys. J., 600, 834–864, (2004). [External LinkDOI], [External LinkADS].
231 Ott, C.D., Burrows, A., Thompson, T.A., Livne, E. and Walder, R., “The Spin Periods and Rotational Profiles of Neutron Stars at Birth”, Astrophys. J., 164, 130–155, (2006). [External LinkDOI], [External LinkADS].
232 Ott, C.D., Dimmelmeier, H., Marek, A., Janka, H.-T., Hawke, I., Zink, B. and Schnetter, E., “3D Collapse of Rotating Stellar Iron Cores in General Relativity Including Deleptonization and a Nuclear Equation of State”, Phys. Rev. Lett., 98, 261101, (2007). [External LinkDOI], [External LinkADS].
233 Ott, C.D., Dimmelmeier, H., Marek, A., Janka, H.-T., Zink, B., Hawke, I. and Schnetter, E., “Rotating collapse of stellar iron cores in general relativity”, Class. Quantum Grav., 24, S139–S154, (2007). [External LinkDOI], [External LinkADS].
234 Ott, C.D., Ou, S., Tohline, J.E. and Burrows, A., “One-armed Spiral Instability in a Low-T∕|W| Postbounce Supernova Core”, Astrophys. J., 625, L119–L122, (2005). [External LinkDOI], [External LinkADS].
235 Ou, S. and Tohline, J.E., “Unexpected Dynamical Instabilities in Differentially Rotating Neutron Stars”, Astrophys. J., 651, 1068–1078, (2006). [External LinkDOI], [External LinkADS].
236 Ou, S., Tohline, J.E. and Lindblom, L., “Nonlinear Development of the Secular Bar-Mode Instability in Rotating Neutron Stars”, Astrophys. J., 617, 490–499, (2004). [External LinkDOI], [External LinkADS].
237 Pickett, B.K., Durisen, R.H. and Davis, G.A., “The Dynamic Stability of Rotating Protostars and Protostellar Disks. I. The Effects of the Angular Momentum Distribution”, Astrophys. J., 458, 714–738, (1996). [External LinkDOI], [External LinkADS].
238 Piran, T. and Stark, R.F., “Numerical relativity, rotating gravitational collapse, and gravitational radiation”, in Centrella, J.M., ed., Dynamical Spacetimes and Numerical Relativity, Proceedings of a workshop held at Drexel University, October 7 – 11, 1985, pp. 40–73, (Cambridge University Press, Cambridge; New York, 1986). [External LinkADS].
239 Piro, A.L. and Pfahl, E., “Fragmentation of Collapsar Disks and the Production of Gravitational Waves”, Astrophys. J., 658, 1173–1176, (2007). [External LinkDOI], [External LinkADS].
240 Podsiadlowski, Ph., Mazzali, P.A., Nomoto, K., Lazzati, D. and Cappellaro, E., “The Rates of Hypernovae and Gamma-Ray Brusts: Implications for Their Progenitors”, Astrophys. J., 607, L17–L20, (2004). [External LinkDOI], [External LinkADS].
241 Poelarends, A.J.T., Herwig, F., Langer, N. and Heger, A., “The Supernova Channel of Super-AGB Stars”, Astrophys. J., 675, 614–625, (2008). [External LinkDOI], [External LinkADS].
242 Popham, R., Woosley, S.E. and Fryer, C.L., “Hyperaccreting Black Holes and Gamma-Ray Bursts”, Astrophys. J., 518, 356–374, (1999). [External LinkDOI], [External LinkADS].
243 Porter, D.H. and Woodward, P.R., “Using PPM to Model Turbulent Stellar Convection”, in Grinstein, F., Margolin, L. and Rider, W., eds., Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics, (Cambridge University Press, Los Alamos, NM, 2006). [ADS].
244 Proga, D., MacFadyen, A.I., Armitage, P.J. and Begelman, M.C., “Axisymmetric Magnetohydrodynamic Simulations of the Collapsar Model for Gamma-Ray Bursts”, Astrophys. J. Lett., 599, L5–L8, (2003). [External LinkDOI], [External LinkADS].
245 Rampp, M., Müller, E. and Ruffert, M., “Simulations of non-axisymmetric rotational core collapse”, Astron. Astrophys., 332, 969–983, (1998). [External LinkarXiv:astro-ph/9781112].
246 Rees, M.J., “Astrophysical Evidence for Black Holes”, in Wald, R.M., ed., Black Holes and Relativistic Stars, Proceedings of the Symposium dedicated to the memory of Subrahmanyan Chandrasekhar, held in Chicago, December 14 – 15, 1996, pp. 79–101, (University of Chicago Press, Chicago; London, 1998). [External LinkADS].
247 Rezzolla, L., “Relativistic Astrophysics movies at SISSA”, personal homepage, SISSA / ISAS, (2002). URL (accessed 4 October 2002):
External Linkhttp://people.sissa.it/~rezzolla/movies.html.
248 Rezzolla, L., Lamb, F.K., Marković, D. and Shapiro, S.L., “Properties of r modes in rotating magnetic neutron stars. I. Kinematic secular effects and magnetic evolution”, Phys. Rev. D, 64, 104013, 1–12, (2001). [External LinkDOI], [External LinkarXiv:gr-qc/0107061].
249 Rezzolla, L., Lamb, F.L., Marković, D. and Shapiro, S.L., “Properties of r modes in rotating magnetic neutron stars. II. Evolution of the r modes and stellar magnetic field”, Phys. Rev. D, 64, 104014, 1–13, (2001). [External LinkDOI], [External LinkarXiv:gr-qc/0107062].
250 Rockefeller, G., Fryer, C.L. and Li, H., “Collapsars in Three Dimensions”, arXiv e-print, (2006). [External LinkarXiv:astro-ph/0608028].
251 Ruffini, R. and Wheeler, J.A., “Relativistic Cosmology from Space Platforms”, in Hardy, V. and Moore, H., eds., Proceedings of the Conference on Space Physics, pp. 45–174, (ESRO, Paris, 1971).
252 Sá, P.M. and Tomé, B., “Gravitational waves from r-modes”, Astrophys. Space Sci., 308, 557–561, (2007). [External LinkDOI], [External LinkADS].
253 Saenz, R.A. and Shapiro, S.L., “Gravitational Radiation from Stellar Collapse: Ellipsoidal Models”, Astrophys. J., 221, 286–303, (1978). [External LinkDOI], [External LinkADS].
254 Saenz, R.A. and Shapiro, S.L., “Gravitational and Neutrino Radiation from Stellar Core Collapse: Improved Ellipsoidal Model Calculations”, Astrophys. J., 229, 1107–1125, (1979). [External LinkDOI], [External LinkADS].
255 Saenz, R.A. and Shapiro, S.L., “Gravitational Radiation from Stellar Core Collapse. III. Damped Ellipsoidal Oscillations”, Astrophys. J., 244, 1033–1038, (1981). [External LinkDOI], [External LinkADS].
256 Saijo, M., “The Collapse of Differentially Rotating Supermassive Stars: Conformally Flat Simulations”, Astrophys. J., 615, 866–879, (2004). [External LinkDOI], [External LinkADS].
257 Saijo, M., “Dynamical bar instability in a relativistic rotational collapse”, Phys. Rev. D, 71, 104038, (2005). [External LinkDOI], [External LinkADS].
258 Saijo, M., Baumgarte, T.W. and Shapiro, S.L., “One-armed Spiral Instability in Differentially Rotating Stars”, Astrophys. J., 595, 352–364, (2003). [External LinkDOI], [External LinkADS].
259 Saijo, M., Baumgarte, T.W., Shapiro, S.L. and Shibata, M., “Collapse of a rotating supermassive star to a supermassive black hole: Post-Newtonian simulations”, Astrophys. J., 569, 349–361, (2002). [External LinkDOI], [External LinkarXiv:astro-ph/0202112].
260 Saijo, M. and Yoshida, S., “Low T∕|W| dynamical instability in differentially rotating stars: diagnosis with canonical angular momentum”, Mon. Not. R. Astron. Soc., 368, 1429–1442, (2006). [External LinkDOI], [External LinkADS].
261 Salpeter, E.E., “Energy and pressure of a zero-temperature plasma”, Astrophys. J., 134, 669–682, (1961). [External LinkDOI], [External LinkADS].
262 Sanders, R.H., “The Effects of Stellar Collisions in Dense Stellar Systems”, Astrophys. J., 162, 791–809, (1970). [External LinkDOI], [External LinkADS].
263 Scheck, L., Janka, H.-T., Foglizzo, T. and Kifonidis, K., “Multidimensional supernova simulations with approximative neutrino transport. II. Convection and the advective-acoustic cycle in the supernova core”, Astron. Astrophys., 477, 931–952, (2008). [External LinkDOI], [External LinkADS].
264 Scheck, L., Kifonidis, K., Janka, H.-T. and Müller, E., “Multidimensional supernova simulations with approximative neutrino transport. I. Neutron star kicks and the anisotropy of neutrino-driven explosions in two spatial dimensions”, Astron. Astrophys., 457, 963–986, (2006). [External LinkDOI], [External LinkADS].
265 Scheidegger, S., Fischer, T., Whitehouse, S.C. and Liebendörfer, M., “Gravitational waves from 3D MHD core collapse simulations”, Astron. Astrophys., 490, 231–241, (2008). [External LinkDOI], [External LinkADS].
266 Scheidegger, S., Fischer, T., Whitehouse, S.C. and Liebendörfer, M., “Gravitational waves from supernova matter”, Class. Quantum Grav., 27, 114101, (2010). [External LinkDOI], [External LinkADS].
267 Scheidegger, S., Käppeli, R., Whitehouse, S.C., Fischer, T. and Liebendörfer, M., “The influence of model parameters on the prediction of gravitational wave signals from stellar core collapse”, Astron. Astrophys., 514, A51, (2010). [External LinkDOI], [External LinkADS].
268 Schenk, A.K., Arras, P., Flanagan, É.É., Teukolsky, S.A. and Wasserman, I., “Nonlinear mode coupling in rotating stars and the r-mode instability in neutron stars”, Phys. Rev. D, 65, 024001, 1–43, (2002). [External LinkarXiv:gr-qc/0101092].
269 Schutz, B.F., “Gravitational Wave Astronomy”, Class. Quantum Grav., 16, A131–A156, (1999). [External LinkDOI], [External LinkADS].
270 Segretain, L., Chabrier, G. and Mochkovitch, R., “The Fate of Merging White Dwarfs”, Astrophys. J., 481, 355–362, (1997). [External LinkDOI], [External LinkADS].
271 Seidel, E. and Moore, T., “Gravitational radiation from realistic relativistic stars: Odd-parity fluid perturbations”, Phys. Rev. D, 35, 2287–2296, (1987). [External LinkDOI], [External LinkADS].
272 Seidel, E. and Moore, T., “Gravitational radiation from perturbations of stellar core collapse models”, in Evans, C.R., Finn, L.S. and Hobill, D.W., eds., Frontiers in Numerical Relativity, pp. 146–162, (Cambridge University Press, Cambridge; New York, 1988).
273 Shapiro, S.L., “Gravitational Radiation from Stellar Collapse: The Initial Burst”, Astrophys. J., 214, 566–575, (1977). [External LinkDOI], [External LinkADS].
274 Shapiro, S.L. and Lightman, A.P., “Rapidly Rotating, Post-Newtonian Neutron Stars”, Astrophys. J., 207, 263–278, (1976). [External LinkDOI], [External LinkADS].
275 Shapiro, S.L. and Teukolsky, S.A., “Gravitational Collapse of Supermassive Stars to Black Holes: Numerical Solution of the Einstein Equations”, Astrophys. J. Lett., 234, L177–L181, (1979). [External LinkDOI], [External LinkADS].
276 Shapiro, S.L. and Teukolsky, S.A., Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects, (Wiley, New York, 1983). [External LinkGoogle Books].
277 Shibata, M., “Fully general relativistic simulation of coalescing binary neutron stars: Preparatory tests”, Phys. Rev. D, 60, 104052, 1–25, (1999). [External LinkDOI], [External LinkADS].
278 Shibata, M., Karino, S. and Eriguchi, Y., “Dynamical instability of differentially rotating stars”, Mon. Not. R. Astron. Soc., 334, L27–L31, (2002). [External LinkDOI], [External LinkADS].
279 Shibata, M., Karino, S. and Eriguchi, Y., “Dynamical instability of differentially rotating stars”, Mon. Not. R. Astron. Soc., 343, 619–626, (2003). [External LinkDOI], [External LinkADS].
280 Shibata, M. and Nakamura, T., “Evolution of three-dimensional gravitational waves: Harmonic slicing case”, Phys. Rev. D, 52, 5428–5444, (1995). [External LinkDOI], [External LinkADS].
281 Shibata, M. and Sekiguchi, Y., “Gravitational waves from axisymmetric rotating stellar core collapse to a neutron star in full general relativity”, Phys. Rev. D, 69, 084024, 1–16, (2004). [External LinkDOI], [External LinkADS].
282 Shibata, M. and Sekiguchi, Y., “Three-dimensional simulations of stellar core collapse in full general relativity: Nonaxisymmetric dynamical instabilities”, Phys. Rev. D, 71, 024014, 1–32, (2005). [External LinkDOI], [External LinkADS].
283 Shibata, M. and Sekiguchi, Y.-I., “Three-dimensional simulations of stellar core collapse in full general relativity: Nonaxisymmetric dynamical instabilities”, Phys. Rev. D, 71, 024014, (2005). [External LinkDOI], [External LinkADS].
284 Shibata, M. and Shapiro, S.L., “Collapse of a Rotating Supermassive Star to a Supermassive Black Hole: Fully Relativistic Simulations”, Astrophys. J. Lett., 572, L39–L43, (2002). [External LinkDOI], [External LinkADS].
285 Shibata, M., Shapiro, S.L. and Uryū, K., “Equilibrium and stability of supermassive stars in binary systems”, Phys. Rev. D, 64, 024004, 1–14, (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0104408].
286 Siess, L., “Evolution of massive AGB stars. I. Carbon burning phase”, Astron. Astrophys., 448, 717–729, (2006). [External LinkDOI], [External LinkADS].
287 Siess, L., “Evolution of massive AGB stars. II. model properties at non-solar metallicity and the fate of Super-AGB stars”, Astron. Astrophys., 476, 893–909, (2007). [External LinkDOI], [External LinkADS].
288 Smartt, S.J., Eldridge, J.J., Crockett, R.M and Maund, J.R., “The death of massive stars – I. Observational constraints on the progenitors of Type II-P supernovae”, Mon. Not. R. Astron. Soc., 395, 1409–1437, (2008). [External LinkDOI], [External LinkarXiv:0809.0403].
289 Smith, S.C., Houser, J.L. and Centrella, J.M., “Simulations of Nonaxisymmetric Instability in a Rotating Star: A Comparison Between Eulerian and Smooth Particle Hydrodynamics”, Astrophys. J., 458, 236–256, (1996). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9510014].
290 Spruit, H.C., “Dynamo action by differential rotation in a stably stratified stellar interior”, Astron. Astrophys., 381, 923–932, (2002). [External LinkDOI], [External LinkADS].
291 Stark, R.F. and Piran, T., “Gravitational-Wave Emission from Rotating Gravitational Collapse”, Phys. Rev. Lett., 55, 891–894, (1985). [External LinkDOI], [External LinkADS].
292 “Stellar Hydrodynamics”, project homepage, Max Planck Institute for Astrophysics. URL (accessed 7 January 2009):
External Linkhttp://www.mpa-garching.mpg.de/hydro/index.shtml.
293 Stergioulas, N., Apostolatos, T.A. and Font, J.A., “Non-linear pulsations in differentially rotating neutron stars: mass-shedding-induced damping and splitting of the fundamental mode”, Mon. Not. R. Astron. Soc., 352, 1089–1101, (2004). [External LinkDOI], [External LinkADS].
294 Stergioulas, N. and Font, J.A., “Nonlinear r-modes in rapidly rotating relativistic stars”, Phys. Rev. Lett., 86, 1148–1151, (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0007086].
295 Sumiyoshi, K., Yamada, S. and Suzuki, H., “Dynamics and Neutrino Signal of Black Hole Formation in Nonrotating Failed Supernovae. II. Progenitor Dependence”, Astrophys. J., 688, 1176–1185, (2008). [External LinkDOI], [External LinkADS].
296 Sumiyoshi, K., Yamada, S., Suzuki, H. and Chiba, S., “Neutrino Signals from the Formation of a Black Hole: A Probe of the Equation of State of Dense Matter”, Phys. Rev. Lett., 97, 091101, (2006). [External LinkDOI], [External LinkADS].
297 Summerscales, T.Z., Burrows, A., Finn, L.S. and Ott, C.D., “Maximum Entropy for Gravitational Wave Data Analysis: Inferring the Physical Parameters of Core-Collapse Supernovae”, Astrophys. J., 678, 1142–1157, (2008). [External LinkDOI], [External LinkADS].
298 Suwa, Y., Takiwaki, T., Kotake, K. and Sato, Katsuhiko, “Gravitational Wave Background from Population III Stars”, Astrophys. J., 665, 521078, L43–L46, (2007). [External LinkDOI], [External LinkADS].
299 Symbalisty, E.M.D., “Magnetorotational Iron Core Collapse”, Astrophys. J., 285, 729–746, (1984). [External LinkDOI], [External LinkADS].
300 Takiwaki, T. and Kotake, K., “Gravitational-Wave Signatures in Magnetically-Driven Supernova Explosions”, Phys. Rev. D, submitted, (2010). [External LinkarXiv:1004.2896].
301 “TAMA: The 300m Laser Interferometer Gravitational Wave Antenna”, project homepage, National Astronomical Observatory of Japan. URL (accessed 4 October 2002):
External Linkhttp://tamago.mtk.nao.ac.jp/.
302 Tassoul, J.-L., Theory of Rotating Stars, (Princeton University Press, Princeton, 1978).
303 Teukolsky, S.A., “Perturbations of a Rotating Black Hole. I. Fundamental Equations for Gravitational, Electromagnetic, and Neutrino-Field Perturbations”, Astrophys. J., 185, 635–647, (1973). [External LinkDOI], [External LinkADS].
304 Thompson, C. and Murray, N., “Transport of Magnetic Fields in Convective, Accreting Supernova Cores”, Astrophys. J., 560, 339–357, (2001). [External LinkDOI], [External LinkADS].
305 Thompson, T.A., Chang, P. and Quataert, E., “Magnetar Spin-Down, Hyperenergetic Supernovae, and Gamma-Ray Bursts”, Astrophys. J., 611, 380–393, (2004). [External LinkDOI], [External LinkADS].
306 Thorne, K.S., “Multipole expansions of gravitational radiation”, Rev. Mod. Phys., 52, 299–339, (1980). [External LinkDOI], [External LinkADS].
307 Thorne, K.S., “Gravitational radiation”, in Hawking, S.W. and Israel, W., eds., Three Hundred Years of Gravitation, pp. 330–458, (Cambridge University Press, Cambridge; New York, 1987). [External LinkGoogle Books].
308 Thorne, K.S., “Gravitational radiation”, in Böhringer, H., Morfill, G.E. and Trümper, J.E., eds., 17th Texas Symposium on Relativistic Astrophysics and Cosmology, Ann. N.Y. Acad. Sci., 759, pp. 127–152, (New York Academy of Sciences, New York, 1995). [External LinkDOI], [External LinkADS].
309 Thorne, K.S., “Gravitational Waves from Compact Bodies”, in van Paradijs, J., van den Heuvel, E.P.J. and Kuulkers, E., eds., Compact Stars in Binaries (IAU Colloquium 165), Proceedings of the 165th Symposium of the International Astronomical Union, held in The Hague, the Netherlands, August 15 – 19, 1994, pp. 153–183, (Kluwer Academic Publishers, Dordrecht; Boston, 1996). [External LinkADS].
310 Thorne, K.S., Price, R.H. and MacDonald, D.A., eds., Black Holes: The Membrane Paradigm, (Yale University Press, New Haven, 1986).
311 Thuan, T.X. and Ostriker, J.P., “Gravitational Radiation from Stellar Collapse”, Astrophys. J. Lett., 191, L105–L107, (1974). [External LinkDOI], [External LinkADS].
312 Tohline, J.E., “The Collapse of Rotating Stellar Cores: Equilibria Between White Dwarf and Neutron Star Densities”, Astrophys. J., 285, 721–728, (1984). [External LinkDOI], [External LinkADS].
313 Tohline, J.E., Durisen, R.H. and McCollough, M., “The linear and nonlinear dynamic stability of rotating n = 32 polytropes”, Astrophys. J., 298, 220–234, (1985). [External LinkDOI], [External LinkADS].
314 Tohline, J.E. and Hachisu, I., “The Breakup of Self-Gravitating Rings, Tori, and Thick Accretion Disks”, Astrophys. J., 361, 394–407, (1990). [External LinkDOI], [External LinkADS].
315 Toman, J., Imamura, J.N., Pickett, B.K. and Durisen, R.H., “Nonaxisymmetric Dynamic Instabilities of Rotating Polytropes. I. The Kelvin Modes”, Astrophys. J., 497, 370–387, (1998). [External LinkDOI], [External LinkADS].
316 Toomre, A., “On the gravitational stability of a disk of stars”, Astrophys. J., 139, 1217–1238, (1964). [External LinkDOI], [External LinkADS].
317 Turner, M.S., “Gravitational radiation from supernova neutrino bursts”, Astrophys. J., 274, 565–566, (1978). [External LinkDOI], [External LinkADS].
318 Turner, M.S. and Wagoner, R.V., “Gravitational radiation from slowly-rotating ‘supernovae’: Preliminary results”, in Smarr, L.L., ed., Sources of Gravitational Radiation, Proceedings of the Battelle Seattle Workshop, July 24 – August 4, 1978, pp. 383–407, (Cambridge University Press, Cambridge, 1979). [External LinkADS], [External LinkGoogle Books].
319 van den Heuvel, E.P.J. and Yoon, S.-C., “Long gamma-ray burst progenitors: boundary conditions and binary models”, Astrophys. Space Sci., 311, 177–183, (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0704.0659].
320 van Putten, M.H.P.M., “Proposed Source of Gravitational Radiation from a Torus around a Black Hole”, Phys. Rev. Lett., 87, 091101, (2001). [External LinkDOI], [External LinkADS].
321 van Putten, M.H.P.M. and Levinson, A., “Theory and Astrophysical Consequences of a Magnetized Torus around a Rapidly Rotating Black Hole”, Astrophys. J., 584, 937–953, (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0212297].
322 van Riper, K.A. and Arnett, W.D., “Stellar Collapse and Explosion: Hydrodynamics of the Core”, Astrophys. J. Lett., 225, L129–L132, (1978). [External LinkDOI], [External LinkADS].
323 Villain, L., Pons, J.A., Cerdá-Durán, P. and Gourgoulhon, E., “Evolutionary sequences of rotating protoneutron stars”, Astron. Astrophys., 418, 283–294, (2004). [External LinkDOI], [External LinkADS].
324 “Virgo”, project homepage, INFN. URL (accessed 4 October 2002):
External Linkhttp://www.virgo.infn.it.
325 Walder, R., Burrows, A., Ott, C.D., Livne, E., Lichtenstadt, I. and Jarrah, M., “Evolutionary sequences of rotating protoneutron stars”, Astrophys. J., 626, 317–332, (2005). [External LinkDOI], [External LinkADS].
326 Watts, A.L., Andersson, N. and Jones, D.I., “The Nature of Low T∕|W| Dynamical Instabilities in Differentially Rotating Stars”, Astrophys. J., 618, L37–L40, (2005). [External LinkDOI], [External LinkADS].
327 Weinberg, N.A. and Quataert, E., “Non-linear saturation of g-modes in proto-neutron stars: quieting the acoustic engine”, Mon. Not. R. Astron. Soc., 387, L64–L68, (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0802.1522].
328 Wheeler, J.A., “Geometrodynamics and the Issue of Final State”, in DeWitt, C.M. and DeWitt, B.S., eds., Relativity, Groups and Topology. Relativité, Groupes et Topologie, Lectures delivered at Les Houches during the 1963 session of the Summer School of Theoretical Physics, University of Grenoble, pp. 315–320, (Gordon and Breach, New York; London, 1964).
329 Wheeler, J.C., Meier, D.L. and Wilson, J.R., “Asymmetric Supernovae from Magnetocentrifugal Jets”, Astrophys. J., 568, 807–819, (2002). [External LinkDOI], [External LinkADS].
330 Wickramasinghe, D.T. and Ferrario, L., “Magnetism in Isolated and Binary White Dwarfs”, Publ. Astron. Soc. Pac., 112, 873–924, (2000). [External LinkDOI], [External LinkADS].
331 Williams, H.A. and Tohline, J.E., “Linear and nonlinear dynamic instability of rotating polytropes”, Astrophys. J., 315, 594–601, (1987). [External LinkDOI], [External LinkADS].
332 Woodward, J.W., Tohline, J.E. and Hachisu, I., “The Stability of Thick, Self-gravitating Disks in Protostellar Systems”, Astrophys. J., 420, 247–267, (1994). [External LinkDOI], [External LinkADS].
333 Woosley, S.E., “Gamma-ray bursts from stellar mass accretion disks around black holes”, Astrophys. J., 405, 273–277, (1993). [External LinkDOI], [External LinkADS].
334 Woosley, S.E. and Baron, E., “The collapse of white dwarfs to neutron stars”, Astrophys. J., 391, 228–235, (1992). [External LinkDOI], [External LinkADS].
335 Woosley, S.E. and Bloom, J., “The Supernova–Gamma-Ray Burst Connection”, Annu. Rev. Astron. Astrophys., 44, 507–556, (2006). [External LinkDOI], [External LinkADS].
336 Yakunin, K.N. et al., “Gravitational waves from core collapse supernovae”, Class. Quantum Grav., 27, 194005, (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:1005.0779].
337 Yamada, S. and Sato, K., “Gravitational Radiation from Rotational Collapse of a Supernova Core”, Astrophys. J., 450, 245–252, (1995). [External LinkDOI], [External LinkADS].
338 Yoon, S.-C. and Langer, N., “Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts”, Astron. Astrophys., 443, 643–648, (2005). [External LinkDOI], [External LinkADS].
339 Yoon, S.-C. and Langer, N., “On the evolution of rapidly rotating massive white dwarfs towards supernovae or collapses”, Astron. Astrophys., 435, 967–985, (2005). [External LinkDOI], [External LinkADS].
340 Yoon, S.-C., Langer, N. and Norman, C., “On the evolution of rapidly rotating massive white dwarfs towards supernovae or collapses”, Astron. Astrophys., 460, 199–208, (2006). [External LinkDOI], [External LinkADS].
341 Yoon, S.-C., Langer, N. and Scheithauer, S., “Effects of rotation on the helium burning shell source in accreting white dwarfs”, Astron. Astrophys., 425, 217–228, (2004). [External LinkDOI], [External LinkADS].
342 Yoon, S.-C., Podsiadlowski, P. and Rosswog, S., “Remnant evolution after a carbon-oxygen white dwarf merger”, Mon. Not. R. Astron. Soc., 380, 933–948, (2007). [External LinkDOI], [External LinkADS].
343 Yoshida, S., Ohnishi, N. and Yamada, S., “Excitation of g-Modes in a Proto-Neutron Star by the Standing Accretion Shock Instability”, Astrophys. J., 665, 1268–1276, (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0701643].
344 Zanotti, O., Rezzolla, L. and Font, J.A., “Quasi-periodic accretion and gravitational waves from oscillating ‘toroidal neutron stars’ around a Schwarzschild black hole”, Mon. Not. R. Astron. Soc., 341, 832–848, (2003). [External LinkDOI], [External LinkADS].
345 Zel’dovich, Y.B. and Novikov, I.D., Relativistic Astrophysics,  1, (University of Chicago Press, Chicago, 1971).
346 Zerilli, F.J., “Gravitational field of a particle falling in a Schwarzschild geometry analyzed in tensor harmonics”, Phys. Rev. D, 2, 2141–2160, (1970). [External LinkDOI], [External LinkADS].
347 Zhang, W., Woosley, S.E. and Heger, A, “Fallback and Black Hole Production in Massive Stars”, Astrophys. J., 679, 639–654, (2008). [External LinkDOI], [External LinkADS].
348 Zink, B., Stergioulas, N., Hawke, I., Ott, C.D., Schnetter, E. and Müller, E., “Formation of Supermassive Black Holes through Fragmentation of Torodial Supermassive Stars”, Phys. Rev. Lett., 96, 161101, (2006). [External LinkDOI], [External LinkADS].
349 Zink, B., Stergioulas, N., Hawke, I., Ott, C.D., Schnetter, E. and Müller, E., “Nonaxisymmetric instability and fragmentation of general relativistic quasitoroidal stars”, Phys. Rev. D, 76, 024019, (2007). [External LinkDOI], [External LinkADS].
350 Zwerger, T. and Müller, E., “Dynamics and gravitational wave signature of axisymmetric rotational core collapse”, Astron. Astrophys., 320, 209–227, (1997). [External LinkADS].