References

1 Accetta, F.S., Krauss, L.M. and Romanelli, P., “New limits on the variability of G from big bang nucleosynthesis”, Phys. Lett. B, 248, 146, (1990).
2 Acquaviva, V., Baccigalupi, C., Leach, S.M., Liddle, A.R. and Perrotta, F., “Structure formation constraints on the Jordan-Brans-Dicke theory”, Phys. Rev. D, 71, 104025, (2005). [External LinkDOI], [External Linkastro-ph/0412052].
3 Adams, F.C., “Stars in other universes: stellar structure with different fundamental constants”, J. Cosmol. Astropart. Phys., 2008(08), 010, (2008). [External LinkDOI], [External LinkarXiv:0807.3697 [astro-ph]].
4 Adelberger, E.G., “New tests of Einstein’s equivalence principle and Newton’s inverse-square law”, Class. Quantum Grav., 18, 2397–2405, (2001). [External LinkDOI].
5 Agrawal, V., Barr, S.M., Donoghue, J.F. and Seckel, D., “Anthropic considerations in multiple-domain theories and the scale of electroweak symmetry breaking”, Phys. Rev. Lett., 80, 1822, (1998). [External LinkDOI], [External Linkhep-ph/9801253].
6 Agrawal, V., Barr, S.M., Donoghue, J.F. and Seckel, D., “Viable range of the mass scale of the standard model”, Phys. Rev. D, 57, 5480–5492, (1998). [External LinkDOI], [External Linkhep-ph/9707380].
7 Aguirre, A., “Making predictions in a multiverse: conundrums, dangers, coincidences”, in Carr, B.J., ed., Universe or Multiverse?, pp. 367–386, (Cambridge University Press, Cambridge; New York, 2007). [External Linkastro-ph/0506519], [External LinkGoogle Books].
8 Amarilla, L. and Vucetich, H., “Brane-world cosmology and varying G”, Int. J. Mod. Phys. A, 25, 3835–3856, (2010). [External LinkDOI], [External Link0908.2949].
9 Amendola, L., Baldi, M. and Wetterich, C., “Quintessence cosmologies with a growing matter component”, Phys. Rev. D, 78, 023015, (2008). [External LinkDOI], [External LinkarXiv:0706.3064 [astro-ph]].
10 Anchordoqui, L., Barger, V., Goldberg, H. and Marfatia, D., “Phase transition in the fine structure constant”, Phys. Lett. B, 660, 529, (2008). [External LinkarXiv:0711.4055 [hep-ph]].
11 Anchordoqui, L. and Goldberg, H., “Time variation of the fine structure constant driven by quintessence”, Phys. Rev. D, 68, 083513, (2003). [External LinkDOI], [External Linkhep-ph/0306084].
12 Anderson, J.D., Campbell, J.K., Jurgens, R.F. and Lau, E.L., “Recent Developments in Solar-System Tests of General Relativity”, in Sato, H. and Nakamura, T., eds., The Sixth Marcel Grossmann Meeting: On recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories, Proceedings of the meeting held at Kyoto International Conference Hall, Kyoto, Japan, 23 – 29 June 1991, pp. 353–355, (World Scientific, Singapore, 1992).
13 Andreev, O.Y., Labzowsky, L.N., Plunien, G. and Soff, G., “Testing the time dependence of the fundamental constants in the spectra of multicharged ions”, Phys. Rev. Lett., 94, 243002, (2005). [External LinkDOI], [External Linkphysics/0505081].
14 Angstmann, E.J., Dzuba, V.A. and Flambaum, V.V., “Atomic clocks and the search for variation of the fine structure constant”, Phys. Rev. A, 70, 014102, (2004). [External LinkDOI], [External Linkphysics/0407141].
15 Angstmann, E.J., Dzuba, V.A., Flambaum, V.V., Nevsky, A.Y. and Karshenboim, S.G., “Narrow atomic transitions with enhanced sensitivity to variation of the fine structure constant”, J. Phys. B: At. Mol. Opt. Phys., 39, 1937, (2006). [External LinkDOI], [External Linkphysics/0511180].
16 Arai, K., Hashimoto, M. and Fukui, T., “Primordial nucleosynthesis in the Brans-Dicke theory with a variable cosmological term”, Astron. Astrophys., 179, 17, (1987). [External LinkADS].
17 Ashby, N., Heavner, T.P., Jefferts, S.R., Parker, T.E., Radnaev, A.G. and Dudin, Y.O., “Testing Local Position Invariance with Four Cesium-Fountain Primary Frequency Standards and Four NIST Hydrogen Masers”, Phys. Rev. Lett., 98, 070802, (2007). [External LinkDOI].
18 Ashenfelter, T., Mathews, G.J. and Olive, K.A., “The chemical evolution of Mg isotopes vs. the time variation of the fine structure constant”, Phys. Rev. Lett., 92, 041102, (2004). [External LinkDOI], [External Linkastro-ph/0309197].
19 Audi, G., “The history of nuclidic masses and of their evaluation”, Int. J. Mass Spectrom., 251, 85–94, (2006). [External LinkDOI], [External Linkphysics/0602050].
20 Avelino, P.P., Martins, C.J.A.P., Nunes, N.J. and Olive, K.A., “Reconstructing the dark energy equation of state with varying constant”, Phys. Rev. D, 74, 083508, (2006). [External LinkDOI], [External Linkastro-ph/0605690].
21 Avelino, P.P., Martins, C.J.A.P. and Rocha, G., “Looking for a varying α in the cosmic microwave background”, Phys. Rev. D, 62, 123508, (2000). [External LinkDOI], [External Linkastro-ph/0008446].
22 Avelino, P.P. et al., “Early-universe constraints on a time-varying fine structure constant”, Phys. Rev. D, 64, 103505, (2001). [External LinkDOI], [External Linkastro-ph/0102144].
23 Baeßler, S., Heckel, B.R., Adelberger, E.G., Gundlach, J.H., Schmidt, U. and Swanson, H.E., “Improved Test of the Equivalence Principle for Gravitational Self-Energy”, Phys. Rev. Lett., 83, 3585–3588, (1999). [External LinkDOI].
24 Bahcall, J.N., Steinhardt, C.L. and Schlegel, D., “Does the fine-structure constant vary with cosmological epoch?”, Astrophys. J., 600, 520, (2004). [External LinkDOI], [External Linkastro-ph/0301507].
25 Bambi, C. and Drago, A., “Constraints on temporal variation of fundamental constants from GRBs”, Astropart. Phys., 29, 223, (2008). [External LinkDOI], [External LinkarXiv:0711.3569 [hep-ph]].
26 Barrow, J.D., “A cosmological limit on the possible variation of G”, Mon. Not. R. Astron. Soc., 184, 677, (1978).
27 Barrow, J.D., “Natural Units Before Planck”, Quart. J. R. Astron. Soc., 24, 24–26, (1983). [External LinkADS].
28 Barrow, J.D., “Observational limits on the time evolution of extra spatial dimensions”, Phys. Rev. D, 35, 1805, (1987). [External LinkDOI].
29 Barrow, J.D., The Constants of Nature: From Alpha to Omega – The Numbers that Encode the Deepest Secrets of the Universe, (Jonathan Cape, London, 2002).
30 Barrow, J.D., “Cosmological bounds on spatial variations of physical constants”, Phys. Rev. D, 71, 083520, (2005). [External LinkDOI], [External Linkastro-ph/0503434].
31 Barrow, J.D., “Varying constants”, Philos. Trans. R. Soc. London, Ser. A, 363, 2139, (2005). [External Linkastro-ph/0511440].
32 Barrow, J.D. and Li, B., “Varying-alpha cosmologies with potentials”, Phys. Rev. D, 78, 083536, (2008). [External LinkDOI], [External LinkarXiv:0808.1580 [gr-qc]].
33 Barrow, J.D. and Magueijo, J., “Can a changing α explain the Supernovae results?”, Astrophys. J., 532, L87, (2000). [External LinkDOI], [External Linkastro-ph/9907354].
34 Barrow, J.D. and Shaw, D.J., “Varying-alpha: new constraints from seasonal variations”, Phys. Rev. D, 78, 067304, (2008). [External LinkDOI], [External LinkarXiv:0806.4317 [hep-ph]].
35 Barrow, J.D. and Tipler, F.J., The Anthropic Cosmological Principle, (Oxford University Press, Oxford; New York, 1986). [External LinkGoogle Books].
36 Battye, R.A., Crittenden, R. and Weller, J., “Cosmic concordance and the fine structure constant”, Phys. Rev. D, 63, 043505, (2001). [External LinkDOI], [External Linkastro-ph/0008265].
37 Bauch, A. and Weyers, S., “New experimental limit on the validity of local position invariance”, Phys. Rev. D, 65, 081101R, (2002). [External LinkDOI].
38 Beane, S.R. and Savage, M.J., “Variation of fundamental couplings and nuclear forces”, Nucl. Phys. A, 717, 91, (2003). [External LinkDOI], [External Linkhep-ph/0206113].
39 Bekenstein, J.D., “Fine-structure constant: Is it really a constant”, Phys. Rev. D, 25, 1527, (1982). [External LinkDOI].
40 Bekenstein, J.D., “Fine-structure constant variability, equivalence principle and cosmology”, Phys. Rev. D, 66, 123514, (2002). [External LinkDOI].
41 Bekenstein, J.D. and Schiffer, M., “Varying-fine structure ‘constant’ and charged black-hole”, Phys. Rev. D, 80, 123508, (2009). [External LinkDOI], [External LinkarXiv:0906.4557 [gr-qc]].
42 Beloy, K., Borschevsky, A., Schwerdtfeger, P. and Flambaum, V.V., “Enhanced Sensitivity to the Time Variation of the Fine-Structure Constant and mp∕me in Diatomic Molecules: A Closer Examination of Silicon Monobromide”, Phys. Rev. A, 82, 022106, (2010). [External LinkDOI], [External LinkarXiv:1007.0393 [physics.atom-ph]].
43 Benvenuto, O.G., García-Berro, E. and Isern, J., “Asteroseismology bound on Ġ∕G from pulsating white dwarfs”, Phys. Rev. D, 69, 082002, (2004). [External LinkDOI].
44 Berengut, J.C., Dzuba, V.A. and Flambaum, V.V., “Enhanced Laboratory Sensitivity to Variation of the Fine-Structure Constant using Highly Charged Ions”, Phys. Rev. Lett., 105, 120801, (2010). [External LinkDOI], [External LinkarXiv:1007.1068 [physics.atom-ph]].
45 Berengut, J.C., Dzuba, V.A., Flambaum, V.V., Kozlov, M.G., Marchenko, M.V., Murphy, M.T. and Webb, J.K., “Laboratory spectroscopy and the search for space-time variation of the fine structure constant using QSO spectra”, arXiv, e-print, (2006). [External LinkarXiv:physics/0408017].
46 Berengut, J.C., Dzuba, V.A., Flambaum, V.V. and Porsev, S.G., “A proposed experimental method to determine α-sensitivity of splitting between ground and 7.6 eV isomeric states in 229Th”, Phys. Rev. Lett., 102, 210801, (2009). [External LinkDOI], [External LinkarXiv:0903.1891 [physics.atom-ph]].
47 Berengut, J.C. and Flambaum, V.V., “Astronomical and laboratory searches for space-time variation of fundamental constants”, J. Phys.: Conf. Ser., 264, 012010, (2010). [External LinkDOI], [External LinkarXiv:1009.3693 [physics.atom-ph]].
48 Berengut, J.C. and Flambaum, V.V., “Manifestations of a spatial variation of fundamental constants on atomic clocks, Oklo, meteorites, and cosmological phenomena”, arXiv, e-print, (2010). [External LinkarXiv:1008.3957 [physics.atom-ph]].
49 Berengut, J.C., Flambaum, V.V. and Dmitriev, V.F., “Effect of quark-mass variation on big bang nucleosynthesis”, Phys. Lett. B, 683, 114, (2010). [External LinkarXiv:0907.2288 [nucl-th]].
50 Berengut, J.C., Flambaum, V.V., King, J.A., Curran, S.J. and Webb, J.K., “Is there further evidence for spatial variation of fundamental constants?”, arXiv, e-print, (2010). [External LinkarXiv:1009.0591 [astro-ph.CO]].
51 Bergström, L., Iguri, S. and Rubinstein, H., “Constraints on the variation of the fine structure constant from big bang nucleosynthesis”, Phys. Rev. D, 60, 045005, (1999). [External LinkDOI], [External Linkastro-ph/9902157].
52 Bertolami, O., Lehnert, R., Potting, R. and Ribeiro, A., “Cosmological acceleration, varying couplings, and Lorentz breaking”, Phys. Rev. D, 69, 083513, (2004). [External LinkDOI], [External LinkarXiv:astro-ph/0310344].
53 Bertotti, B., Iess, L. and Tortora, P., “A test of general relativity using radio links with the Cassini spacecraft”, Nature, 425, 374–376, (2003). [External LinkDOI].
54 Biesiada, M. and Malec, B., “A new white dwarf constraint on the rate of change of the gravitational constant”, Mon. Not. R. Astron. Soc., 350, 644, (2004). [External LinkDOI], [External Linkastro-ph/0303489].
55 BIPM, The International System of Units (SI), (BIPM, Sèvres, 2006), 8th edition. Online version (accessed 1 March 2011):
External Linkhttp://www.bipm.org/en/si/si_brochure/.
56 Birge, R.T., “Probable Values of the General Physical Constants”, Rev. Mod. Phys., 1, 1, (1929).
57 Bize, S. et al., “Testing the Stability of Fundamental Constants with 199Hg+ Single-Ion Optical Clock”, Phys. Rev. Lett., 90, 150802, (2003). [External LinkDOI], [External Linkphysics/0212109].
58 Bize, S. et al., “Cold atom clocks and applications”, J. Phys. B: At. Mol. Opt. Phys., 38, S449–S468, (2005). [External LinkDOI], [External Linkphysics/0502117].
59 Bjorken, J.D., “Standard Model Parameters and the Cosmological Constant”, Phys. Rev. D, 64, 085008, (2001). [External LinkDOI], [External Linkhep-ph/0103349].
60 Blanchet, L., “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries”, Living Rev. Relativity, 9, lrr-2006-4, (2006). [External Linkgr-qc/0202016]. URL (accessed 27 September 2010):
http://www.livingreviews.org/lrr-2006-4.
61 Blatt, S. et al., “New Limits on Coupling of Fundamental Constants to Gravity Using 87Sr Optical Lattice Clocks”, Phys. Rev. Lett., 100, 140801, (2008). [External LinkDOI], [External LinkarXiv:0801.1874 [physics.atom-ph]].
62 Bohlin, R., Jenkins, E.B., Spitzer Jr, L., York, D.G., Hill, J.K., Savage, B.D. and Snow Jr, T.P., “A survey of ultraviolet interstellar absorption lines”, Astrophys. J. Suppl. Ser., 51, 277–308, (1983). [External LinkDOI].
63 Bonifacio, P. et al., “First stars VII - Lithium in extremely metal poor dwarfs”, Astron. Astrophys., 462, 851–864, (2007). [External LinkDOI], [External Linkastro-ph/0610245].
64 Bostrom, N., Anthropic Bias: Observation Selection Effects in Science and Philosophy, (Routledge, New York; London, 2002). [External LinkGoogle Books].
65 Bousso, R., Hall, L.J. and Nomura, Y., “Multiverse understanding of cosmological coincidences”, Phys. Rev. D, 80, 063510, (2009). [External LinkDOI], [External LinkarXiv:0902.2263 [hep-th]].
66 Bousso, R. and Polchinski, J., “Quantization of Four-form Fluxes and Dynamical Neutralization of the Cosmological Constant”, J. High Energy Phys., 2000(06), 006, (2000). [External LinkDOI], [External Linkhep-th/0004134].
67 Brans, C. and Dicke, R.H., “Mach’s Principle and a Relativistic Theory of Gravitation”, Phys. Rev., 124, 925–935, (1961). [External LinkDOI].
68 Brax, P. and Martin, J., “Dark Energy and the MSSM”, Phys. Rev. D, 75, 083507, (2007). [External LinkDOI], [External Linkhep-th/0605228].
69 Brax, P. and Martin, J., “Moduli Fields as Quintessence and the Chameleon”, Phys. Lett. B, 647, 320, (2007). [External Linkhep-th/0612208].
70 Brax, P., van de Bruck, C., Davis, A.-C., Khoury, J. and Weltman, A., “Detecting dark energy in orbit: The cosmological chameleon”, Phys. Rev. D, 70, 123518, (2004). [External LinkDOI], [External Linkastro-ph/0408415].
71 Brax, P., van de Bruck, C., Mota, D.F., Nunes, N.J. and Winther, H.A., “Chameleons with field-dependent couplings”, Phys. Rev. D, 82, (2010). [External LinkDOI], [External LinkarXiv:1006.2796 [astro-ph.CO]].
72 Bronnikov, K.A. and Kononogov, S.A., “Possible variations of the fine structure constant α and their metrological significance”, Metrologia, 43, R1, (2006). [External LinkDOI], [External Linkgr-qc/0604002].
73 Byrne, M. and Kolda, C., “Quintessence and varying α from shape moduli”, arxiv, e-print, (2004). [External Linkarxiv:hep-ph/0402075].
74 Calmet, X. and Fritzsch, H., “The Cosmological Evolution of the Nucleon Mass and the Electroweak Coupling Constants”, Eur. Phys. J. C, 24, 639–642, (2002). [External LinkDOI], [External Linkhep-ph/0112110].
75 Calmet, X. and Fritzsch, H., “Symmetry Breaking and Time Variation of Gauge Couplings”, Phys. Lett. B, 540, 173, (2002). [External Linkhep-ph/0204258].
76 Calmet, X. and Fritzsch, H., “A time variation of proton-electron mass ratio and grand unification”, Europhys. Lett., 76, 1064, (2006). [External LinkDOI], [External Linkastro-ph/0605232].
77 Campbell, B.A. and Olive, K.A., “Nucleosynthesis and the time dependence of fundamental couplings”, Phys. Lett. B, 345, 429–434, (1995). [External Linkhep-ph/9411272].
78 Carilli, C.L. et al., “Astronomical Constraints on the Cosmic Evolution of the Fine Structure Constant and Possible Quantum Dimensions”, Phys. Rev. Lett., 85, 5511–5514, (2000). [External LinkDOI].
79 Carr, B.J., ed., Universe or Multiverse?, (Cambridge University Press, Cambridge; New York, 2007). [External LinkGoogle Books].
80 Carr, B.J. and Rees, M.J., “The anthropic principle and the structure of the physical world”, Nature, 278, 605–612, (1979). [External LinkDOI].
81 Carroll, S.M., “Quintessence and the Rest of the World: Suppressing Long-Range Interactions”, Phys. Rev. Lett., 81, 3067–3070, (1998). [External LinkDOI].
82 Carter, B., “Large number coincidences and the anthropic principle in cosmology”, in Longair, M.S., ed., Confrontation of Cosmological Theories with Observational Data, Proceedings of the 63rd Symposium of the International Astronomical Union (Copernicus Symposium II), held in Cracow, Poland, 10 – 12 September, 1973, pp. 291–298, (Reidel, Dordrecht, 1974). [External LinkADS].
83 Carter, B., “The anthropic principle and its implication for biological evolution”, Philos. Trans. R. Soc. London, Ser. A, 310, 347, (1983). [External LinkDOI].
84 Casas, J.A., García-Bellido, J. and Quirós, M., “Nucleosynthesis Bounds On Jordan-Brans-Dicke Theories Of Gravity”, Mod. Phys. Lett. A, 7, 447, (1992). [External LinkDOI].
85 Cembranos, J.A.R., Olive, K.A., Peloso, M. and Uzan, J.-P., “Quantum corrections to the cosmological evolution of conformally coupled fields”, J. Cosmol. Astropart. Phys., 2009(07), 025, (2009). [External LinkDOI], [External LinkarXiv:0905.1989 [astro-ph.CO]].
86 Centurión, M., Molaro, P. and Levshakov, S., “Calibration issues in Δαα”, Mem. Soc. Astron. Ital., 80, 929, (2009).
87 Chacko, Z., Grojean, C. and Perelstein, M., “Fine structure constant variation from a late phase transition”, Phys. Lett. B, 565, 169, (2003). [External Linkhep-ph/0204142].
88 Chamoun, N., Landau, S.J., Mosquera, M.E. and Vucetich, H., “Helium and deuterium abundances as a test for the time variation of the baryonic density, fine structure constant and the Higgs vacuum expectation value”, J. Phys. G: Nucl. Part. Phys., 34, 163, (2007). [External LinkDOI], [External Linkastro-ph/0508378].
89 Chan, K.C. and Chu, M.-C., “Constraining the variation of G by cosmic microwave background anisotropies”, Phys. Rev. D, 75, 083521, (2007). [External LinkDOI], [External Linkastro-ph/0611851].
90 Chand, H., Petitjean, P., Srianand, R. and Aracil, B., “Probing the cosmological variation of the fine-structure constant: Results based on VLT-UVES sample”, Astron. Astrophys., 417, 853, (2004). [External LinkDOI], [External Linkastro-ph/0401094].
91 Chand, H., Petitjean, P., Srianand, R. and Aracil, B., “Probing the time-variation of the fine-structure constant: Results based on Si IV doublets from a UVES sample”, Astron. Astrophys., 430, 47–58, (2005). [External LinkDOI], [External Linkastro-ph/0408200].
92 Chand, H., Petitjean, P., Srianand, R. and Aracil, B., “On the variation of the fine-structure constant: Very high resolution spectrum of QSO HE 0515-4414”, Astron. Astrophys., 451, 45, (2006). [External LinkDOI], [External Linkastro-ph/0601194].
93 Chandler, J.F., Reasenberg, R.D. and Shapiro, I.I., “New bounds on Ġ”, Bull. Am. Astron. Soc., 25, 1233, (1993).
94 Chen, X. and Kamionkowski, M., “Cosmic microwave background temperature and polarization anisotropy in Brans-Dicke cosmology”, Phys. Rev. D, 60, 104036, (1999). [External LinkDOI].
95 Chengalur, J.N. and Kanekar, N., “Constraining the variation of fundamental constants using 18 cm OH lines”, Phys. Rev. Lett., 91, 241302, (2003). [External LinkDOI], [External Linkastro-ph/0310764].
96 Chiba, T. and Khori, K., “Quintessence cosmology and varying α”, Prog. Theor. Phys., 107, 631, (2002). [External LinkDOI], [External Linkhep-ph/0111086].
97 Chiba, T., Kobayashi, T., Yamaguchi, M. and Yokoyama, J., “Time variation of proton-electron mass ratio and fine structure constant with runaway dilaton”, Phys. Rev. D, 75, 043516, (2007). [External LinkDOI], [External Linkhep-ph/0610027].
98 Chin, C. and Flambaum, V.V., “Enhancement of variation of fundamental constants in ultracold atom and molecule systems near Feshbach resonances”, Phys. Rev. Lett., 96, 230801, (2006). [External LinkDOI], [External Linkcond-mat/0603607].
99 Chupp, T.E., Hoare, R.J., Loveman, R.A., Oteiza, E.R., Richardson, J.M., Wagshul, M.E. and Thompson, A.K., “Results of a new test of local Lorentz invariance: A search for mass anisotropy in 21Ne”, Phys. Rev. Lett., 63, 1541–1545, (1989). [External LinkDOI].
100 Cingöz, A., Lapierre, A., Nguyen, A.-T., Leefer, N., Budker, D., Lamoreaux, S.K. and Torgerson, J.R., “Limit on the Temporal Variation of the Fine-Structure Constant Using Atomic Dysprosium”, Phys. Rev. Lett., 98, 040801, (2008). [External LinkDOI], [External Linkphysics/0609014].
101 Civitarese, O., Moliné, M.A. and Mosquera, M.E., “Cosmological bounds to the variation of the Higgs vacuum expectation value: BBN constraints”, Nucl. Phys. A, 846, 157, (2010). [External LinkDOI].
102 Clifton, T., Barrow, J.D. and Scherrer, R.J., “Constraints on the variation of G from primordial nucleosynthesis”, Phys. Rev. D, 71, 123526, (2005). [External LinkDOI].
103 Coc, A., Ekström, S., Descouvemont, P., Meynet, G., Olive, K.A., Uzan, J.-P. and Vangioni, E., “Constraints on the variations of fundamental couplings by stellar models”, Mem. Soc. Astron. Ital., 80, 809–813, (2009). [External LinkADS].
104 Coc, A., Nunes, N.J., Olive, K.A., Uzan, J.-P. and Vangioni, E., “Coupled variations of the fundamental couplings and primordial nucleosynthesis”, Phys. Rev. D, 76, 023511, (2007). [External LinkDOI], [External Linkastro-ph/0610733].
105 Coc, A., Olive, K.A., Uzan, J.-P. and Vangioni, E., “Big bang nucleosynthesis constraints on scalar-tensor theories of gravity”, Phys. Rev. D, 73, 083525, (2006). [External LinkDOI], [External Linkastro-ph/0601299].
106 Coc, A., Olive, K., Uzan, J.-P. and Vangioni, E., “Non-universal scalar-tensor theories and big bang nucleosynthesis”, Phys. Rev. D, 79, 103512, (2009). [External LinkDOI].
107 Coc, A. and Vangioni, E., “Big-Bang Nucleosynthesis with updated nuclear data”, J. Phys.: Conf. Ser., 202, 012001, (2010). [External LinkDOI].
108 Coc, A., Vangioni-Flam, E., Descouvemont, P., Adahchour, A. and Angulo, C., “Updated big bang nucleosynthesis compared with Wilkinson Microwave Anisotropy Probe observations and the abundance of light elements”, Astrophys. J., 600, 544, (2004). [External LinkDOI], [External Linkastro-ph/0309480].
109 Combes, F., “Radio measurements of constant variation, and perspective with ALMA”, Mem. Soc. Astron. Ital., 80, 888, (2009).
110 Cook, A.H., “Secular changes of the units and constant of physics”, Nature, 180, 1194, (1957). [External LinkDOI].
111 Cook, C.W., Fowler, W.A., Lauritsen, C.C. and Lauritsen, T., “B12, C12, and the Red Giants”, Phys. Rev. D, 107, 508, (1957). [External LinkDOI].
112 Copeland, E.J., Nunes, N.J. and Pospelov, M., “Models of quintessence coupled to the electromagnetic field and the cosmological evolution of α”, Phys. Rev. D, 69, 023501, (2004). [External LinkDOI], [External Linkhep-ph/0307299].
113 Copi, C.J., Davis, A.N. and Krauss, L.M., “New Nucleosynthesis Constraint on the Variation of G”, Phys. Rev. Lett., 92, 171301, (2004). [External LinkDOI].
114 Cremmer, E. and Scherk, J., “Spontaneous Compactification of Extra Space Dimensions”, Nucl. Phys. B, 118, 61, (1977). [External LinkDOI].
115 Cristiani, S. et al., “The CODEX-ESPRESSO experiment: cosmic dynamics, fundamental physics, planets and much more...”, Nuovo Cimento B, 122, 1165–1170, (2007). [External LinkDOI], [External LinkarXiv:0712.4152 [astro-ph]].
116 Cyburt, R.H., Fields, B.D. and Olive, K.A., “An update on the big bang nucleosynthesis prediction for 7Li: the problem worsens”, J. Cosmol. Astropart. Phys., 2008(11), 012, (2008). [External LinkDOI], [External LinkarXiv:0808.2818 [astro-ph]].
117 Cyburt, R.H., Fields, B.D., Olive, K.A. and Skillman, E., “New BBN limits on physics beyond the standard model from 4He”, Astropart. Phys., 23, 313–323, (2005). [External LinkDOI], [External Linkastro-ph/0408033].
118 Damour, T., “Testing the equivalence principle: why and how?”, Class. Quantum Grav., 13, A33–A41, (1996). [External LinkDOI], [External Linkgr-qc/9606080].
119 Damour, T., “The Equivalence Principle and the Constants of Nature”, Space Sci. Rev., 148, 191, (2009). [External LinkDOI], [External LinkarXiv:0906.3174 [gr-qc]].
120 Damour, T. and Donoghue, J.F., “Constraints on the variability of quark masses from nuclear binding”, Phys. Rev. D, 78, 014014, (2008). [External LinkDOI], [External LinkarXiv:0712.2968 [hep-ph]].
121 Damour, T. and Donoghue, J.F., “Equivalence Principle Violations and Couplings of a Light Dilaton”, Phys. Rev. D, 82, 084033, 1–20, (2010). [External LinkarXiv:1007.2792 [gr-qc]].
122 Damour, T. and Donoghue, J.F., “Phenomenology of the Equivalence Principle with Light Scalars”, Class. Quantum Grav., 27, 202001, (2010). [External LinkDOI], [External LinkarXiv:1007.2790 [gr-qc]].
123 Damour, T. and Dyson, F.J., “The Oklo bound on the time variation of the fine-structure constant revisited”, Nucl. Phys. B, 480, 37–54, (1996). [External LinkDOI], [External Linkhep-ph/9606486].
124 Damour, T. and Esposito-Farèse, G., “Tensor-multi-scalar theories of gravitation”, Class. Quantum Grav., 9, 2093–2176, (1992). [External LinkDOI].
125 Damour, T. and Esposito-Farèse, G., “Gravitational-wave versus binary-pulsar tests of strong-field gravity”, Phys. Rev. D, 58, 042001, (1998). [External LinkDOI].
126 Damour, T., Gibbons, G.W. and Gundlach, C., “Dark matter, time-varying G, and a dilaton field”, Phys. Rev. Lett., 64, 123, (1990). [External LinkDOI].
127 Damour, T., Gibbons, G.W. and Taylor, J.H., “Limits on the Variability of G Using Binary-Pulsar Data”, Phys. Rev. Lett., 61, 1151–1154, (1988). [External LinkDOI], [External LinkADS].
128 Damour, T. and Gundlach, C., “Nucleosynthesis constraints on an extended Jordan-Brans-Dicke theory”, Phys. Rev. D, 43, 3873, (1991). [External LinkDOI].
129 Damour, T. and Lilley, M., “String theory, gravity and experiment”, in Bachas, C., Baulieu, L., Douglas, M., Kiritsis, E., Rabinovici, E., Vanhove, P., Windey, P. and Cugliandolo, L.F., eds., String Theory and the Real World: From Particle Physics to Astrophysics, Proceedings of the Les Houches Summer School, Session LXXXVII, 2 July – 27 July 2007, Les Houches Summer School Proceedings,  87, pp. 371–448, (Elsevier, Amsterdam, 2008).
130 Damour, T. and Nordtvedt, K., “General relativity as a cosmological attractor of tensor-scalar theories”, Phys. Rev. Lett., 70, 2217–2219, (1993). [External LinkDOI].
131 Damour, T. and Nordtvedt, K., “Tensor-scalar cosmological models and their relaxation toward general relativity”, Phys. Rev. D, 48, 3436–3450, (1993). [External LinkDOI].
132 Damour, T., Piazza, F. and Veneziano, G., “Runaway dilaton and equivalence principle violations”, Phys. Rev. Lett., 89, 081601, (2002). [External LinkDOI], [External Linkgr-qc/0204094].
133 Damour, T., Piazza, F. and Veneziano, G., “Violations of the equivalence principle in a dilaton-runaway scenario”, Phys. Rev. D, 66, 046007, (2002). [External LinkDOI], [External Linkhep-th/0205111].
134 Damour, T. and Pichon, B., “Big bang nucleosynthesis and tensor-scalar gravity”, Phys. Rev. D, 59, 123502, (1999). [External LinkDOI], [External Linkastro-ph/9807176].
135 Damour, T. and Polyakov, A.M., “The string dilaton and a least coupling principle”, Nucl. Phys. B, 423, 532–558, (1994). [External LinkDOI], [External Linkhep-th/9401069].
136 Damour, T. and Polyakov, A.M., “String theory and gravity”, Gen. Relativ. Gravit., 26, 1171, (1994). [External LinkDOI], [External Linkgr-qc/9411069].
137 Damour, T. and Taylor, J.H., “On the Orbital Period Change of the Binary Pulsar PSR 1913+16”, Astrophys. J., 366, 501–511, (1991). [External LinkDOI], [External LinkADS].
138 Darling, J., “A laboratory for constraining cosmic evolution of the fine-structure constant: conjugate 18 centimeter OH lines toward PKS 1413+135 at z = 0.2467”, Astrophys. J., 612, 58, (2004). [External LinkDOI], [External Linkastro-ph/0405240].
139 Davies, P.C.W., Davis, T.M. and Lineweaver, C.H., “Cosmology: Black holes constrain varying constants”, Nature, 418, 602, (2002). [External LinkDOI].
140 Del’Innocenti, S. etal, “Time variation of Newton’s constant and the age of globular clusters”, Astron. Astrophys., 312, 345, (1996).
141 Demarque, P., Krauss, L.M., Guenther, D.B. and Nydam, D., “The Sun as a probe of varying G”, Astrophys. J., 437, 870, (1994). [External LinkDOI].
142 Dent, T., “Varying alpha, thresholds and fermion masses”, Nucl. Phys. B, 677, 471–484, (2004). [External LinkDOI], [External Linkhep-ph/0305026].
143 Dent, T., “Composition-dependent long range forces from varying mp∕me”, J. Cosmol. Astropart. Phys., 2007(01), 013, (2007). [External LinkDOI], [External Linkhep-ph/0608067].
144 Dent, T., “Eötvös bounds on couplings of fundamental parameters to gravity”, Phys. Rev. Lett., 101, 041102, (2008). [External LinkDOI], [External LinkarXiv:0805.0318 [hep-ph]].
145 Dent, T. and Fairbairn, M., “Time varying coupling strength, nuclear forces and unification”, Nucl. Phys. B, 653, 256, (2003). [External LinkDOI], [External Linkhep-ph/0112279].
146 Dent, T., Stern, S. and Wetterich, C., “Primordial nucleosynthesis as a probe of fundamental physics parameters”, Phys. Rev. D, 76, 063513, (2007). [External LinkDOI], [External LinkarXiv:0705.0696 [astro-ph]].
147 Dent, T., Stern, S. and Wetterich, C., “Unifying cosmological and recent time variations of fundamental couplings”, Phys. Rev. D, 78, 103518, (2008). [External LinkDOI], [External LinkarXiv:0808.0702 [hep-ph]].
148 Dent, T., Stern, S. and Wetterich, C., “Competing bounds on the present-day time variation of fundamental constants”, Phys. Rev. D, 79, 083533, (2009). [External LinkDOI], [External LinkarXiv:0812.4130 [hep-ph]].
149 Dent, T., Stern, S. and Wetterich, C., “Time variation of fundamental couplings and dynamical dark energy”, J. Cosmol. Astropart. Phys., 2009(01), 038, (2009). [External LinkDOI], [External LinkarXiv:0809.4628 [hep-ph]].
150 Dicke, R.H., “Dirac’s Cosmology and the Dating of Meteorites”, Nature, 183, 170–171, (1959). [External LinkDOI].
151 Dicke, R.H., “Dirac’s Cosmology and Mach’s Principle”, Nature, 192, 440, (1961). [External LinkDOI].
152 Dicke, R.H., “Experimental relativity”, in DeWitt, C.M. and DeWitt, B.S., eds., Relativity, Groups and Topology. Relativité, Groupes et Topologie, Lectures delivered at Les Houches during the 1963 session of the Summer School of Theoretical Physics, University of Grenoble, pp. 165–313, (Gordon and Breach, New York; London, 1964).
153 Dine, M., Nir, Y., Raz, G. and Volansky, T., “Time Variations in the Scale of Grand Unification”, Phys. Rev. D, 67, 015009, (2003). [External LinkDOI], [External Linkhep-ph/0209134].
154 Dinh, T.H., Dunning, A., Dzuba, V.A. and Flambaum, V.V., “The sensitivity of hyperfine structure to nuclear radius and quark mass variation”, Phys. Rev. A, 79, 054102, (2009). [External LinkDOI], [External LinkarXiv:0903.2090 [physics.atom-ph]].
155 Dirac, P.A.M., “The cosmological constants”, Nature, 139, 323, (1937). [External LinkDOI].
156 Dirac, P.A.M., “A new basis for cosmology”, Proc. R. Soc. London, Ser. A, 165, 199–208, (1938). [External LinkADS].
157 Dmitriev, V.F. and Flambaum, V.V., “Limits on cosmological variation of quark masses and strong interaction”, Phys. Rev. D, 67, 063513, (2003). [External LinkDOI], [External Linkastro-ph/0209409].
158 Dmitriev, V.F., Flambaum, V.V. and Webb, J.K., “Cosmological varation of deuteron binding energy, strong interaction and quark masses from big bang nucleosynthesis”, Phys. Rev. D, 69, 063506, (2004). [External LinkDOI], [External Linkastro-ph/0310892].
159 Donoghue, J.F., “The nuclear central force in the chiral limit”, Phys. Rev. C, 74, 024002, (2006). [External LinkDOI], [External Linknucl-th/0603016].
160 Donoghue, J.F., Dutta, K. and Ross, A., “Quark and lepton masses and mixing in the landscape”, Phys. Rev. D, 73, 113002, (2006). [External LinkDOI], [External Linkhep-ph/0511219].
161 Donoghue, J.F., Dutta, K., Ross, A. and Tegmark, M., “Likely values of the Higgs vev”, Phys. Rev. D, 81, 073003, (2010). [External LinkDOI], [External LinkarXiv:0903.1024 [hep-ph]].
162 Doran, M., “Can we test Dark Energy with Running Fundamental Constants?”, J. Cosmol. Astropart. Phys., 2005(04), 016, (2005). [External LinkDOI], [External Linkastro-ph/0411606].
163 Dudas, E., “Theory and phenomenology of type I strings and M theory”, Class. Quantum Grav., 17, R41, (2000). [External LinkDOI].
164 Duff, M.J., “Comment on time-variation of fundamental constants”, arxiv, e-print, (2002). [External Linkarxiv:hep-th/0208093].
165 Duff, M.J., Okun, L.B. and Veneziano, G., “Trialogue on the number of fundamental constants”, J. High Energy Phys., 2002(03), 023, (2002). [External LinkDOI], [External Linkphysics/0110060].
166 Dvali, G. and Zaldarriaga, M., “Changing α with Time: Implications For Fifth-Force-Type Experiments and Quintessence”, Phys. Rev. Lett., 88, 091303, (2002). [External LinkDOI], [External Linkhep-ph/0108217].
167 Dyson, F.J., “Time variation of the charge of the proton”, Phys. Rev. Lett., 19, 1291, (1967). [External LinkDOI].
168 Dyson, F.J., “The Fundamental Constants and Their Time Variation”, in Salam, A. and Wigner, E.P., eds., Aspects of Quantum Theory, pp. 213–236, (Cambridge University Press, Cambridge; New York, 1972). [External LinkGoogle Books].
169 Dzuba, V.A. and Flambaum, V.V., “Atomic optical clocks and search for the variation of the fine-structure constant”, Phys. Rev. A, 61, 034502, (2000). [External LinkDOI].
170 Dzuba, V.A. and Flambaum, V.V., “Atomic clocks and search for variation of the fine structure constant”, Phys. Rev. A, 61, 034502, (2001). [External LinkDOI].
171 Dzuba, V.A. and Flambaum, V.V., “Fine-structure and search of variation of the fine-structure constant in laboratory experiments”, Phys. Rev. A, 72, 052514, (2005). [External LinkDOI], [External Linkphysics/0510072].
172 Dzuba, V.A. and Flambaum, V.V., “Sensitivity of the energy levels of singly ionized cobalt to the variation of the fine structure constant”, Phys. Rev. A, 81, 034501, (2010). [External LinkDOI], [External LinkarXiv:1002.1750 [astro-ph.CO]].
173 Dzuba, V.A. and Flambaum, V.V., “Theoretical study of the experimentally important states of dysprosium”, Phys. Rev. A, 81, 052515, (2010). [External LinkDOI], [External LinkarXiv:1003.1184 [physics.atom-ph]].
174 Dzuba, V.A., Flambaum, V.V. and Marchenko, M.V., “Relativistic effect in Sr, Dy, YbII, and YbIII and search for variation of the fine structure constant”, Phys. Rev. A, 68, 022506, (2003). [External LinkDOI], [External Linkphysics/0305066].
175 Dzuba, V.A., Flambaum, V.V. and Webb, J.K., “Calculations of the relativistic effects in many electron atoms and space-time variation of fundamental constants”, Phys. Rev. A, 59, 230, (1999). [External LinkDOI], [External Linkphysics/9808021].
176 Dzuba, V.A., Flambaum, V.V. and Webb, J.K., “Space-time variation of physical constants and relativistic corrections in atoms”, Phys. Rev. Lett., 82, 888, (1999). [External LinkDOI].
177 Eardley, D.M., “Observable effects of a scalar gravitational field in a binary pulsar”, Astrophys. J. Lett., 196, L59–L62, (1975). [External LinkDOI], [External LinkADS].
178 Eddington, A., Relativity Theory of Protons and Electrons, (Cambridge University Press, Cambridge, 1936).
179 Eddington, A., Fundamental Theory, (Cambridge University Press, Cambridge, 1948).
180 Ekström, S., Coc, A., Descouvemont, P., Meynet, G., Olive, K.A., Uzan, J.-P. and Vangioni, E., “Effects of the variation of fundamental constants on Population III stellar evolution”, Astron. Astrophys., 514, A62, (2010). [External LinkDOI], [External LinkarXiv:0911.2420 [astro-ph.SR]].
181 Ekström, S., Meynet, G., Chiappini, C., Hirschi, R. and Maeder, A., “Effects of rotation on the evolution of primordial stars”, Astron. Astrophys., 489, 685, (2008). [External LinkDOI], [External LinkarXiv:0807.0573 [astro-ph]].
182 Ellis, G.F.R., Kirchner, U. and Stoeger, W.R., “Multiverses and physical cosmology”, Mon. Not. R. Astron. Soc., 34, 921, (2004). [External LinkDOI], [External Linkastro-ph/0305292].
183 Ellis, G.F.R. and Uzan, J.-P., “‘c’ is the speed of light, isn’t it?”, Am. J. Phys., 73, 240–247, (2005). [External LinkDOI], [External Linkgr-qc/0305099].
184 Ellis, J., Ibáñez, L. and Ross, G.G., “Grand Unification with Large Supersymmetry Breaking”, Phys. Lett. B, 113, 283–287, (1982). [External LinkDOI].
185 Ellis, J., Ibáñez, L. and Ross, G.G., “SU(2)L× U(1) Symmetry Breaking as a Radiative Effect of Supersymmetry Breaking in Guts”, Phys. Lett. B, 110, 215–220, (1982). [External LinkDOI].
186 Ellis, J., Kalara, S., Olive, K.A. and Wetterich, C., “Density-dependent couplings and astrophysical bounds on light scalar particles”, Phys. Lett. B, 228, 264, (1989).
187 Ellison, S.L., Ryan, S.G. and Prochaska, J.X., “The first detection of cobalt in a damped Lyman alpha system”, Mon. Not. R. Astron. Soc., 326, 628, (2001). [External LinkDOI], [External Linkastro-ph/0104301].
188 Epelbaum, E., Meissner, U.G. and Glöckle, W., “Nuclear forces in the chiral limit”, Nucl. Phys. A, 714, 535–574, (2003). [External LinkDOI], [External Linknucl-th/0207089].
189 Esposito-Farèse, G., “Tests of Alternative Theories of Gravity”, in Hewett, J., Jaros, J., Kamae, T. and Prescott, C., eds., Gravity in the Quantum World and the Cosmos, Proceedings of the 33rd SLAC Summer Institute on Particle Physics (SSI 2005), Menlo Park, USA, 25 July – 5 August 2005, 819, (SLAC, Stanford, 2005). URL (accessed 27 September 2010):
External Linkhttp://www.slac.stanford.edu/econf/C0507252/papers/T025.PDF.
190 Esposito-Farèse, G., “Motion in alternative theories of gravity”, in Blanchet, L., Spallicci, A. and Whiting, B., eds., Mass and Motion in General Relativity, Lectures from the CNRS School on Mass held in Orléans, France, 23 – 25 June 2008, Fundamental Theories of Physics, 162, pp. 461–489, (Springer, Berlin; New York, 2011). [External LinkDOI], [External LinkarXiv:0905.2575 [gr-qc]].
191 Esposito-Farèse, G. and Polarski, D., “Scalar-tensor gravity in an accelerating universe”, Phys. Rev. D, 63, 063504, (2001). [External LinkDOI], [External Linkgr-qc/0009034].
192 Fenner, Y., Murphy, M.T. and Gibson, B.K., “On variations in the fine-structure constant and stellar pollution of quasar absorption systems”, Mon. Not. R. Astron. Soc., 358, 468, (2005). [External LinkDOI], [External Linkastro-ph/0501168].
193 Ferrel, S.J. et al., “Investigation of the gravitational potential dependence of the fine-structure constant using atomic dyprosium”, Phys. Rev. A, 76, 062104, (2007). [External LinkDOI], [External LinkarXiv:0708.0569 [physics.atom-ph]].
194 Ferrero, A. and Altschul, B., “Limits on the Time Variation of the Fermi Constant GF Based on Type Ia Supernova Observations”, Phys. Rev. D, 82, 123002, 1–8, (2010). [External LinkDOI], [External LinkarXiv:1008.4769 [hep-ph]].
195 Fierz, M., “On the physical interpretation of P. Jordan’s extended theory of gravitation”, Helv. Phys. Acta, 29, 128, (1956).
196 Fischer, M. et al., “New limits on the drift of fundamental constants from laboratory measurements”, Phys. Rev. Lett., 92, 230802, (2004). [External LinkDOI], [External Linkphysics/0312086].
197 Flambaum, V.V., “Limits on temporal variation of quark masses and strong interaction from atomic clock experiments”, arxiv, e-print, (2003). [External Linkarxiv:physics/0302015].
198 Flambaum, V.V., “Limits on temporal variation of fine structure constant, quark masses and strong interaction from atomic clock experiments”, in Hannaford, P., Sidorov, A., Bachor, H. and Baldwin, K., eds., Laser Spectroscopy, Proceedings of the XVI International Conference, Palm Cove, Australia, 13 – 18 July 2003, pp. 49–57, (World Scientific, Singapore, 2004). [External Linkphysics/0309107].
199 Flambaum, V.V., “Enhanced effect of temporal variation of the fine-structure constant and the strong interaction in 229Th”, Phys. Rev. Lett., 97, 092502, (2006). [External LinkDOI], [External Linkphysics/0604188].
200 Flambaum, V.V. and Dzuba, V.A., “Search for variation of the fundamental constants in atomic, molecular and nuclear spectra”, Can. J. Phys., 87, 25, (2009). [External LinkDOI], [External LinkarXiv:0805.0462 [physics.atom-ph]].
201 Flambaum, V.V. and Kozlov, M.G., “Enhanced sensitivity to time-variation of mp∕me in the inversion spectrum of ammonia”, Phys. Rev. Lett., 98, 240801, (2007). [External LinkDOI], [External LinkarXiv:0704.2301 [astro-ph]].
202 Flambaum, V.V. and Kozlov, M.G., “Enhanced sensitivity to variation of the fine structure constant and mp∕me in diatomic molecules”, Phys. Rev. Lett., 99, 150801, (2007). [External LinkDOI], [External LinkarXiv:0705.0849 [physics.atom-ph]].
203 Flambaum, V.V., Lambert, S. and Pospelov, M., “Scalar-tensor theories with pseudo-scalar couplings”, Phys. Rev. D, 80, 105021, (2009). [External LinkDOI], [External LinkarXiv:0902.3217 [hep-ph]].
204 Flambaum, V.V., Leinweber, D.B., Thomas, A.W. and Young, R.D., “Limits on the temporal variation of the fine structure constant, quark masses and strong interaction from quasar absorption spectra and atomic clock experiments”, Phys. Rev. D, 69, 115006, (2004). [External Linkhep-ph/0402098].
205 Flambaum, V.V. and Porsev, S.G., “Enhanced sensitivity to the fine-structure constant variation in Th IV atomic clock transition”, Phys. Rev. A, 80, 064502, (2009). [External LinkDOI], [External LinkarXiv:0910.3459 [physics.atom-ph]].
206 Flambaum, V.V. and Porsev, S.G., “Comment on ‘21-cm Radiation: A New Probe of Variation in the Fine-Structure Constant”’, Phys. Rev. Lett., 105, 039001, (2010). [External LinkDOI], [External LinkarXiv:1004.2540 [astro-ph.CO]].
207 Flambaum, V.V. and Shuryak, E.V., “Limits on cosmological variation of strong interaction and quark masses from big bang nucleosynthesis, cosmic, laboratory and Oklo data”, Phys. Rev. D, 65, 103503, (2002). [External LinkDOI], [External Linkhep-ph/0201303].
208 Flambaum, V.V. and Shuryak, E.V., “Dependence of hadronic properties on quark and constraints on their cosmological variation”, Phys. Rev. D, 67, 083507, (2003). [External LinkDOI], [External Linkhep-ph/0212403].
209 Flambaum, V.V. and Shuryak, E.V., “How changing physical constants and violation of local position invariance may occur?”, in Danielewicz, P., Piecuch, P. and Zelevinsky, V., eds., Nuclei and Mesoscopic Physics, Workshop in East Lansing (Michigan), 20 – 22 October 2007, AIP Conference Proceedings, 995, pp. 1–11, (American Institute of Physics, Melville, NY, 2008). [External LinkDOI], [External Linkphysics/0701220].
210 Flambaum, V.V. and Tedesco, A.F., “Dependence of nuclear magnetic moments on quark masses and limits on temporal variation of fundamental constants from atomic clock experiments”, Phys. Rev. C, 73, 055501, (2006). [External LinkDOI], [External Linknucl-th/060150].
211 Flambaum, V.V. and Wiringa, R.B., “Dependence of nuclear binding on hadronic mass variation”, Phys. Rev. C, 76, 054002, (2007). [External LinkDOI], [External LinkarXiv:0709.0077 [nucl-th]].
212 Flambaum, V.V. and Wiringa, R.B., “Enhanced effect of quark mass variation in 229Th and limits from Oklo data”, Phys. Rev. C, 79, 034302, (2009). [External LinkDOI], [External LinkarXiv:0807.4943 [nucl-th]].
213 Flowers, J.L. and Petley, B.W., “Progress in our knowledge of the fundamental constants of physics”, Rep. Prog. Phys., 64, 1191, (2001). [External LinkDOI].
214 Fortier, T.M. et al., “Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance”, Phys. Rev. Lett., 98, 070801, (2007). [External LinkDOI].
215 Fritzsch, H., The fundamental constants, a mistery of physics, (World Scientific, Singapore, 2009).
216 Fritzsch, H., “The Fundamental Constants in Physics”, Phys. Usp., 52, 359, (2009). [External LinkDOI], [External LinkarXiv:0902.2989 [hep-ph]].
217 Fujii, Y., “Accelerating universe and the time-dependent fine-structure constant”, Mem. Soc. Astron. Ital., 80, 780, (2009).
218 Fujii, Y. and Iwamoto, A., “Re/OS constraint on the time variability of the fine structure constant”, Phys. Rev. Lett., 91, 261101, (2003). [External LinkDOI], [External Linkhep-ph/0309087].
219 Fujii, Y. and Iwamoto, A., “How strongly does dating meteorites constrain the time-dependence of the fine-structure constant?”, Mod. Phys. Lett. A, 20, 2417–2434, (2005). [External LinkDOI], [External Linkhep-ph/0508072].
220 Fujii, Y., Iwamoto, A., Fukahori, T., Ohnuki, T., Nakagawa, M., Hidaka, H., Oura, Y. and Möller, P., “The nuclear interaction at Oklo 2 billion years ago”, Nucl. Phys. B, 573, 377, (2000). [External LinkDOI], [External Linkhep-ph/9809549].
221 Furlanetto, S.R., Oh, S.P. and Briggs, F.H., “Cosmology at low frequencies: The 21 cm transition and the high-redshift universe”, Phys. Rep., 433, 181, (2006). [External LinkDOI], [External Linkastro-ph/0608032].
222 Furnstahl, R.J. and Serot, B.D., “Parameter counting in relativistic mean-field models”, Nucl. Phys. A, 671, 447, (2000). [External LinkDOI], [External Linknucl-th/9911019].
223 Gambini, R. and Pullin, J., “Discrete Quantum Gravity: A Mechanism for Selecting the Value of Fundamental Constants”, Int. J. Mod. Phys. D, 12, 1775–1781, (2003). [External LinkDOI], [External Linkgr-qc/0306095].
224 Gamow, G., “Electricity, gravity and cosmology”, Phys. Rev. Lett., 19, 759, (1967).
225 García-Berro, E., Hernanz, M., Isern, J. and Mochkovitch, R., “The rate of change of the gravitational constant and the cooling of white dwarfs”, Mon. Not. R. Astron. Soc., 277, 801–810, (1995). [External LinkADS].
226 García-Berro, E., Isern, J. and Kubyshin, Y.A., “Astronomical measurements and constraints on the variability of fundamental constants”, Astron. Astrophys. Rev., 14, 113–170, (2007). [External LinkDOI], [External Linkastro-ph/0409424].
227 García-Berro, E., Kubyshin, Y., Loren-Aguilar, P. and Isern, J., “The variation of the gravitational constant inferred from the Hubble diagram of Type Ia supernovae”, Int. J. Mod. Phys. D, 15, 1163–1174, (2006). [External LinkDOI], [External Linkgr-qc/0512164].
228 Garriga, J. and Vilenkin, A., “On likely values of the cosmological constant”, Phys. Rev. D, 61, 083502, (2000). [External LinkDOI], [External Linkastro-ph/9908115].
229 Gasperini, M., Piazza, F. and Veneziano, G., “Quintessence as a runaway dilaton”, Phys. Rev. D, 65, 023508, (2002). [External LinkDOI].
230 Gasser, J. and Leutwyler, H., “Quark Masses”, Phys. Rep., 87, 77, (1982). [External LinkDOI].
231 Gay, P.L. and Lambert, D.L., “The Isotopic Abundances of Magnesium in Stars”, Astrophys. J., 533, 260, (2000). [External LinkDOI], [External Linkastro-ph/9911217].
232 Gaztañaga, E., García-Berro, E., Isern, J., Bravo, E. and Dominguez, I., “Bounds On The Possible Evolution Of The Gravitational Constant From Cosmological Type Ia Supernovae”, Phys. Rev. D, 65, 023506, (2002).
233 Goldman, I., “Upper limit on G variability derived from the spin-down of PSR 0655+64”, Mon. Not. R. Astron. Soc., 244, 184–187, (1990). [External LinkADS].
234 Gould, C.R., Sharapov, E.I. and Lamoreaux, S.K., “Time-variability of α from realistic models of Oklo reactors”, Phys. Rev. C, 74, 024607, (2006). [External LinkDOI], [External Linknucl-ex/0701019].
235 Granda, L.N. and Escobar, L.D., “Holographic dark energy with non-minimal coupling”, arXiv, e-print, (2009). [External LinkarXiv:0910.0515 [hep-th]].
236 Griest, K., Whitmore, J.B., Wolfe, A.M., Prochaska, J.X., Howk, J.C. and Marcy, G.W., “Wavelengths accuracy of the Keck HIRES spectrograph and measuring changes in the fine structure constant”, Astrophys. J., 708, 158, (2010). [External LinkDOI], [External LinkarXiv:0904.4725 [astro-ph.CO]].
237 Gross, D.J. and Sloan, J.H., “The Quartic Effective Action for the Heterotic String”, Nucl. Phys. B, 291, 41–89, (1987). [External LinkDOI].
238 Grupe, D., Pradhan, A.K. and Frank, S., “Studying the variation of the fine structure constant using emission-line multiplets”, Astron. J., 130, 355, (2005). [External LinkDOI], [External Linkastro-ph/0504027].
239 Guenther, D.B., Krauss, L.M. and Demarque, P., “Testing the Constancy of the Gravitational Constant Using Helioseismology”, Astrophys. J., 498, 871–876, (1998). [External LinkDOI].
240 Guenther, D.B., Sills, K., Demarque, P. and Krauss, L.M., “Sensitivity of solar g-modes to varying G cosmologies”, Astrophys. J., 445, 148–151, (1995). [External LinkDOI], [External LinkADS].
241 Gundlach, J.H. and Merkowitz, S.M., “Measurement of Newton’s Constant Using a Torsion Balance with Angular Acceleration Feedback”, Phys. Rev. Lett., 85, 2869, (2000). [External LinkDOI].
242 Gurzadyan, V.G. et al., “A new limit on the light speed isotropy from the GRAAL experiment at the ESRF”, arXiv, e-print, (2010). [External LinkarXiv:1004.2867 [physics.acc-ph]].
243 Hall, L.J. and Nomura, Y., “Evidence for the Multiverse in the Standard Model and Beyond”, Phys. Rev. D, 78, 035001, (2008). [External LinkDOI], [External LinkarXiv:0712.2454 [hep-ph]].
244 Hannestad, S., “Possible constraints on the time variation of the fine structure constant from cosmic microwave background data”, Phys. Rev. D, 60, 023515, (1999). [External LinkDOI], [External Linkastro-ph/9810102].
245 Harnik, R., Kribs, G.D. and Perez, G., “A Universe Without Weak Interactions”, Phys. Rev. D, 74, 035006, (2006). [External LinkDOI], [External Linkhep-ph/0604027].
246 Haugan, M.P. and Will, C.M., “Weak Interactions and Eötvös Experiments”, Phys. Rev. Lett., 37, 1, (1976). [External LinkDOI].
247 Hayes, A.C. and Friar, J.L., “Sensitivity of nuclear transition frequencies to temporal variation of the fine structure constant or the strong interaction”, Phys. Lett. B, 650, 229, (2007). [External Linknucl-th/0702048].
248 Heintzmann, H. and Hillebrandt, H., “Pulsar slow-down and the temporal change of G”, Phys. Lett. A, 54, 349, (1975). [External LinkDOI].
249 Hellings, R.W., Adams, P.J., Anderson, J.D., Keesey, M.S., Lau, E.L., Standish, E.M., Canuto, V.M. and Goldman, I., “Experimental Test of the Variability of G Using Viking Lander Ranging Data”, Phys. Rev. Lett., 51, 1609–1612, (1983). [External LinkDOI].
250 Henkel, C. et al., “The density, the cosmic microwave background, and the proton-to-electron mass ratio in a cloud at redshift 0.9”, Astron. Astrophys., 500, 745, (2009). [External LinkDOI], [External LinkarXiv:0904.3081 [astro-ph.CO]].
251 Hill, H.A. and Gu, Y.-M., “Extension of range in radial order in detection and mode classification of solar low-degree gravity modes”, Sci. China Ser. A, 33, 854–866, (1990).
252 Hogan, C.J., “Why the universe is just so”, Rev. Mod. Phys., 72, 1149–1161, (2000). [External LinkDOI], [External Linkastro-ph/9909295].
253 Hogan, C.J., “Nuclear astrophysics of worlds in the string landscape”, Phys. Rev. D, 74, 123514, (2006). [External LinkDOI], [External Linkastro-ph/0602104].
254 Hogan, C.J., “Quarks, electrons and atoms in closely related universes”, in Carr, B.J., ed., Universe or Multiverse?, pp. 221–230, (Cambridge University Press, Cambridge; New York, 2007). [External Linkastro-ph/0407086], [External LinkGoogle Books].
255 Hořava, P. and Witten, E., “Heterotic and type I string dynamics from eleven-dimension”, Nucl. Phys. B, 460, 506–524, (1996). [External LinkDOI], [External Linkhep-th/9510209].
256 Hoyle, C.D., Kapner, D.J., Heckel, B.R., Adelberger, E.G., Gundlach, J.H., Schmidt, U. and Swanson, H.E., “Submillimeter tests of the gravitational inverse-square law”, Phys. Rev. D, 70, 042004, (2004). [External LinkDOI], [External Linkhep-ph/0405262].
257 Hoyle, F., “On nuclear reactions occuring in very hot stars. I. The synthesis of elements from carbon to nickel”, Astrophys. J. Suppl. Ser., 1, 121, (1954). [External LinkDOI].
258 Hoyle, F., Galaxies, Nuclei and Quasars, (Harper & Row, New York, 1965).
259 Ichikawa, K., Kanzaki, T. and Kawasaki, M., “CMB constraints on the simultaneous variation of the fine structure constant and electron mass”, Phys. Rev. D, 74, 023515, (2006). [External LinkDOI], [External Linkastro-ph/0602577].
260 Ichikawa, K. and Kawasaki, M., “Big bang nucleosynthesis with a varying fine structure constant and non standard expansion rate”, Phys. Rev. D, 69, 123506, (2005). [External Linkhep-ph/0401231].
261 Ivanchik, A., Petitjean, P., Varshalovich, D., Aracil, B., Srianand, R., Chand, H., Ledoux, C. and Boissé, P., “A new constraint on the time dependence of the proton-to-electron mass ratio: Analysis of the Q 0347-383 and Q 0405-443 spectra”, Astron. Astrophys., 440, 45–52, (2005). [External LinkDOI], [External Linkastro-ph/0507174].
262 Ivanchik, A., Rodriguez, E., Petitjean, P. and Varshalovich, D., “Do the fundamental constants vary in the course of the cosmological evolution?”, Astron. Lett., 28, 423, (2002). [External LinkDOI], [External Linkastro-ph/0112323].
263 Ivanov, T.L., Roudjane, M., Vieitez, M.O., de Lange, C.A., Tchang-Brillet, W.-Ü.L. and Ubachs, W., “HD as a Probe for Detecting Mass Variation on a Cosmological Time Scale”, Phys. Rev. Lett., 100, 093007, (2009). [External LinkDOI].
264 Jaffe, R.L., Jenkins, A. and Kimchi, I., “Quark Masses: An Environmental Impact Statement”, Phys. Rev. D, 79, 065014, (2009). [External LinkDOI], [External LinkarXiv:0809.1647 [hep-ph]].
265 Jenkins, J.H., Fischbach, E., Buncher, J.B., Gruenwald, J.T., Krause, D.E. and Mattes, J.J., “Evidence for correlations between nuclear decay rates and Earth-Sun distance”, Astropart. Phys., 32, 42, (2009). [External LinkDOI], [External LinkarXiv:0808.3283 [astro-ph]].
266 Jofré, P., Reisenegger, A. and Fernández, R., “Constraining a possible time-variation of the gravitational constant through ‘gravitochemical heating’ of neutron stars”, Phys. Rev. Lett., 97, 131102, (2006). [External LinkDOI], [External Linkastro-ph/0606708].
267 Johnstone-Stoney, G., “On the physical units of nature”, Philos. Mag., 5, 381, (1881).
268 Jordan, P., “Die physikalischen Weltkonstanten”, Die Naturwissenschaften, 25, 513–517, (1937). [External LinkDOI].
269 Kaluza, T., “Zum Unitätsproblem in der Physik”, Sitzungsber. Preuss. Akad. Wiss., 1921, 966–972, (1921).
270 Kane, G.L., Perry, M.J. and Zytkow, A.N., “The beginning of the end of the anthropic principle”, New Astronomy, 7, 45–53, (2002). [External LinkDOI].
271 Kanekar, N., “Probing fundamental constant evolution with radio spectroscopy”, Mem. Soc. Astron. Ital., 80, 895, (2009). [External LinkADS].
272 Kanekar, N. and Chengalur, J.N., “The use of OH ‘main’ lines to constrain the variation of fundamental constants”, Mon. Not. R. Astron. Soc., 350, L17, (2004). [External LinkDOI], [External Linkastro-ph/0310765].
273 Kanekar, N., Chengalur, J.N. and Ghosh, T., “Probing fundamental constant evolution with redshifted conjugate-satellite OH lines”, Astrophys. J., 716, L23, (2010). [External LinkDOI], [External LinkarXiv:1004.5383 [astro-ph.CO]].
274 Kanekar, N., Prochaska, J.X., Ellison, S.L. and Chengalur, J.N., “Probing fundamental constant evolution with neutral atomic gas lines”, Astrophys. J., 712, 148, (2010). [External LinkarXiv:1003.0444 [astro-ph.CO]].
275 Kanekar, N., Subrahmanyan, R., Ellison, S.L., Lane, W.M. and Chengalur, J.N., “H I 21 cm absorption at z 2.347 towards PKS B0438-436”, Mon. Not. R. Astron. Soc., 370, L46–L50, (2006). [External LinkDOI], [External Linkastro-ph/0605346].
276 Kanekar, N. et al., “Constraints on changes in fundamental constants from a cosmologically distant OH absorber/emitter”, Phys. Rev. Lett., 95, 261301, (2005). [External LinkDOI], [External Linkastro-ph/0510760].
277 Kaplinghat, M., Scherrer, R.J. and Turner, M.S., “Constraining variations in the fine-structure constant with the cosmic microwave background”, Phys. Rev. D, 60, 023516, (1999). [External LinkDOI], [External Linkastro-ph/9810133].
278 Karshenboim, S.G., “Fundamental physical constants: looking from different angles”, Can. J. Phys., 83, 767, (2005). [External LinkDOI], [External Linkphysics/0506173].
279 Karshenboim, S.G., “On a natural definition of the kilogram and the ampere: the objectives and consequences”, e-print, (2005). [External Linkphysics/0507200].
280 Karshenboim, S.G., “Precision physics of simple atoms: QED tests, nuclear structure and fundamental constants”, Phys. Rep., 422, 1, (2005). [External LinkDOI], [External Linkhep-ph/0509010].
281 Karshenboim, S.G., “The search for possible variation of the fine structure constant”, Gen. Relativ. Gravit., 38, 159, (2006). [External LinkDOI], [External Linkphysics/0311080].
282 Kaspi, V.M., Taylor, J.H. and Riba, M.F., “High-precision timing of millisecond pulsars. III. Long-term monitoring of PSRs B1855+09 and B1937+21”, Astrophys. J., 428, 713–728, (1994). [External LinkDOI], [External LinkADS].
283 Ketchum, J.A. and Adams, F.C., “The future evolution of white dwarf stars through baryon decay and time varying gravitational constant”, Astrophys. Space Sci., 317(3-4), 221–230, (2008). [External LinkDOI], [External LinkarXiv:0808.1301 [astro-ph]].
284 Khatri, R. and Wandelt, B., “21-cm Radiation: A New Probe of Variation in the Fine-Structure Constant”, Phys. Rev. Lett., 98, 111201, (2007). [External LinkDOI], [External Linkastro-ph/0701752].
285 Khatri, R. and Wandelt, B.D., “21cm radiation: a new probe of fundamental physics”, Mem. Soc. Astron. Ital., 80, 824, (2009). [External LinkarXiv:0910.2710 [astro-ph.CO]].
286 Khatri, R. and Wandelt, B.D., “Reply”, Phys. Rev. Lett., 105, 039002, (2010). [External LinkDOI], [External LinkarXiv:1007.1963 [astro-ph.CO]].
287 Khoury, J. and Weltman, A., “Chameleon cosmology”, Phys. Rev. D, 69, 044026, (2004). [External LinkDOI], [External Linkastro-ph/0309300].
288 Khoury, J. and Weltman, A., “Chameleon Fields: Awaiting Surprises for Tests of Gravity in Space”, Phys. Rev. Lett., 93, 171104, (2004). [External LinkDOI], [External Linkastro-ph/0309411].
289 King, J.A., Webb, J.K., Murphy, M.T. and Carswell, R.F., “Stringent null constraint on cosmological evolution of the proton-to-electron mass ratio”, Phys. Rev. Lett., 101, 251304, (2008). [External LinkDOI], [External LinkarXiv:0807.4366 [astro-ph]].
290 Kiritsis, E., “Supergravity, D-brane probes and thermal super Yang-Mills: A comparison”, J. High Energy Phys., 1999(10), 010, (1999). [External LinkDOI], [External LinkarXiv:hep-th/9906206].
291 Klein, O., “Quantum Theory and Five-Dimensional Relativity Theory”, Z. Phys., 37, 894–906, (1926). [External LinkDOI]. Reprinted in Surveys High Energ. Phys., 5, 241–244, (1986).
292 Kneller, J.P. and Steigman, G., “Big bang nucleosynthesis and CMB constraints on dark energy”, Phys. Rev. D, 67, 063501, (2003). [External LinkDOI].
293 Kofman, L., “Probing String Theory with Modulated Cosmological Fluctuations”, e-print, (2003). [External Linkastro-ph/0303614].
294 Kofman, L., Bernardeau, F. and Uzan, J.-P., “Modulated fluctuations from hybrid inflation”, Phys. Rev. D, 70, 083004, (2004). [External Linkastro-ph/0403315].
295 Kolb, E.W., Perry, M.J. and Walker, T.P., “Time variation of fundamental constants, primordial nucleosynthesis and the size of extra dimensions”, Phys. Rev. D, 33, 869, (1986). [External LinkDOI].
296 Komatsu, E. et al. (WMAP Collaboration), “Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation”, Astrophys. J. Suppl. Ser., 180, 330–376, (2009). [External LinkDOI], [External LinkarXiv:0803.0547 [astro-ph]].
297 Korennov, S. and Descouvemont, P., “A microscopic three-cluster model in the hyperspherical formalism”, Nucl. Phys. A, 740, 249, (2004). [External LinkDOI].
298 Kostelecký, V.A., Lehnert, R. and Perry, M.J., “Spacetime-varying couplings and Lorentz violation”, Phys. Rev. D, 68, 123511, (2003). [External LinkDOI], [External LinkarXiv:astro-ph/0212003].
299 Kozlov, M.G., Lapinov, A.V. and Levshakov, S.A., “Sensitivity of microwave and FIR spectra to variation of fundamental constants”, Mem. Soc. Astron. Ital., 80, 901–904, (2009). [External LinkarXiv:0910.4799].
300 Kozlov, M.G., Porsev, S.G., Levshakov, S.A., Reimers, D. and Molaro, P., “Mid- and far-infrared fine-structure line sensitivities to hypothetical variability of the fine-structure constant”, Phys. Rev. A, 77, 032119, (2008). [External LinkDOI], [External LinkarXiv:0802.0269 [astro-ph]].
301 Kraiselburd, L. and Vucetich, H., “Violation of the weak equivalence principle in Bekenstein’s theory”, Int. J. Mod. Phys. E, 20, 101–111, (2011). [External LinkDOI], [External LinkarXiv:0902.4146 [gr-qc]].
302 Krastev, P.G. and Li, A.-A., “Constraining a possible time variation of the gravitational constant G with terrestrial nuclear laboratory data”, Phys. Rev. C, 76, 055804, (2007). [External LinkDOI], [External Linknucl-th/0702080].
303 Kuroda, P.K., “On the nuclear physical stability of uranium mineral”, J. Chem. Phys., 25, 781, (1956). [External LinkDOI].
304 Lamoreaux, S.K., Jacobs, J.P., Heckel, B.R., Raab, F.J. and Fortson, E.N., “New limits on spatial anisotropy from optically-pumped 201Hg and 199Hg”, Phys. Rev. Lett., 57, 3125–3128, (1986). [External LinkDOI].
305 Lamoreaux, S.K. and Togerson, J.R., “Neutron moderation in the Oklo natural reactor and the time variation of α”, Phys. Rev. D, 69, 12170, (2004). [External LinkDOI], [External Linknucl-th/0309048].
306 Landau, S.J., Bersten, M., Sisterna, P. and Vucetich, H., “Testing a String Dilaton Model with Experimental and Observational Data”, in Grece, S.A., ed., New Developments in String Theory Research, pp. 153–173, (Nova Science, New York, 2006). [External Linkastro-ph/0410030], [External LinkGoogle Books].
307 Landau, S.J., Harari, D.D. and Zaldarriaga, M., “Constraining non-standard recombination: A worked example”, Phys. Rev. D, 63, 083505, (2001). [External LinkDOI], [External Linkastro-ph/0010415].
308 Landau, S.J., Mosquera, M.E., Scoccola, C.G. and Vucetich, H., “Early Universe Constraints on Time Variation of Fundamental Constants”, Phys. Rev. D, 78, 083527, (2008). [External LinkDOI], [External LinkarXiv:0809.2033 [astro-ph]].
309 Landau, S.J., Mosquera, M.E. and Vucetich, H., “Primordial nucleosynthesis with varying of fundamental constants: a semi-analytical approach”, Astrophys. J., 637, 38, (2006). [External LinkDOI], [External Linkastro-ph/0411150].
310 Landau, S.J. and Scóccola, C.G., “Constraints on variation in α and me from WMAP 7-year data”, Astron. Astrophys., 517, A62, (2010). [External LinkDOI], [External LinkarXiv:1002.1603 [astro-ph.CO]].
311 Landau, S.J. and Vucetich, H., “Testing theories that predict time variation of fundamental constants”, Astrophys. J., 570, 463, (2002). [External LinkDOI], [External Linkastro-ph/0005316].
312 Langacker, P., “Time variation of fundamental constants as a probe of new physics”, Int. J. Mod. Phys. A, 19S1, 157–166, (2004). [External LinkDOI], [External Linkhep-ph/0304093].
313 Langacker, P., Segre, G. and Strassler, M.J., “Implications of Gauge Unification for Time Variation of the Fine Structure Constant”, Phys. Lett. B, 528, 121, (2002). [External Linkhep-ph/0112233].
314 Lee, D.-S., Lee, W. and Ng, K.-W., “Bound on the time variation of the fine structure constant driven by quintessence”, Int. J. Mod. Phys. D, 14, 335, (2005). [External Linkastro-ph/0309316].
315 Lee, S., “Time variation of fine structure constant and proton-electron mass ratio with quintessence”, Mod. Phys. Lett. A, 22, 2003, (2007). [External LinkDOI], [External Linkastro-ph/0702063].
316 Leinweber, D.B., Lu, D.H. and Thomas, A.W., “Nucleon magnetic moments beyond the perturbative chiral regime”, Phys. Rev. D, 60, 034014, (1999). [External LinkDOI], [External Linkhep-lat/981005].
317 Leslie, J., Universes, (Routledge, London; New York, 1989). [External LinkGoogle Books].
318 Levshakov, S.A., “Astrophysical Constraints on Hypothetical Variability of Fundamental Constants”, in Karshenboim, S.G. and Peik, E., eds., Astrophysics, Clocks and Fundamental Constants, 302nd WE-Heraeus-Seminar, Bad Honnef, Germany, June 2003, Lecture Notes in Physics, 648, pp. 151–166, (Springer, Berlin, 2004). [External LinkDOI], [External Linkastro-ph/0309817].
319 Levshakov, S.A., Agafonova, I.I., Molaro, P. and Reimers, D., “Spatial and temporal variations of fundamental constants”, Mem. Soc. Astron. Ital., 80, 850–858, (2009). [External LinkADS].
320 Levshakov, S.A., Centurión, M., Molaro, P. and D’Odorico, S. etal, “Most precise single redshift bound to Δα∕α”, Astrophys. J., 637, 38, (2006). [External LinkDOI], [External Linkastro-ph/0511765].
321 Levshakov, S.A., Centurion, M., Molaro, P. and Kostina, M.V., “VLT/UVES constraints on the carbon isotope ratio 12C/13C at z = 1.15 toward the quasar HE 0515-4414”, Astron. Astrophys., 447, L21, (2006). [External LinkDOI], [External Linkastro-ph/0602303].
322 Levshakov, S.A., Lapinov, A.V., Henkel, C., Molaro, P., Reimers, D., Kozlov, M.G. and Agafonova, I.I., “Searching for chameleon-like scalar fields with the ammonia method II. Mapping of cold molecular cores in NH3 and HC3N lines”, Astron. Astrophys., 524, A32, (2010). [External LinkDOI], [External LinkarXiv:1008.1160 [astro-ph.CO]].
323 Levshakov, S.A., Molaro, P. and Kozlov, M.G., “On spatial variations of the electron-to-proton mass ratio in the Milky Way”, arXiv, e-print, (2008). [External LinkarXiv:0808.0583 [astro-ph]].
324 Levshakov, S.A., Molaro, P., Lapinov, A.V., Reimers, D., Henkel, C. and Sakai, T., “Searching for chameleon-like scalar fields with the ammonia method”, Astron. Astrophys., 512, A44, (2010). [External LinkDOI], [External LinkarXiv:0911.3732 [astro-ph.CO]].
325 Levshakov, S.A., Molaro, P., Lopez, S., D’Odorico, S., Centurión, M., Bonifacio, P., Agafonova, I.I. and Reimers, D., “A new measure of Δα∕α at redshift z = 1.84 from very high resolution spectra of Q 1101-264”, Astron. Astrophys., 466, 1077–1082, (2007). [External LinkDOI], [External Linkastro-ph/0703042].
326 Levshakov, S.A., Molaro, P. and Reimers, D., “Searching for spatial variations of α2∕μ in the Milky Way”, Astron. Astrophys., 516, A113, (2010). [External LinkDOI], [External LinkarXiv:1004.0783 [astro-ph.CO]].
327 Levshakov, S.A., Reimers, D., Kozlov, M.G., Porsev, S.G. and Molaro, P., “A new approach for testing variations of fundamental constants over cosmic epochs using FIR fine-structure lines”, Astron. Astrophys., 479, 719, (2008). [External LinkDOI], [External LinkarXiv:0712.2890 [astro-ph]].
328 Lévy-Leblond, J.-M., “The importance of being (a) Constant”, in Toraldo di Francia, G., ed., Problems in the Foundations of Physics, Proceedings of the International School of Physics ‘Enrico Fermi’ Course LXXII, Varenna, Italy, July 25 – August 6, 1977, pp. 237–263, (North-Holland, Amsterdam; New York, 1979).
329 Lewis, A. and Challinor, A., “The 21 cm angular-power spectrum from dark ages”, Phys. Rev. D, 76, 083005, (2007). [External LinkDOI], [External Linkastro-ph/0702600].
330 Li, B. and Chu, M.C., “Big bang nucleosynthesis constraints on universal extra dimensions and varying fundamental constants”, Phys. Rev. D, 73, 025004, (2006). [External Linkastro-ph/0511013].
331 Li, B. and Chu, M.C., “Big bang nucleosynthesis with an evolving radion in the brane world scenario”, Phys. Rev. D, 73, 023509, (2006). [External LinkDOI], [External Linkastro-ph/0511642].
332 Lichnerowicz, A., Théories Relativistes de la Gravitation et de l’Électromagnétisme: Relativité Générale et Théories Unitaires, (Masson, Paris, 1955).
333 Lindner, M., Leich, D.A., Borg, R.J., Russ, G.P., Bazan, J.M., Simons, D.S. and Date, A.R., “Direct laboratory determination of the 187Re half-life”, Nature, 320, 246–248, (1986). [External LinkDOI].
334 Livio, M., Hollowell, D., Weiss, A. and Truran, J.W., “On the anthropic significance of the existence of an excited state of 12C”, Nature, 340, 281–284, (1989). [External LinkDOI].
335 Lopes, I. and Silk, J., “The implications for helioseismology of experimental uncertainties in Newton’s constant”, e-print, (2001). [External Linkastro-ph/0112310].
336 Lorén-Aguilar, P., García-Berro, E., Isern, J. and Kubyshin, Y.A., “Time variation of G and α within models with extra dimensions”, Class. Quantum Grav., 20, 3885–3896, (2003). [External LinkDOI], [External Linkastro-ph/0309722].
337 Lugmair, G.W. and Galer, S.J., “Age and isotopic relationships among the angrite Lewis Cliff 86010 and Angra dos Reis”, Geochim. Cosmochim. Acta, 56, 1673, (1992). [External LinkDOI].
338 Ma, C.-P. and Bertschinger, E., “Cosmological perturbation theory in the synchronous and conformal Newtonian gauge”, Astrophys. J., 455, 7–25, (1995). [External LinkDOI], [External Linkastro-ph/9506072].
339 MacGibbon, J.H., “Black Hole Constraints on Varying Fundamental Constants”, Phys. Rev. Lett., 99, 061301, (2007). [External LinkDOI].
340 Maeda, K.-I., “On time variation of fundamental constants in superstring theories”, Mod. Phys. Lett. A, 3, 243–249, (1988). [External LinkDOI].
341 Magueijo, J., “New varying speed of light theories”, Rep. Prog. Phys., 66, 2025–2068, (2003). [External LinkDOI], [External Linkastro-ph/0305457].
342 Malec, A.L. et al., “New limit on a varying proton-to-electron mass ratio from high-resolution optical quasar spectra”, Mem. Soc. Astron. Ital., 80, 882–887, (2009). [External LinkADS].
343 Maleki, L. and Prestage, J., “Search for New Physics with Atomic Clocks”, in Karshenboim, S.G. and Peik, E., eds., Astrophysics, Clocks and Fundamental Constants, 302nd WE-Heraeus-Seminar, Bad Honnef, Germany, June 2003, Lecture Notes in Physics, 648, pp. 331–341, (Springer, Berlin, 2004). [External LinkDOI].
344 Mansfield, V.N., “Pulsar spin down and cosmologies with varying gravity”, Nature, 261, 560, (1976). [External LinkDOI].
345 Marciano, W.J., “Time Variation of the Fundamental ‘Constants’ and Kaluza-Klein Theories”, Phys. Rev. Lett., 52, 489–491, (1984). [External LinkDOI].
346 Marion, H. et al., “A search for variations of fundamental constants using atomic fountain clock”, Phys. Rev. Lett., 90, 150801, (2003). [External LinkDOI], [External Linkphysics/0212112].
347 Marra, V. and Rosati, F., “Cosmological evolution of alpha driven by a general coupling with quintessence”, J. Cosmol. Astropart. Phys., 2005(05), 011, (2005). [External LinkDOI], [External Linkastro-ph/0501515].
348 Martin, J., Schimd, C. and Uzan, J.-P., “Testing for w < 1 in the Solar System”, Phys. Rev. Lett., 96, 061303, (2006). [External LinkDOI], [External Linkastro-ph/0510208].
349 Martínez Fiorenzano, A.F., Vladilo, G. and Bonifacio, P., “Search for α variation in UVES spectra: Analysis of C IV and Si IV doublets towards QSO 1101-264”, Mem. Soc. Astron. Ital., 3, 252–255, (2003). [External LinkADS], [External Linkastro-ph/0312270].
350 Martins, C.J.A.P., Melchiorri, A., Rocha, G., Trotta, R., Avelino, P.P. and Viana, P.T.P., “WMAP constraints on varying α and the promise of reionization”, Phys. Lett. B, 585, 29–34, (2004). [External LinkDOI], [External Linkastro-ph/0302295].
351 Martins, C.J.A.P., Menegoni, E., Galli, S., Mangano, G. and Melchiorri, A., “Varying couplings in the early universe: correlated variations of α and G”, Phys. Rev. D, 82, 023532, (2010). [External LinkDOI], [External LinkarXiv:1001.3418 [astro-ph.CO]].
352 Menegoni, E., Galli, S., Bartlett, J., Martins, C.J.A.P. and Melchiorri, A., “New constraints on variations of the fine structure constant from CMB anisotropies”, Phys. Rev. D, 80, 087302, (2009). [External LinkDOI], [External LinkarXiv:0909.3584 [astro-ph.CO]].
353 Menten, K.M., Güsten, R., Leurini, S., Thorwirth, S., Henkel, C., Klein, B., Carilli, C.L. and Reid, M.J., “Submillimeter water and ammonia absorption by the peculiar z 0.89 interstellar medium in the gravitational lens of the PKS 1830-211 system”, Astron. Astrophys., 492, 725–730, (2008). [External LinkDOI], [External LinkarXiv:0810.2782 [astro-ph]].
354 Mercuri, S. and Taveras, V., “Interaction of the Barbero–Immirzi Field with Matter and Pseudo-Scalar Perturbations”, Phys. Rev. D, 80, 104007, (2009). [External LinkDOI], [External LinkarXiv:0903.4407 [gr-qc]].
355 Mester, J., Torii, R., Worden, P., Lockerbie, N., Vitale, S. and Everitt, C.W.F., “The STEP mission: principles and baseline design”, Class. Quantum Grav., 18, 2475–2486, (2001). [External LinkDOI].
356 Mohr, P.J., Taylor, B.N. and Newell, D.B., “CODATA Recommended Values of the Fundamental Physical Constants: 2006”, Rev. Mod. Phys., 80, 633, (2008). [External LinkDOI], [External LinkarXiv:0801.0028 [physics.atom-ph]].
357 Molaro, P., “Newspectrographs for the VLT and E-ELT suited for the measurements of fundamental constant variability”, Mem. Soc. Astron. Ital., 80, 912, (2009).
358 Molaro, P., Levshakov, S.A. and Kozlov, M.G., “Stringent bounds to spatial variations of the electron-to-proton mass ratio in the Milky Way”, Nucl. Phys. B (Proc. Suppl.), 194, 287–293, (2009). [External LinkDOI], [External LinkarXiv:0907.1192 [astro-ph.CO]].
359 Molaro, P., Levshakov, S.A., Monai, S., Centurion, M., Bonifacio, P., D’Odorico, S. and Monaco, L., “UVES radial velocity accuracy from asteroid observations. Implications for the fine structure constant variability”, Astron. Astrophys., 481, 559, (2008). [External LinkarXiv:0712.3345 [astro-ph]].
360 Molaro, P., Murphy, M.T. and Levshakov, S.A., “Exploring variations in the fundamental constants with ELTs: The CODEX spectrograph on OWL”, in Whitelock, P.A., Dennefeld, M. and Leibundgut, B., eds., The Scientific Requirements for Extremely Large Telescopes, Proceedings of IAU Symposium 232, Cape Town, South Africa, November 14 – 18, 2005, IAU Symposia, 232, pp. 198–203, (Cambridge University Press, Cambridge; New York, 2006). [External Linkastro-ph/0601264].
361 Molaro, P., Reimers, D., Agafonova, I.I. and Levshakov, S.A., “Bounds on the fine structure constant variability from Fe II absorption lines in QSO spectra”, Eur. Phys. J. Special Topics, 163, 173–189, (2008). [External LinkDOI], [External LinkarXiv:0712.4380 [astro-ph]].
362 Moss, A., Scott, D., Zibin, J.P. and Battye, R., “Tilted Physics: A Cosmologically Dipole-Modulated Sky”, arXiv, e-print, (2010). [External LinkarXiv:1011.2990 [astro-ph.CO]].
363 Mota, D.F. and Barrow, J.D., “Local and global variations of the fine structure constant”, Mon. Not. R. Astron. Soc., 349, 291, (2004). [External LinkDOI], [External Linkastro-ph/0309273].
364 Müller, C.M., Schäfer, G. and Wetterich, C., “Nucleosynthesis and the variation of fundamental couplings”, Phys. Rev. D, 70, 083504, (2004). [External LinkDOI], [External Linkastro-ph/0405373].
365 Müller, J., Schneider, M., Soffel, M. and Ruder, H., “Testing Einstein’s theory of gravity by analyzing Lunar Laser Ranging data”, Astrophys. J., 382, L101, (1991). [External LinkDOI].
366 Murphy, M.T., Flambaum, V.V., Muller, S. and Henkel, C., “Strong limit on a variable proton-to-electron mass ratio from molecules in the distant universe”, Science, 320, 1611, (2008). [External LinkDOI], [External LinkarXiv:0806.3081 [astro-ph]].
367 Murphy, M.T., Flambaum, V.V., Webb, J.K., Dzuba, V.V., Prochaska, J.X. and Wolfe, A.M., “Constraining Variations in the Fine-structure Constant, Quark Masses and the Strong Interaction”, in Karshenboim, S.G. and Peik, E., eds., Astrophysics, Clocks and Fundamental Constants, 302nd WE-Heraeus-Seminar, Bad Honnef, Germany, June 2003, Lecture Notes in Physics, 648, pp. 131–150, (Springer, Berlin, 2004). [External LinkDOI], [External Linkastro-ph/0310318].
368 Murphy, M.T., Tzanavaris, P., Webb, J.K. and Lovis, C., “Selection of ThAr lines for wavelength calibration of echelle spectra and implications for variations in the fine-structure constant”, Mon. Not. R. Astron. Soc., 378, 221, (2007). [External LinkDOI], [External Linkastro-ph/0703623].
369 Murphy, M.T., Webb, J.K. and Flambaum, V.V., “Further evidence for a variable fine-structure constant from Keck/HIRES QSO absorption spectra”, Mon. Not. R. Astron. Soc., 345, 609, (2003). [External LinkDOI], [External Linkastro-ph/0306483].
370 Murphy, M.T., Webb, J.K. and Flambaum, V.V., “Comment on ‘Limits on the time variation of the electromagnetic fine-structure constant in the low energy Limit from absorption lines in the spectra of distant quasars”’, Phys. Rev. Lett., 99, 239001, (2007). [External LinkDOI], [External LinkarXiv:0708.3677 [astro-ph]].
371 Murphy, M.T., Webb, J.K. and Flambaum, V.V., “Revision of VLT/UVES constraints on a varying fine-structure constant”, Mon. Not. R. Astron. Soc., 384, 1053, (2008). [External LinkDOI], [External Linkastro-ph/0612407].
372 Murphy, M.T., Webb, J.K. and Flambaum, V.V., “Revisiting VLT/UVES constraints on a varying fine-structure constant”, in Santos, N.C., Pasquini, L., Correia, A.C.M. and Romaniello, M., eds., Precision Spectroscopy in Astrophysics, Proceedings of the ESO/Lisbon/Aveiro Conference held in Aveiro, Portugal, 11 – 15 September 2006, ESO Astrophysics Symposia, pp. 95–100, (Springer, Berlin, 2008). [External Linkastro-ph/0611080].
373 Murphy, M.T., Webb, J.K. and Flambaum, V.V., “Keck constraints on a varying fine-structure constant: wavelength calibration erros”, Mem. Soc. Astron. Ital., 80, 833, (2009). [External LinkarXiv:0911.4512 [astro-ph.CO]].
374 Murphy, M.T., Webb, J.K., Flambaum, V.V., Churchill, C.W. and Prochaska, J.X., “Possible evidence for a variable fine-structure constant from QSO absorption lines: systematic errors”, Mon. Not. R. Astron. Soc., 327, 1223–1236, (2001). [External LinkDOI], [External Linkastro-ph/0012420].
375 Murphy, M.T., Webb, J.K., Flambaum, V.V., Drinkwater, M.J., Combes, F. and Wiklind, T., “Improved constraints on possible variation of physical constants from H I 21cm and molecular QSO absorption lines”, Mon. Not. R. Astron. Soc., 327, 1244–1248, (2001). [External LinkDOI], [External Linkastro-ph/0101519].
376 Murphy, M.T., Webb, J.K., Flambaum, V.V., Dzuba, V.A., Churchill, C.W., Prochaska, J.X., Barrow, J.D. and Wolfe, A.M., “Possible evidence for a variable fine-structure constant from QSO absorption lines: motivations, analysis and results”, Mon. Not. R. Astron. Soc., 327, 1208–1222, (2001). [External LinkDOI], [External Linkastro-ph/0012419].
377 Murphy, M.T., Webb, J.K., Flambaum, V.V., Prochaska, J.X. and Wolfe, A.M., “Further constraints on variation of the fine-structure constant from alkali-doublet QSO absorption lines”, Mon. Not. R. Astron. Soc., 327, 1237–1243, (2001). [External LinkDOI], [External Linkastro-ph/0012421].
378 Nagata, R., Chiba, T. and Sugiyama, N., “WMAP constraints on scalar-tensor cosmology and the variation of the gravitational constant”, Phys. Rev. D, 69, 083512, (2004). [External LinkDOI].
379 Nakamura, K. et al. (Particle Data Group), “Review of particle physics”, J. Phys. G: Nucl. Part. Phys., 37, 075021, (2010). [External LinkDOI].
380 Nakashima, M., Ichikawa, K., Nagata, R. and Yokoyama, J., “Constraining the time variation of the coupling constants from cosmic microwave background: effect of ΛQCD”, J. Cosmol. Astropart. Phys., 2010(01), 030, (2010). [External LinkDOI], [External LinkarXiv:0810.1098 [astro-ph]].
381 Nakashima, M., Nagata, R. and Yokoyama, J., “Constraints on the time variation of the fine structure constant by the 5yr WMAP data”, Prog. Theor. Phys., 120, 1207, (2008). [External LinkDOI], [External LinkarXiv:0810.1098 [astro-ph]].
382 Naudet, R., Oklo, des réacteurs nucléaires fossiles: étude physique, Série Synthèses, (CEA/Eyrolles, Paris, 2000).
383 Neal, R.M., Puzzles of Anthropic Reasoning Resolved Using Full Non-indexical Conditioning, Technical Reports, 0607, (University of Toronto, Toronto, 2006). [External Linkmath/0608592]. Online version (accessed 21 March 2011):
External Linkhttp://www.utstat.utoronto.ca/pagecontent/index.php?pageid=18.
384 Nguyen, A.T., Budker, D., Lamoreaux, S.K. and Torgerson, J.R., “Towards a sensitive search for variation of the fine-structure constant using radio-frequency E1 transitions in atomic dyprosium”, Phys. Rev. A, 69, 022105, (2004). [External LinkDOI], [External Linkphysics/0308104].
385 Nollet, K.M. and Lopez, R.E., “Primordial nucleosynthesis with a varying fine structure constant: an improved estimate”, Phys. Rev. D, 66, 063507, (2002). [External LinkDOI], [External Linkastro-ph/0204325].
386 Nordtvedt, K., “Ġ∕G and a cosmological acceleration of gravitationally compact bodies”, Phys. Rev. Lett., 65, 953–956, (1990). [External LinkDOI].
387 Noterdaeme, P., Petitjean, P., Srianand, R., Ledoux, C. and Le Petit, F., “Physical conditions in the neutral interstellar medium at z = 2.43 toward Q2348-011”, Astron. Astrophys., 469, 425–436, (2007). [External LinkDOI], [External Linkastro-ph/0703218].
388 Novikov, I.D. and Zel’dovich, Y.B., Relativistic Astrophysics: The structure and evolution of the universe,  2, (University of Chicago Press, Chicago, 1983).
389 Nunes, N.J., Dent, T., Avelino, C.J.A.P. and Robbers, G., “Reconstructing the evolution of dark energy with variations of fundamental parameters”, Mem. Soc. Astron. Ital., 80, 785, (2009). [External LinkarXiv:0910.4935 [astro-ph.CO]].
390 Oberhummer, H., Csótó, A. and Schlattl, H., “Stellar production rates of carbon and its abundance in the universe”, Science, 289, 88–90, (2000). [External LinkDOI], [External Linkastro-ph/0007178].
391 Oberhummer, H., Csótó, A. and Schlattl, H., “Bringing the mass gaps at A = 5 and A = 8 in nucleosynthesis”, Nucl. Phys. A, 689, 269–279, (2001). [External LinkDOI], [External Linknucl-th/0009046].
392 Okun, L.B., “The fundamental constants of physics”, Sov. Phys. Usp., 34, 818–826, (1991). [External LinkDOI].
393 Okun, L.B., “Fundamental Constants of Nature”, e-print, (1996). [External Linkhep-ph/9612249].