1 Abdalla, E., Konoplya, R.A. and Zhidenko, A., “Perturbations of Schwarzschild black holes in laboratories”, Class. Quantum Grav., 24, 5901–5910, (2007). [External LinkDOI], [External LinkarXiv:0706.2489 [hep-th]].
2 Abraham, H., Bilic, N. and Das, T.K., “Acoustic horizons in axially symmetric relativistic accretion”, Class. Quantum Grav., 23, 2371–2393, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0509057].
3 Alù, A. and Engheta, N., “Cloaking a Sensor”, Phys. Rev. Lett., 102, 233901, (2009). [External LinkDOI].
4 Amati, D. and Russo, J.G., “Black holes by analytic continuation”, Phys. Rev. D, 56, 974–982, (1997). [External LinkDOI], [External Linkhep-th/9602125].
5 Ambrosetti, N., Charbonneau, J. and Weinfurtner, S., “The fluid/gravity correspondence: Lectures notes from the 2008 Summer School on Particles, Fields, and Strings”, arXiv e-print, (2008). [External LinkarXiv:0810.2631 [gr-qc]].
6 Amelino-Camelia, G., Ellis, J.R., Mavromatos, N.E., Nanopoulos, D.V. and Sarkar, S., “Potential Sensitivity of Gamma-Ray Burster Observations to Wave Dispersion in Vacuo”, Nature, 393, 763–765, (1998). [External Linkastro-ph/9712103].
7 Anderson, J.L. and Spiegel, E.A., “Radiative transfer through a flowing refractive medium”, Astrophys. J., 202, 454–464, (1975). [External LinkDOI], [External LinkADS].
8 Anderson, T.H., Mackay, T.G. and Lakhtakia, A., “Ray trajectories for a spinning cosmic string and a manifestation of self-cloaking”, Phys. Lett. A, 374, 4637–4641, (2010). [External LinkDOI], [External LinkarXiv:arXiv:1007.3113 [physics.optics]].
9 Anglin, J.R., “Influence functionals and the accelerating detector”, Phys. Rev. D, 47, 4525–4537, (1993). [External LinkDOI], [External Linkhep-th/9210035].
10 Antunes, N.D., “Numerical simulation of vacuum particle production: applications to cosmology, dynamical Casimir effect and time-dependent non-homogeneous dielectrics”, arXiv e-print, (2003). [External Linkhep-ph/0310131].
11 Arbona, A., “Is a classical Euclidean TOE reasonable?”, arXiv e-print, (2003). [External Linkgr-qc/0310007].
12 Arteaga, D., Parentani, R. and Verdaguer, E., “Propagation in a thermal graviton background”, Phys. Rev. D, 70, 044019, (2004). [External LinkDOI], [External Linkgr-qc/0311065].
13 Aspachs, M., Adesso, G. and Fuentes, I., “Optimal Quantum Estimation of the Unruh-Hawking Effect”, Phys. Rev. Lett., 105, 151301, (2010). [External LinkDOI], [External LinkarXiv:1007.0389 [quant-ph]].
14 Babichev, E., Mukhanov, V. and Vikman, A., “Looking beyond the horizon”, in Kleinert, H., Jantzen, R.T. and Ruffini, R., eds., The Eleventh Marcel Grossmann Meeting On Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, Proceedings of the MG11 Meeting on General Relativity, Berlin, Germany , 23 – 29 July 2006, pp. 1471–1474, (World Scientific, River Edge, NJ; Singapore, 2007). [External LinkDOI], [External LinkarXiv:0704.3301 [hep-th]]. Online version (accessed 22 March 2011):
External Link
15 Babichev, E., Mukhanov, V. and Vikman, A., “‘Superluminal’ scalar fields and black holes”, in From Quantum to Emergent Gravity: Theory and Phenomenology, June 11 – 15 2007, Trieste, Italy, Proceedings of Science, (SISSA, Trieste, 2007). URL (accessed 13 December 2010):
External Link
16 Babichev, E., Mukhanov, V. and Vikman, A., “k-Essence, superluminal propagation, causality and emergent geometry”, J. High Energy Phys., 2008(02), 101, (2008). [External LinkDOI], [External LinkarXiv:0708.0561 [hep-th]].
17 Badulin, S.I., Pokazayev, K.V. and Rozenberg, A.D., “A laboratory study of the transformation of regular gravity-capillary waves in inhomogeneous flows”, Izv. Atmos. Ocean. Phys., 19(10), 782–787, (1983).
18 Balazs, N.L., “Effect of a gravitational field, due to a rotating body, on the plane of polarization of an electromagnetic wave”, Phys. Rev., 110, 236–239, (1958). [External LinkDOI].
19 Balbinot, R., Carusotto, I., Fabbri, A. and Recati, A., “Testing Hawking particle creation by black holes through correlation measurements”, Int. J. Mod. Phys. D, 19, 2371–2377, (2010). [External LinkDOI], [External LinkarXiv:1005.4000 [gr-qc]].
20 Balbinot, R., Fabbri, A., Fagnocchi, S. and Nagar, A., “Numerical analysis of backreaction in acoustic black holes”, Nuovo Cimento B, 121, 201–212, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0601083].
21 Balbinot, R., Fabbri, A., Fagnocchi, S. and Parentani, R., “Hawking radiation from acoustic black holes, short distance and back-reaction effects”, Riv. Nuovo Cimento, 028(03), 1–55, (2005). [External LinkarXiv:gr-qc/0601079].
22 Balbinot, R., Fabbri, A., Fagnocchi, S., Recati, A. and Carusotto, I., “Non-local density correlations as signal of Hawking radiation in BEC acoustic black holes”, Phys. Rev. A, 78, 021603, (2008). [External LinkDOI], [External LinkarXiv:0711.4520 [cond-mat.other]].
23 Balbinot, R., Fagnocchi, S. and Fabbri, A., “Quantum effects in acoustic black holes: The backreaction”, Phys. Rev. D, 71, 064019, 1–11, (2004). [External Linkgr-qc/0405098].
24 Balbinot, R., Fagnocchi, S. and Fabbri, A., “The depletion in Bose Einstein condensates using Quantum Field Theory in curved space”, Phys. Rev. A, 75, 043622, (2007). [External LinkDOI], [External LinkarXiv:cond-mat/0610367].
25 Balbinot, R., Fagnocchi, S., Fabbri, A. and Procopio, G.P., “Backreaction in Acoustic Black Holes”, Phys. Rev. Lett., 95, 161302, 1–4, (2004). [External Linkgr-qc/0405096].
26 Baldovin, F., Novello, M., Perez Bergliaffa, S.E. and Salim, J.M., “A nongravitational wormhole”, Class. Quantum Grav., 17, 3265–3276, (2000). [External LinkDOI], [External Linkgr-qc/0003075].
27 Barceló, C., “Cosmology as a search for overall equilibrium”, J. Exp. Theor. Phys. Lett., 84, 635–639, (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0611090].
28 Barceló, C. and Campos, A., “Braneworld physics from the analog-gravity perspective”, Phys. Lett. B, 563, 217–223, (2003). [External LinkDOI], [External Linkhep-th/0206217].
29 Barceló, C., Cano, A., Garay, L.J. and Jannes, G., “Stability analysis of sonic horizons in Bose-Einstein condensates”, Phys. Rev. D, 74, 024008, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0603089].
30 Barceló, C., Cano, A., Garay, L.J. and Jannes, G., “Quasi-normal mode analysis in BEC acoustic black holes”, Phys. Rev. D, 75, 084024, (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0701173].
31 Barceló, C., Cano, A., Jannes, G. and Garay, L.J., “Probing effects of modified dispersion relations with Bose–Einstein condensates”, in From Quantum to Emergent Gravity: Theory and Phenomenology, June 11 – 15 2007, Trieste, Italy, Proceedings of Science, (SISSA, Trieste, 2007). URL (accessed 13 December 2010):
External Link
32 Barceló, C., Finazzi, S. and Liberati, S., “On the impossibility of superluminal travel: the warp drive lesson”, arXiv e-print, (2010). [External LinkarXiv:1001.4960 [gr-qc]].
33 Barceló, C., Garay, L.J. and Jannes, G., “Sensitivity of Hawking radiation to superluminal dispersion relations”, Phys. Rev. D, 79, 024016, (2009). [External LinkDOI], [External LinkarXiv:0807.4147 [gr-qc]].
34 Barceló, C., Garay, L.J. and Jannes, G., “Quantum Non-Gravity”, arXiv e-print, (2010). [External LinkarXiv:1002.4651 [gr-qc]].
35 Barceló, C., Garay, L.J. and Jannes, G., “The two faces of quantum sound”, Phys. Rev. D, 82, 044042, (2010). [External LinkDOI], [External LinkarXiv:1006.0181 [gr-qc]].
36 Barceló, C. and Jannes, G., “A real Lorentz-FitzGerald contraction”, Found. Phys., 38, 191–199, (2008). [External LinkDOI], [External LinkarXiv:0705.4652 [gr-qc]].
37 Barceló, C., Liberati, S., Sonego, S. and Visser, M., “Causal structure of analogue spacetimes”, New J. Phys., 6, 186, (2004). [External LinkDOI]. URL (accessed 31 May 2005):
External Link
38 Barceló, C., Liberati, S., Sonego, S. and Visser, M., “Hawking-like radiation does not require a trapped region”, Phys. Rev. Lett., 97, 171301, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0607008].
39 Barceló, C., Liberati, S., Sonego, S. and Visser, M., “Quasi-particle creation by analogue black holes”, Class. Quantum Grav., 23, 5341–5366, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0604058].
40 Barceló, C., Liberati, S., Sonego, S. and Visser, M., “Fate of gravitational collapse in semiclassical gravity”, Phys. Rev. D, 77, 044032, (2008). [External LinkDOI], [External LinkarXiv:0712.1130 [gr-qc]].
41 Barceló, C., Liberati, S., Sonego, S. and Visser, M., “Hawking-like radiation from evolving black holes and compact horizonless objects”, J. High Energy Phys., 2010(02), 003, (2010). [External LinkDOI], [External LinkarXiv:1011.5911 [gr-qc]].
42 Barceló, C., Liberati, S., Sonego, S. and Visser, M., “Minimal conditions for the existence of a Hawking-like flux”, Phys. Rev. D, 83, 041501(R), (2010). [External LinkDOI], [External LinkarXiv:1011.5593 [gr-qc]].
43 Barceló, C., Liberati, S. and Visser, M., “Analog gravity from Bose–Einstein condensates”, Class. Quantum Grav., 18, 1137–1156, (2001). [External LinkDOI], [External Linkgr-qc/0011026].
44 Barceló, C., Liberati, S. and Visser, M., “Analog gravity from field theory normal modes?”, Class. Quantum Grav., 18, 3595–3610, (2001). [External LinkDOI], [External Linkgr-qc/0104001].
45 Barceló, C., Liberati, S. and Visser, M., “Refringence, field theory, and normal modes”, Class. Quantum Grav., 19, 2961–2982, (2002). [External Linkgr-qc/0111059].
46 Barceló, C., Liberati, S. and Visser, M., “Analogue models for FRW cosmologies”, Int. J. Mod. Phys. D, 12, 1641–1650, (2003). [External LinkDOI], [External Linkgr-qc/0305061].
47 Barceló, C., Liberati, S. and Visser, M., “Probing semiclassical analogue gravity in Bose–Einstein condensates with widely tunable interactions”, Phys. Rev. A, 68, 053613, (2003). [External LinkDOI], [External Linkcond-mat/0307491].
48 Barceló, C., Liberati, S. and Visser, M., “Towards the Observation of Hawking Radiation in Bose–Einstein Condensates”, Int. J. Mod. Phys. A, 18, 3735–1–11, (2003). [External LinkDOI], [External Linkgr-qc/0110036].
49 Barceló, C., Liberati, S. and Visser, M., “Analogue Gravity”, Living Rev. Relativity, 8, lrr-2005-12, (2005). [External LinkarXiv:gr-qc/0505065]. URL (accessed 13 December 2010):
50 Barceló, C., Visser, M. and Liberati, S., “Einstein gravity as an emergent phenomenon?”, Int. J. Mod. Phys. D, 10, 799–806, (2001). [External LinkDOI], [External Linkgr-qc/0106002].
51 Bardeen, J.M., Carter, B. and Hawking, S.W., “The four laws of black hole mechanics”, Commun. Math. Phys., 31, 161–170, (1973). [External LinkDOI].
52 Barrabès, C., Frolov, V.P. and Parentani, R., “Metric fluctuation corrections to Hawking radiation”, Phys. Rev. D, 59, 124010, 1–14, (1999). [External LinkDOI], [External Linkgr-qc/9812076].
53 Barrabès, C., Frolov, V.P. and Parentani, R., “Stochastically fluctuating black-hole geometry, Hawking radiation and the trans-Planckian problem”, Phys. Rev. D, 62, 044020, 1–19, (2000). [External LinkDOI], [External Linkgr-qc/0001102].
54 Basak, S., “Sound wave in vortex with sink”, arXiv e-print, (2003). [External Linkgr-qc/0310105].
55 Basak, S., “Analog of Superradiance effect in BEC”, arXiv e-print, (2005). [External Linkgr-qc/0501097].
56 Basak, S. and Majumdar, P., “Reflection coefficient for superresonant scattering”, Class. Quantum Grav., 20, 2929–2936, (2003). [External LinkDOI], [External Linkgr-qc/0303012].
57 Basak, S. and Majumdar, P., “‘Superresonance’ from a rotating acoustic black hole”, Class. Quantum Grav., 20, 3907–3913, (2003). [External LinkDOI], [External Linkgr-qc/0203059].
58 Bassett, B.A., Liberati, S., Molina-París, C. and Visser, M., “Geometrodynamics of variable-speed-of-light cosmologies”, Phys. Rev. D, 62, 103518, 1–18, (2000). [External LinkDOI], [External Linkastro-ph/0001441].
59 Bastero-Gil, M., “What can we learn by probing trans-Planckian physics”, in Khalil, S., Shafi, Q. and Tallat, H., eds., International Conference on High Energy Physics, January 9 – 14, 2001, Cairo, Egypt, pp. 283–288, (Rinton Press, Princeton, NJ, 2001). [External Linkhep-ph/0106133].
60 Becar, R., Gonzalez, P., Pulgar, G. and Saavedra, J., “Hawking radiation via Anomaly and Tunneling method from Unruh’s and Canonical acoustic black hole”, arXiv e-print, (2008). [External LinkarXiv:0808.1735 [gr-qc]].
61 Bekaert, X., Boulanger, N. and Sundell, P., “How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples”, arXiv e-print, (2010). [External LinkarXiv:1007.0435 [hep-th]].
62 Belgiorno, F., “Black Hole Thermodynamics in Carathéodory’s Approach”, Phys. Lett. A, 312, 324–330, (2003). [External LinkDOI], [External Linkgr-qc/0210020].
63 Belgiorno, F., Cacciatori, S.L., Ortenzi, G., Rizzi, L., Gorini, V. and Faccio, D., “Dielectric black holes induced by a refractive index perturbation and the Hawking effect”, Phys. Rev. D, 83, 024015, (2011). [External LinkDOI], [External LinkarXiv:1003.4150 [quant-ph]].
64 Belgiorno, F., Cacciatori, S.L., Ortenzi, G., Sala, V.G. and Faccio, D., “Quantum radiation from superluminal refractive index perturbations”, Phys. Rev. Lett., 104, 140403, (2010). [External LinkDOI], [External LinkarXiv:0910.3508 [quant-ph]].
65 Belgiorno, F., Liberati, S., Visser, M. and Sciama, D.W., “Sonoluminescence: two-photon correlations as a test of thermality”, Phys. Lett. A, 271, 308–313, (2000). [External LinkDOI], [External LinkarXiv:quant-ph/9904018].
66 Belgiorno, F. et al., “Hawking Radiation from Ultrashort Laser Pulse Filaments”, Phys. Rev. Lett., 105, 203901, (2010). [External LinkDOI], [External LinkarXiv:1009.4634 [gr-qc]].
67 Berry, M.V., “Tsunami asymptotics”, New J. Phys., 7, 129, (2005). [External LinkDOI]. URL (accessed 20 March 2011):
External Link
68 Berry, M.V., “Focused tsunami waves”, Proc. R. Soc. London, Ser. A, 463, 3055–3071, (2007). [External LinkDOI].
69 Berti, E., Cardoso, V. and Lemos, J.P.S., “Quasinormal modes and classical wave propagation in analogue black holes”, Phys. Rev. D, 70, 124006, (2004). [External LinkDOI], [External Linkgr-qc/0408099].
70 Berti, E., Cardoso, V. and Starinets, A.O., “Quasinormal modes of black holes and black branes”, Class. Quantum Grav., 26, 163001, (2009). [External LinkDOI], [External LinkarXiv:0905.2975 [gr-qc]].
71 Bhattacharyya, G., Mathews, P., Rao, K. and Sridhar, K., “Searching for signals of minimal length in extra dimensional models using dilepton production at hadron colliders”, Phys. Lett. B, 603, 46–50, (2004). [External LinkDOI], [External Linkhep-ph/0408295].
72 Bilic, N., “Relativistic Acoustic Geometry”, Class. Quantum Grav., 16, 3953–3964, (1999). [External LinkDOI], [External Linkgr-qc/9908002].
73 Bini, D., Cherubini, C. and Filippi, S., “Effective geometries in self-gravitating polytropes”, Phys. Rev. D, 78, 064024, (2008). [External LinkDOI].
74 Bini, D., Cherubini, C., Filippi, S. and Geralico, A., “Effective geometry of the n = 1 uniformly rotating self-gravitating polytrope”, Phys. Rev. D, 82, 044005, (2010). [External LinkDOI].
75 Birrell, N.D. and Davis, P.C.W., Quantum fields in curved space, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 1982). [External LinkGoogle Books].
76 Blaauwgeers, R., Eltsov, V.B., Eska, G., Finne, A.P., Haley, R.P., Krusius, M., Skrbek, L. and Volovik, G.E., “AB interface in rotating superfluid 3He: the first example of a superfluid shear-flow instability”, Physica B, 329-333, 57–61, (2003). [External LinkDOI].
77 Blaauwgeers, R. et al., “Shear Flow and Kelvin-Helmholtz Instability in Superfluids”, Phys. Rev. Lett., 89, 155301, (2002). [External LinkDOI], [External LinkarXiv:cond-mat/0111343].
78 Błaut, A., Kowalski-Glikman, J. and Nowak-Szczepaniak, D., “κ-Poincaré dispersion relations and the black hole radiation”, Phys. Lett. B, 521, 364–370, (2001). [External Linkgr-qc/0108069].
79 Bogoliubov, N., “On the theory of superfluidity”, J. Phys. (Moscow), 11, 23, (1947).
80 Bombelli, L. and Sonego, S., “Relationships between various characterizations of wave tails”, J. Phys. A: Math. Gen., 27, 7177–7199, (1994). [External LinkDOI].
81 Boonserm, P., Cattoen, C., Faber, T., Visser, M. and Weinfurtner, S., “Effective refractive index tensor for weak field gravity”, Class. Quantum Grav., 22, 1905–1915, (2005). [External LinkDOI], [External Linkgr-qc/0411034].
82 Born, M. and Wolf, E., Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, (Pergamon, Oxford; New York, 1980), 6th edition.
83 Bousso, R. and Polchinski, J., “The string theory landscape”, Sci. Am., 291, 60–69, (2004). [External LinkDOI].
84 Brandenberger, R.H., “Frontiers of inflationary cosmology”, Braz. J. Phys., 31, 131–146, (2001). [External LinkDOI], [External Linkhep-ph/0102183].
85 Brandenberger, R.H., “A Status Review of Inflationary Cosmology”, arXiv e-print, (2001). [External Linkhep-ph/0101119].
86 Brandenberger, R.H., “Trans-Planckian Physics and Inflationary Cosmology”, in He, X.-G. and Ng, K.-W., eds., Cosmology and Particle Astrophysics (CosPA 2002), Proceedings of the 2002 International Symposium, Taipei, Taiwan, 31 May – 2 June 2002, pp. 100–113, (World Scientific, Singapore, River Edge, NJ, 2003). [External LinkDOI], [External Linkhep-th/0210186], [External LinkGoogle Books]. Online version (accessed 22 March 2011):
External Link
87 Brandenberger, R.H., “Lectures on the theory of cosmological perturbations”, in Bretón, N., Cervantes-Cota, J. and Salgado, M., eds., The Early Universe and Observational Cosmology, Proceedings of the 5th Mexican School on Gravitation and Mathematical Physics (DGFM 2002), Playa del Carmen, Quintana Roo, Mexico, 24 – 29 November 2002, Lecture Notes in Physics, 646, pp. 127–167, (Springer, Berlin; New York, 2004). [External Linkhep-th/0306071].
88 Brandenberger, R.H., Joras, S.E. and Martin, J., “Trans-Planckian physics and the spectrum of fluctuations in a bouncing universe”, Phys. Rev. D, 66, 083514, 1–9, (2002). [External LinkDOI], [External Linkhep-th/0112122].
89 Brandenberger, R.H. and Martin, J., “The robustness of inflation to changes in super-Planck-scale physics”, Mod. Phys. Lett. A, 16, 999–1006, (2001). [External LinkDOI], [External Linkastro-ph/0005432].
90 Brandenberger, R.H. and Martin, J., “On signatures of short distance physics in the cosmic microwave background”, Int. J. Mod. Phys. A, 17, 3663–3680, (2002). [External LinkDOI], [External Linkhep-th/0202142].
91 Brevik, I. and Halnes, G., “Light rays at optical black holes in moving media”, Phys. Rev. D, 65, 024005, 1–12, (2002). [External Linkgr-qc/0106045].
92 Brillouin, L., Wave propagation and group velocity, (Academic, Woodbury, NY, 1960).
93 Brout, R., Gabriel, C., Lubo, M. and Spindel, P., “Minimal length uncertainty principle and the trans-Planckian problem of black hole physics”, Phys. Rev. D, 59, 044005, 1–6, (1999). [External LinkDOI], [External Linkhep-th/9807063].
94 Brout, R., Massar, S., Parentani, R. and Spindel, P., “Hawking radiation without trans-Planckian frequencies”, Phys. Rev. D, 52, 4559–4568, (1995). [External LinkDOI], [External Linkhep-th/9506121].
95 Brout, R., Massar, S., Parentani, R. and Spindel, P., “A Primer for black hole quantum physics”, Phys. Rep., 260, 329–454, (1995). [External LinkDOI], [External LinkarXiv:0710.4345 [gr-qc]].
96 Budker, D., Kimball, D.F., Rochester, S.M. and Yashchuk, V.V., “Nonlinear Magneto-optics and Reduced Group Velocity of Light in Atomic Vapor with Slow Ground State Relaxation”, Phys. Rev. Lett., 83, 1767–1770, (1999). [External LinkDOI].
97 Bunkov, Y.M., “Spin superfluidity and magnons Bose–Einstein condensation”, Phys. Usp., 53, 848–853, (2010). [External LinkDOI], [External LinkarXiv:1003.4889 [cond-mat.other]].
98 Burgess, C.P., “Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory”, Living Rev. Relativity, 7, lrr-2004-5, (2004). URL (accessed 31 May 2005):
99 Burgess, C.P., Cline, J.M., Filotas, E., Matias, J. and Moore, G.D., “Loop-generated bounds on changes to the graviton dispersion relation”, J. High Energy Phys., 2002(03), 043, (2002). [External LinkDOI], [External Linkhep-ph/0201082].
100 Cacciatori, S.L., Belgiorno, F., Gorini, V., Ortenzi, G., Rizzi, L., Sala, V.G. and Faccio, D., “Spacetime geometries and light trapping in travelling refractive index perturbations”, New J. Phys., 12, 095021, (2010). [External LinkDOI], [External LinkarXiv:1006.1097 [physics.optics]]. URL (accessed 25 March 2011):
External Link
101 Cadoni, M., “Acoustic analogues of two-dimensional black holes”, Class. Quantum Grav., 22, 409–419, (2004). [External Linkgr-qc/0410138].
102 Cadoni, M. and Mignemi, S., “Acoustic analogues of black hole singularities”, Phys. Rev. D, 72, 084012, (2005). [External LinkDOI], [External Linkgr-qc/0504143].
103 Cadoni, M. and Pani, P., “Acoustic horizons for axially and spherically symmetric fluid flow”, Class. Quantum Grav., 23, 2427–2434, (2006). [External LinkDOI], [External LinkarXiv:physics/0510164].
104 Calogeracos, A. and Volovik, G.E., “Rotational quantum friction in superfluids: Radiation from object rotating in superfluid vacuum”, J. Exp. Theor. Phys. Lett., 69, 281–287, (1999). [External LinkDOI], [External Linkcond-mat/9901163].
105 Calzetta, E.A. and Hu, B.L., “BEC Collapse, Particle Production and Squeezing of the Vacuum”, arXiv e-print, (2002). [External Linkcond-mat/0208569].
106 Calzetta, E.A. and Hu, B.L., “Bose–Einstein condensate collapse and dynamical squeezing of vacuum fluctuations”, Phys. Rev. A, 68, 043625, (2003). [External LinkDOI], [External Linkcond-mat/0207289].
107 Calzetta, E.A., Hu, B.L. and Mazzitelli, F.D., “Coarse-grained effective action and renormalization group theory in semiclassical gravity and cosmology”, Phys. Rep., 352, 459–520, (2001). [External LinkDOI], [External Linkhep-th/0102199].
108 Canfora, F. and Vilasi, G., “Back Reaction from Trace Anomaly in RN-blackholes Evaporation”, J. High Energy Phys., 2003(12), 055, (2003). [External LinkDOI], [External Linkgr-qc/0402017].
109 Canfora, F. and Vilasi, G., “Trace anomaly and black holes evaporation”, arXiv e-print, (2003). [External Linkgr-qc/0302036].
110 Caravelli, F. and Markopoulou, F., “Properties of Quantum Graphity at Low Temperature”, arXiv e-print, (2010). [External LinkarXiv:1008.1340 [gr-qc]].
111 Cardoso, V., “Acoustic Black Holes”, in Mourão, A.M., Pimenta, M., Potting, R. and Sá, P.M., eds., New Worlds in Astroparticle Physics, Proceedings of the Fifth International Workshop, Faro, Portugal, 8 – 10 January 2005, pp. 245–251, (World Scientific, River Edge, NJ; Singapore, 2006). [External LinkDOI], [External Linkphysics/0503042]. Online version (accessed 22 March 2011):
External Link
112 Cardoso, V., Lemos, J.P.S. and Yoshida, S., “Quasinormal modes and stability of the rotating acoustic black hole: Numerical analysis”, Phys. Rev. D, 70, 124032, 1–7, (2004). [External LinkDOI], [External Linkgr-qc/0410107].
113 Carlip, S., “Quantum gravity: A progress report”, Rep. Prog. Phys., 64, 885–942, (2001). [External LinkDOI], [External Linkgr-qc/0108040].
114 Carlip, S., “Horizons, constraints, and black hole entropy”, Int. J. Theor. Phys., 46, 2192–2203, (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0601041].
115 Carlip, S., “Black Hole Thermodynamics and Statistical Mechanics”, in Papantonopoulos, E., ed., Physics of Black Holes: A Guided Tour, Fourth Aegean School on Black Holes, held in Mytilene, Greece, 17 – 22 September 2007, Lecture Notes in Physics, 769, pp. 89–123, (Springer, Berlin; New York, 2009). [External LinkDOI], [External LinkarXiv:0807.4520 [gr-qc]].
116 Carter, B., “Relativistic superfluid models for rotating neutron stars”, in Blaschke, D., Glendenning, N.K. and Sedrakian, A., eds., Physics of Neutron Star Interiors, Lecture Notes in Physics, 578, p. 54, (Springer, Berlin; New York, 2001). [External Linkastro-ph/0101257], [External LinkGoogle Books].
117 Carter, B. and Chamel, N., “Covariant Analysis of Newtonian Multi-Fluid Models for Neutron Stars I: Milne-Cartan Structure and Variational Formulation”, Int. J. Mod. Phys. D, 13, 291–325, (2004). [External LinkDOI], [External Linkastro-ph/0305186].
118 Carusotto, I., Balbinot, R., Fabbri, A. and Recati, A., “Density correlations and dynamical Casimir emission of Bogoliubov phonons in modulated atomic Bose-Einstein condensates”, Eur. Phys. J. D, 56, 391–404, (2010). [External LinkDOI], [External LinkarXiv:0907.2314 [cond-mat.quant-gas]].
119 Carusotto, I., Fagnocchi, S., Recati, A., Balbinot, R. and Fabbri, A., “Numerical observation of Hawking radiation from acoustic black holes in atomic Bose–Einstein condensates”, New J. Phys., 10, 103001, (2008). [External LinkDOI], [External LinkarXiv:0803.0507 [cond-mat.other]]. URL (accessed 20 March 2011):
External Link
120 Casadio, R., “On dispersion relations and the statistical mechanics of Hawking radiation”, Class. Quantum Grav., 19, 2453–2462, (2002). [External LinkDOI], [External Linkhep-th/0111287].
121 Casadio, R., “On brane-world black holes and short scale physics”, Ann. Phys. (N.Y.), 307, 195–208, (2003). [External LinkDOI], [External Linkhep-ph/0304099].
122 Casadio, R. and Mersini, L., “Short distance signatures in cosmology: Why not in black holes?”, Int. J. Mod. Phys. A, 19, 1395–1412, (2004). [External LinkDOI], [External Linkhep-th/0208050].
123 Casalderrey-Solana, J., Shuryak, E.V. and Teaney, D., “Hydrodynamic flow from fast particles”, arXiv e-print, (2006). [External LinkarXiv:hep-ph/0602183].
124 Casher, A., Englert, F., Itzhaki, N., Massar, S. and Parentani, R., “Black hole horizon fluctuations”, Nucl. Phys. B, 484, 419–434, (1997). [External LinkDOI], [External Linkhep-th/9606106].
125 Cassidy, M.J. and Hawking, S.W., “Models for chronology selection”, Phys. Rev. D, 57, 2372–2380, (1998). [External LinkDOI], [External Linkhep-th/9709066].
126 Castin, Y. and Dum, R., “Bose–Einstein Condensates in Time Dependent Traps”, Phys. Rev. Lett., 77, 5315–5319, (1996). [External LinkDOI].
127 Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S. and Geim, A.K., “The electronic properties of graphene”, Rev. Mod. Phys., 81, 109–162, (2009). [External LinkDOI].
128 Chang, D., Chu, C.-S. and Lin, F.-L., “Transplanckian dispersion relation and entanglement entropy of black hole”, Fortschr. Phys., 52, 477–482, (2004). [External LinkDOI], [External Linkhep-th/0312136].
129 Chang, D., Chu, C.-S. and Lin, F.-L., “Transplanckian entanglement entropy”, Phys. Lett. B, 583, 192–198, (2004). [External LinkDOI], [External Linkhep-th/0306055].
130 Chang-Young, E., Eune, M., Kimm, K. and Lee, D., “Surface gravity and Hawking temperature from entropic force viewpoint”, Mod. Phys. Lett. A, 25, 2825–2830, (2010). [External LinkDOI], [External LinkarXiv:1003.2049 [gr-qc]].
131 Chapline, G., Hohlfeld, E., Laughlin, R.B. and Santiago, D.I., “Quantum phase transitions and the breakdown of classical general relativity”, Int. J. Mod. Phys. A, 18, 3587–3590, (2003). [External LinkDOI], [External Linkgr-qc/0012094].
132 Chapline, G. and Mazur, P.O., “Superfluid picture for rotating space-times”, arXiv e-print, (2004). [External Linkgr-qc/0407033].
133 Chen, H. and Chan, C.T., “Acoustic cloaking in three dimensions using acoustic metamaterials”, Appl. Phys. Lett., 91, 183518, (2007). [External LinkDOI].
134 Chen, S.-B. and Jing, J.-L., “Quasinormal modes of a coupled scalar field in the acoustic black hole spacetime”, Chinese Phys. Lett., 23, 21–24, (2006). [External LinkDOI].
135 Cherubini, C., Federici, F., Succi, S. and Tosi, M.P., “Excised acoustic black holes: The scattering problem in the time domain”, Phys. Rev. D, 72, 084016, 1–9, (2005). [External LinkDOI], [External Linkgr-qc/0504048].
136 Choy, K., Kruk, T., Carrington, M.E., Fugleberg, T., Zahn, J., Kobes, R., Kunstatter, G. and Pickering, D., “Energy flow in acoustic black holes”, Phys. Rev. D, 73, 104011, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0505163].
137 Christensen, S.M. and Fulling, S.A., “Trace anomalies and the Hawking effect”, Phys. Rev. D, 15, 2088–2104, (1977). [External LinkDOI].
138 Chruściel, P.T., “Black holes”, in Frauendiener, J. and Friedrich, H., eds., The Conformal Structure of Space-Time: Geometry, Analysis, Numerics, Proceedings of the internationl workshop, Tübingen, Germany, April 2001, Lecture Notes in Physics, 604, pp. 61–102, (Springer, Berlin; New York, 2002). [External Linkgr-qc/0201053].
139 Chruściel, P.T., Galloway, G.J. and Pollack, D., “Mathematical general relativity: a sampler”, arXiv e-print, (2010). [External LinkarXiv:1004.1016 [gr-qc]].
140 Chu, C.-S., Greene, B.R. and Shiu, G., “Remarks on inflation and noncommutative geometry”, Mod. Phys. Lett. A, 16, 2231–2240, (2001). [External Linkhep-th/0011241].
141 Coleman, S.R. and Glashow, S.L., “High-energy tests of Lorentz invariance”, Phys. Rev. D, 59, 116008, 1–14, (1999). [External LinkDOI], [External Linkhep-ph/9812418].
142 Collins, H. and Martin, M.R., “The enhancement of inflaton loops in an α-vacuum”, Phys. Rev. D, 70, 084021, 1–9, (2004). [External LinkDOI], [External Linkhep-ph/0309265].
143 Comer, G.L., “Superfluid analog of the Davies-Unruh effect”, arXiv e-print, (1992). [External Linkgr-qc/0505005].
144 Consoli, M., “Approximate Lorentz invariance of the vacuum: A physical solution of the ‘hierarchy problem’?”, arXiv e-print, (2003). [External Linkhep-ph/0306070].
145 Corley, S., “Particle creation via high frequency dispersion”, Phys. Rev. D, 55, 6155–6161, (1997). [External LinkDOI].
146 Corley, S.R., The role of short distance physics in the Hawking effect, Ph.D. Thesis, (University of Maryland, College Park, MD, 1997).
147 Corley, S., “Computing the spectrum of black hole radiation in the presence of high frequency dispersion: An analytical approach”, Phys. Rev. D, 57, 6280–6291, (1998). [External LinkDOI], [External Linkhep-th/9710075].
148 Corley, S. and Jacobson, T.A., “Hawking Spectrum and High Frequency Dispersion”, Phys. Rev. D, 54, 1568–1586, (1996). [External LinkDOI], [External Linkhep-th/9601073].
149 Corley, S. and Jacobson, T.A., “Lattice black holes”, Phys. Rev. D, 57, 6269–6279, (1998). [External LinkDOI], [External Linkhep-th/9709166].
150 Corley, S. and Jacobson, T.A., “Black hole lasers”, Phys. Rev. D, 59, 124011, 1–12, (1999). [External LinkDOI], [External Linkhep-th/9806203].
151 Cornish, S.L., Claussen, N.R., Roberts, J.L., Cornell, E.A. and Wieman, C.E., “Stable 85Rb Bose-Einstein Condensates with Widely Tunable Interactions”, Phys. Rev. Lett., 85, 1795–1798, (2000). [External LinkDOI].
152 Cortijo, A. and Vozmediano, M.A.H., “Effects of topological defects and local curvature on the electronic properties of planar graphene”, Nucl. Phys. B, 763, 293–308, (2007). [External LinkDOI], [External LinkarXiv:cond-mat/0612374].
153 Cortijo, A. and Vozmediano, M.A.H., “Electronic properties of curved graphene sheets”, Europhys. Lett., 77, 47002, (2007). [External LinkDOI], [External LinkarXiv:cond-mat/0603717].
154 Courant, R. and Hilbert, D., Methods of Mathematical Physics, Wiley Classics Library,  2, (Interscience, New York, 1989).
155 Coutant, A. and Parentani, R., “Black hole lasers, a mode analysis”, Phys. Rev. D, 81, 084042, (2010). [External LinkDOI], [External LinkarXiv:0912.2755 [hep-th]].
156 Crispino, L.C.B., Oliveira, E.S. and Matsas, G.E.A., “Absorption cross section of canonical acoustic holes”, Phys. Rev. D, 76, 107502, (2007). [External LinkDOI].
157 Czerniawski, J., “What is wrong with Schwarzschild’s coordinates?”, arXiv e-print, (2002). [External Linkgr-qc/0201037].
158 Damour, T., “The entropy of black holes: A primer”, in Dalibard, J., Duplantier, B. and Rivasseau, V., eds., Poincaré Seminar 2003: Bose–Einstein Condensation – Entropy, Proceedings of the third and fourth Poincaré Seminars, Progress in Mathematical Physics,  38, (Birkhäuser, Basel; Boston, 2004). [External Linkhep-th/0401160].
159 Das, S., “Black hole thermodynamics: Entropy, information and beyond”, Pramana, 63, 797–816, (2004). [External LinkDOI], [External Linkhep-th/0403202].
160 Das, T.K., “Analogous Hawking Radiation from Astrophysical Black Hole Accretion”, arXiv e-print, (2004). [External Linkastro-ph/0404482].
161 Das, T.K., “Analogue Hawking radiation from astrophysical black hole accretion”, Class. Quantum Grav., 21, 5253–5260, (2004). [External LinkDOI], [External Linkgr-qc/0408081].
162 Das, T.K., “Transonic Black Hole Accretion as Analogue System”, arXiv e-print, (2004). [External Linkgr-qc/0411006].
163 Das, T.K., “Astrophysical Accretion as an Analogue Gravity Phenomena”, arXiv e-print, (2007). [External LinkarXiv:0704.3618 [astro-ph]].
164 Das, T.K., Bilic, N. and Dasgupta, S., “Black-Hole Accretion Disc as an Analogue Gravity Model”, J. Cosmol. Astropart. Phys., 2007(06), 009, (2007). [External LinkDOI], [External LinkarXiv:astro-ph/0604477].
165 Dasgupta, S., Bilic, N. and Das, T.K., “Pseudo-Schwarzschild Spherical Accretion as a Classical Black Hole Analogue”, Gen. Relativ. Gravit., 37, 1877–1890, (2005). [External LinkDOI], [External LinkarXiv:astro-ph/0501410].
166 Davies, P.C.W., Fulling, S.A. and Unruh, W.G., “Energy momentum tensor near an evaporating black hole”, Phys. Rev. D, 13, 2720–2723, (1976). [External LinkDOI].
167 de A. Marques, G., “Analogue of superradiance effect in acoustic black hole in the presence of disclination”, arXiv e-print, (2007). [External LinkarXiv:0705.3916 [gr-qc]].
168 de Felice, F., “On the gravitational field acting as an optical medium”, Gen. Relativ. Gravit., 2, 347–357, (1971).
169 De Lorenci, V.A. and Klippert, R., “Analogue gravity from electrodynamics in nonlinear media”, Phys. Rev. D, 65, 064027, 1–6, (2002). [External LinkDOI], [External Linkgr-qc/0107008].
170 De Lorenci, V.A., Klippert, R., Novello, M. and Salim, J.M., “Nonlinear electrodynamics and FRW cosmology”, Phys. Rev. D, 65, 063501, 1–5, (2002). [External LinkDOI].
171 De Lorenci, V.A., Klippert, R. and Obukhov, Y.N., “On optical black holes in moving dielectrics”, Phys. Rev. D, 68, 061502, 1–4, (2003). [External LinkDOI], [External Linkgr-qc/0210104].
172 de M Carvalho, A.M., Moraes, F. and Furtado, C., “The self-energy of a charged particle in the presence of a topological defect distribution”, Int. J. Mod. Phys. A, 19, 2113–2122, (2004). [External LinkDOI], [External Linkgr-qc/0401030].
173 Dolan, S.R., Oliveira, E.S. and Crispino, L.C.B., “Scattering of Sound Waves by a Canonical Acoustic Hole”, Phys. Rev. D, 79, 064014, (2009). [External LinkDOI], [External LinkarXiv:0904.0010 [gr-qc]].
174 Dolan, S.R. and Ottewill, A.C., “On an Expansion Method for Black Hole Quasinormal Modes and Regge Poles”, Class. Quantum Grav., 26, 225003, (2009). [External LinkDOI], [External LinkarXiv:0908.0329 [gr-qc]].
175 Donley, E.A., Claussen, N.R., Cornish, S.L., Roberts, J.L., Cornell, E.A. and Wieman, C.E., “Dynamics of collapsing and exploding Bose-Einstein condensates”, Nature, 412, 295–299, (2001). [External LinkDOI], [External Linkcond-mat/0105019].
176 Doran, C., “A new form of the Kerr solution”, Phys. Rev. D, 61, 067503, (2000). [External LinkDOI], [External LinkarXiv:gr-qc/9910099].
177 Dumin, Y.V., “Topological Defect Density in One-Dimensional Friedmann-Robertson-Walker Cosmological Model: Corrections Inferred from the Multi-Josephson-Junction-Loop Experiment”, arXiv e-print, (2003). [External Linkhep-ph/0308184].
178 Dziarmaga, J., “Analog electromagnetism in a symmetrized 3He-A”, arXiv e-print, (2001). [External Linkgr-qc/0112041].
179 Easther, R., Greene, B.R., Kinney, W.H. and Shiu, G., “Inflation as a probe of short distance physics”, Phys. Rev. D, 64, 103502, 1–8, (2001). [External LinkDOI], [External Linkhep-th/0104102].
180 Eling, C., Jacobson, T. and Mattingly, D., “Einstein-Aether Theory”, in Liu, J.T., Duff, M.J., Stelle, K.S. and Woodard, R.P., eds., DESERFEST: A Celebration of the Life and Works of Stanley Deser, University of Michigan, Ann Arbor, USA, 3 – 5 April 2004, pp. 163–179, (World Scientific, River Edge, NJ; Singapore, 2004). [External LinkDOI], [External LinkarXiv:gr-qc/0410001 [gr-qc]]. URL (accessed 15 March 2011):
External Link
181 Ellis, G.F.R. and Uzan, J.-P., “‘c’ is the speed of light, isn’t it?”, Am. J. Phys., 73, 240–247, (2005). [External LinkDOI], [External Linkgr-qc/0305099].
182 Ellis, J.R., Mavromatos, N.E., Nanopoulos, D.V. and Volkov, G., “Gravitational-recoil effects on fermion propagation in space-time foam”, Gen. Relativ. Gravit., 32, 1777–1798, (2000). [External Linkgr-qc/9911055].
183 Eltsov, V.B., Krusius, M. and Volovik, G.E., “Superfluid 3He: A Laboratory model system of quantum field theory”, arXiv e-print, (1998). [External Linkcond-mat/9809125v1].
184 Englert, F., “The Black hole history in tamed vacuum”, arXiv e-print, (1994). [External Linkgr-qc/9408005].
185 Englert, F., Massar, S. and Parentani, R., “Source vacuum fluctuations of black hole radiance”, Class. Quantum Grav., 11, 2919–2938, (1994). [External LinkDOI], [External Linkgr-qc/9404026].
186 Fabbri, A. and Mayoral, C., “Step-like discontinuities in Bose–Einstein condensates and Hawking radiation: the hydrodynamic limit”, arXiv e-print, (2010). [External LinkarXiv:1004.4876 [gr-qc]].
187 Faccio, D., Cacciatori, S., Gorini, V., Sala, V.G., Averchi, A., Lotti, A., Kolesik, M. and Moloney, J.V., “Analogue Gravity and Ultrashort Laser Pulse Filamentation”, Europhys. Lett., 89, 34004, (2010). [External LinkDOI], [External LinkarXiv:0905.4426 [gr-qc]].
188 Fagnocchi, S., “Analog models beyond kinematics”, arXiv e-print, (2006). [External LinkarXiv:gr-qc/0611096].
189 Fagnocchi, S., “Back-reaction effects in acoustic black holes”, J. Phys.: Conf. Ser., 33, 445–450, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0601084].
190 Fagnocchi, S., “Correlations of Hawking radiation in acoustic black holes”, J. Phys.: Conf. Ser., 222, 012036, (2010). [External LinkDOI].
191 Fagnocchi, S., Finazzi, S., Liberati, S., Kormos, M. and Trombettoni, A., “Relativistic Bose–Einstein condensates: a new system for analogue models of gravity”, New J. Phys., 12, 095012, (2010). [External LinkDOI], [External LinkarXiv:1001.1044 [gr-qc]]. URL (accessed 20 March 2011):
External Link
192 Farhat, M., Guenneau, S. and Enoch, S., “Ultrabroadband Elastic Cloaking in Thin Plates”, Phys. Rev. Lett., 103, 024301, (2009). [External LinkDOI].
193 Federici, F., Cherubini, C., Succi, S. and Tosi, M.P., “Superradiance from BEC vortices: a numerical study”, Phys. Rev. A, 73, 033604, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0503089].
194 Fedichev, P.O. and Fischer, U.R., “Gibbons–Hawking Effect in the Sonic de Sitter Space-Time of an Expanding Bose–Einstein-Condensed Gas”, Phys. Rev. Lett., 91, 240407, (2003). [External LinkDOI], [External Linkcond-mat/0304342].
195 Fedichev, P.O. and Fischer, U.R., “‘Cosmological’ quasiparticle production in harmonically trapped superfluid gases”, Phys. Rev. A, 69, 033602, (2004). [External Linkcond-mat/0303063].
196 Fedichev, P.O. and Fischer, U.R., “Observer dependence for the phonon content of the sound field living on the effective curved space-time background of a Bose–Einstein condensate”, Phys. Rev. D, 69, 064021, (2004). [External LinkDOI], [External Linkcond-mat/0307200].
197 Finazzi, S., Liberati, S. and Barceló, C., “Semiclassical instability of dynamical warp drives”, Phys. Rev. D, 79, 124017, (2009). [External LinkDOI], [External LinkarXiv:arXiv:0904.0141 [gr-qc]].
198 Finazzi, S., Liberati, S. and Sindoni, L., “The cosmological constant: a lesson from Bose-Einstein condensates”, arXiv e-print, (2011). [External LinkarXiv:1103.4841 [gr-qc]].
199 Finazzi, S. and Parentani, R., “Black hole lasers in Bose–Einstein condensates”, New J. Phys., 12, 095015, (2010). [External LinkDOI], [External LinkarXiv:1005.4024 [cond-mat.quant-gas]]. URL (accessed 25 March 2011):
External Link
200 Finazzi, S. and Parentani, R., “Spectral properties of acoustic black hole radiation: broadening the horizon”, arXiv e-print, (2010). [External LinkarXiv:1012.1556 [gr-qc]].
201 Finne, A.P., Eltsov, V.B., Hanninen, R., Kopnin, N.B., Kopu, J., Krusius, M., Tsubota, M. and Volovik, G.E., “Dynamics of vortices and interfaces in superfluid 3He”, Rep. Prog. Phys., 69, 3157–3230, (2006). [External LinkDOI].
202 Finne, A.P., Eltsov, V.B., Hänninen, R., Kopnin, N.B., Kopu, J., Krusius, M., Tsubota, M. and Volovik, G.E., “Dynamics of vortices and interfaces in superfluid 3He”, Rep. Prog. Phys., 69, 3157, (2006). [External LinkDOI], [External LinkarXiv:cond-mat/0606619].
203 Fischer, U.R., “Motion of quantized vortices as elementary objects”, Ann. Phys. (N.Y.), 278, 62–85, (1999). [External LinkDOI], [External Linkcond-mat/9907457].
204 Fischer, U.R., “Quasiparticle universes in Bose–Einstein condensates”, Mod. Phys. Lett. A, 19, 1789–1812, (2004). [External LinkDOI], [External Linkcond-mat/0406086].
205 Fischer, U.R., “Dynamical Aspects of Analogue Gravity: The Backreaction of Quantum Fluctuations in Dilute Bose-Einstein Condensates”, in Unruh, W.G. and Schützhold, R., eds., Quantum Analogues: From Phase Transitions to Black Holes and Cosmology, Lecture Notes in Physics, 718, pp. 93–113, (Springer, Berlin; New York, 2007). [External LinkDOI], [External LinkarXiv:cond-mat/0512537].
206 Fischer, U.R. and Schützhold, R., “Quantum simulation of cosmic inflation in two-component Bose–Einstein condensates”, Phys. Rev. A, 70, 063615, (2004). [External LinkDOI], [External Linkcond-mat/0406470].
207 Fischer, U.R. and Visser, M., “Riemannian geometry of irrotational vortex acoustics”, Phys. Rev. Lett., 88, 110201, 1–4, (2002). [External LinkDOI], [External Linkcond-mat/0110211].
208 Fischer, U.R. and Visser, M., “On the space-time curvature experienced by quasiparticle excitations in the Painlevé–Gullstrand effective geometry”, Ann. Phys. (N.Y.), 304, 22–39, (2003). [External LinkDOI], [External Linkcond-mat/0205139].
209 Fischer, U.R. and Visser, M., “Warped space-time for phonons moving in a perfect nonrelativistic fluid”, Europhys. Lett., 62, 1–7, (2003). [External LinkDOI], [External Linkgr-qc/0211029].
210 Fischer, U.R. and Volovik, G.E., “Thermal quasi-equilibrium states across Landau horizons in the effective gravity of superfluids”, Int. J. Mod. Phys. D, 10, 57–88, (2001). [External Linkgr-qc/0003017].
211 Fiurásek, J., Leonhardt, U. and Parentani, R., “Slow-light pulses in moving media”, Phys. Rev. A, 65, 011802, 1–4, (2002). [External Linkquant-ph/0011100].
212 Flato, M., Sternheimer, D. and Fronsdal, C., “Difficulties with massless particles”, Commun. Math. Phys., 90, 563, (1983). [External LinkDOI].
213 Fock, V.A., The Theory of Space, Time, and Gravitation, (Pergamon, New York, 1964), 2nd edition.
214 Fonseca-Barbatti, C., Novello, M., Salim, J.M. and Arcuri, R.C., “Creation of a wormhole due to nonlinear electrodynamics”, Mod. Phys. Lett. A, 17, 1305–1314, (2002). [External LinkDOI].
215 Ford, L.H., “Quantum field theory in curved spacetime”, arXiv e-print, (1997). [External Linkgr-qc/9707062].
216 Ford, L.H. and Svaiter, N.F., “Cosmological and black hole horizon fluctuations”, Phys. Rev. D, 56, 2226–2235, (1997). [External LinkDOI], [External Linkgr-qc/9704050].
217 Ford, L.H. and Svaiter, N.F., “A Fluid Analog Model for Boundary Effects in Field Theory”, Phys. Rev. D, 80, 065034, (2009). [External LinkDOI], [External LinkarXiv:0903.2694 [quant-ph]].
218 Ford, L.H. and Svaiter, N.F., “Quantum Density Fluctuations in Classical Liquids”, Phys. Rev. Lett., 102, 030602, (2009). [External LinkDOI].
219 Foster, B.Z. and Jacobson, T., “Post-Newtonian parameters and constraints on Einstein-aether theory”, Phys. Rev. D, 73, 064015, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0509083 [gr-qc]].
220 Franchini, F. and Kravtsov, V.E., “Horizon in Random Matrix Theory, Hawking Radiation and Flow of Cold Atoms”, Phys. Rev. Lett., 103, 166401, (2009). [External LinkDOI], [External LinkarXiv:0905.3533 [cond-mat.str-el]].
221 Friedan, D., “A tentative theory of large distance physics”, J. High Energy Phys., 2003(10), 063, (2003). [External LinkDOI], [External Linkhep-th/0204131].
222 Frolov, V.P., “Black Hole Entropy and Physics at Planckian Scales”, in Sánchez, N. and Zichichi, A., eds., String Gravity and Physics at the Planck Energy Scale, Proceedings of the NATO Advanced Study Institute, Erice, Italy, September 18 – 19, 1995, NATO ASI Series C, 476, (Kluwer, Dordrecht; Boston, 1996). [External Linkhep-th/9510156].
223 Frolov, V.P. and Larsen, A.L., “Stationary strings and 2-D black holes”, Nucl. Phys. B, 449, 149–158, (1995). [External LinkDOI], [External Linkhep-th/9503060].
224 Fulling, S.A., Aspects of Quantum Field Theory in Curved Space-Time, (Cambridge University Press, Cambridge; New York, 1989). [External LinkGoogle Books].
225 Fursaev, D.V., “Entanglement and gravitational physics”, J. Phys. A: Math. Gen., 39, 6385–6391, (2006). [External LinkDOI].
226 Fursaev, D.V., “Entanglement entropy in critical phenomena and analogue models of quantum gravity”, Phys. Rev. D, 73, 124025, (2006). [External LinkDOI], [External LinkarXiv:hep-th/0602134].
227 Furtado, C., de M Carvalho, A.M., Garcia de Andrade, L.C. and Moraes, F., “Holonomy, Aharonov–Bohm effect and phonon scattering in superfluids”, arXiv e-print, (2004). [External Linkgr-qc/0401025].
228 Furuhashi, H., Nambu, Y. and Saida, H., “Simulation of Acoustic Black Hole in a Laval Nozzle”, Class. Quantum Grav., 23, 5417–5438, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0601066].
229 Gambini, R. and Pullin, J., “Nonstandard optics from quantum spacetime”, Phys. Rev. D, 59, 124021, (1999). [External LinkDOI], [External Linkgr-qc/9809038].
230 Garay, L.J., “Quantum gravity and minimum length”, Int. J. Mod. Phys. A, 10, 145–166, (1995). [External LinkDOI], [External Linkgr-qc/9403008].
231 Garay, L.J., Anglin, J.R., Cirac, J.I. and Zoller, P., “Sonic Analog of Gravitational Black Holes in Bose–Einstein Condensates”, Phys. Rev. Lett., 85, 4643–1–5, (2000). [External LinkDOI], [External Linkgr-qc/0002015].
232 Garay, L.J., Anglin, J.R., Cirac, J.I. and Zoller, P., “Sonic black holes in dilute Bose–Einstein condensates”, Phys. Rev. A, 63, 023611, 1–13, (2001). [External LinkDOI], [External Linkgr-qc/0005131].
233 Garcia de Andrade, L.C., “Irrotational vortex geometry of torsion loops”, arXiv e-print, (2004). [External Linkgr-qc/0409115].
234 Garcia de Andrade, L.C., “Non-Riemannian acoustic black holes: Hawking radiation and Lorentz symmetry breaking”, arXiv e-print, (2004). [External Linkgr-qc/0411103].
235 Garcia de Andrade, L.C., “Non-Riemannian geometry of turbulent acoustic flows and analog gravity”, arXiv e-print, (2004). [External Linkgr-qc/0410036].
236 Garcia de Andrade, L.C., “Non-Riemannian geometry of vortex acoustics”, Phys. Rev. D, 70, 064004, (2004). [External LinkDOI], [External Linkgr-qc/0405062].
237 Garcia de Andrade, L.C., “Non-Riemannian vortex geometry of rotational viscous fluids and breaking of the acoustic Lorentz invariance”, Phys. Lett. A, 339, 188–193, (2005). [External LinkDOI], [External Linkgr-qc/0409116].
238 Garcia de Andrade, L.C., “On the necessity of non-Riemannian acoustic spacetime in fluids with vorticity”, Phys. Lett. A, 346, 327–329, (2005). [External LinkDOI], [External Linkgr-qc/0502106].
239 Garcia de Andrade, L.C., “Relativistic superfluid hydrodynamics”, arXiv e-print, (2005). [External Linkgr-qc/0503088].
240 Garcia de Andrade, L.C., de M Carvalho, A.M. and Furtado, C., “Geometric phase for fermionic quasiparticles scattering by disgyration in superfluids”, Europhys. Lett., 67, 538–544, (2004). [External Linkgr-qc/0406057].
241 Ge, X.-H. and Kim, S.-W., “Black hole analogues in braneworld scenario”, arXiv e-print, (2007). [External LinkarXiv:0705.1396 [hep-th]].
242 Ge, X.-H. and Kim, S.-W., “Probing extra dimensions with higher dimensional black hole analogues?”, Phys. Lett. B, 652, 349–358, (2007). [External LinkDOI], [External LinkarXiv:0705.1404 [hep-th]].
243 Ge, X.-H. and Shen, Y.-G., “Quantum teleportation with sonic black holes”, Phys. Lett. B, 623, 141–146, (2005). [External LinkDOI], [External LinkarXiv:quant-ph/0507166].
244 Ghafarnejad, H. and Salehi, H., “Hadamard renormalization, conformal anomaly and cosmological event horizons”, Phys. Rev. D, 56, 4633–4639, (1997). [External LinkDOI], [External Linkhep-th/9709158].
245 Gibbons, G.W. and Hawking, S.W., “Action integrals and partition functions in quantum gravity”, Phys. Rev. D, 15, 2752–2756, (1977). [External LinkDOI].
246 Gibbons, G.W., Herdeiro, C.A.R., Warnick, C.M. and Werner, M.C., “Stationary Metrics and Optical Zermelo-Randers-Finsler Geometry”, Phys. Rev. D, 79, 044022, (2009). [External LinkDOI], [External LinkarXiv:0811.2877 [gr-qc]].
247 Giovanazzi, S., “Hawking Radiation in Sonic Black Holes”, Phys. Rev. Lett., 94, 061302, 1–4, (2005). [External LinkDOI], [External Linkphysics/0411064].
248 Giovanazzi, S., “The sonic analogue of black hole radiation”, J. Phys. B: At. Mol. Opt. Phys., 39, S109–S120, (2006). [External LinkDOI], [External LinkarXiv:cond-mat/0604541].
249 Giovanazzi, S., Farrell, C., Kiss, T. and Leonhardt, U., “Conditions for one-dimensional supersonic flow of quantum gases”, Phys. Rev. A, 70, 063602, (2004). [External LinkDOI], [External Linkcond-mat/0405007].
250 Girelli, F., Liberati, S., Percacci, R. and Rahmede, C., “Modified dispersion relations from the renormalization group of gravity”, Class. Quantum Grav., 24, 3995–4008, (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0607030].
251 Girelli, F., Liberati, S. and Sindoni, L., “Phenomenology of quantum gravity and Finsler geometry”, Phys. Rev. D, 75, 064015, (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0611024].
252 Girelli, F., Liberati, S. and Sindoni, L., “Gravitational dynamics in Bose-Einstein condensates”, Phys. Rev. D, 78, 084013, (2008). [External LinkDOI], [External LinkarXiv:0807.4910 [gr-qc]].
253 Girelli, F., Liberati, S. and Sindoni, L., “Emergence of Lorentzian signature and scalar gravity”, Phys. Rev. D, 79, 044019, (2009). [External LinkDOI].
254 Girelli, F., Liberati, S. and Sindoni, L., “Is the notion of time really fundamental?”, arXiv e-print, (2009). [External LinkarXiv:0903.4876 [gr-qc]].
255 Girelli, F., Liberati, S. and Sindoni, L., “On the emergence of time and gravity”, Phys. Rev. D, 79, 044019, (2009). [External LinkDOI], [External LinkarXiv:0806.4239 [gr-qc]].
256 Giulini, D., “Remarks on the Notions of General Covariance and Background Independence”, in Stamatescu, I.-O. and Seiler, E., eds., Approaches to Fundamental Physics: An Assessment of Current Theoretical Ideas, Lecture Notes in Physics, 721, pp. 105–120, (Springer, Berlin; New York, 2007). [External LinkDOI], [External LinkarXiv:gr-qc/0603087 [gr-qc]].
257 Glass, E.N. and Krisch, J.P., “Schwarzschild atmospheric processes: A classical path to the quantum”, Gen. Relativ. Gravit., 32, 735–741, (2000). [External LinkDOI], [External Linkgr-qc/9910080].
258 Gordon, W., “Zur Lichtfortpflanzung nach der Relativitätstheorie”, Ann. Phys. (Leipzig), 72, 421–456, (1923). [External LinkDOI].
259 Górski, A.Z. and Szmigielski, J., “On Pairs of Difference Operators Satisfying: [D,X]=Id”, J. Math. Phys., 39, 545–568, (1998). [External LinkDOI], [External Linkhep-th/9703015].
260 Goulart de Oliveira Costa, É. and Perez Bergliaffa, S.E., “A classification of the effective metric in nonlinear electrodynamics”, Class. Quantum Grav., 26, 135015, (2009). [External LinkDOI], [External LinkarXiv:0905.3673 [gr-qc]].
261 Griffin, A., Excitations in a Bose-condensed Liquid, Cambridge Studies in Low Temperature Physics,  4, (Cambridge University Press, Cambridge; New York, 1993). [External LinkGoogle Books].
262 Gu, Zheng-Cheng and Wen, Xiao-Gang, “A lattice bosonic model as a quantum theory of gravity”, arXiv e-print, (2006). [External LinkarXiv:gr-qc/0606100].
263 Gu, Z.-C. and Wen, X.-G., “Emergence of helicity +2 modes (gravitons) from qubit models”, arXiv e-print, (2009). [External LinkarXiv:0907.1203 [gr-qc]].
264 Gullstrand, A., “Allgemeine Lösung des statischen Einkörperproblems in der Einsteinschen Gravitationstheorie”, Ark. Mat. Astron. Fys., 16(8), 1–15, (1922).
265 Hadamard, J., Leçons sur la propagation des ondes et les équations de l’hydrodynamique (Lectures on the propagation of waves and the equations of hydrodynamics), (Hermann, Paris, 1903).
266 Hambli, N. and Burgess, C.P., “Hawking radiation and ultraviolet regulators”, Phys. Rev. D, 53, 5717–5722, (1996). [External LinkDOI], [External Linkhep-th/9510159].
267 Hamilton, A.J.S. and Lisle, J.P., “The river model of black holes”, Am. J. Phys., 76, 519–532, (2008). [External LinkDOI], [External Linkgr-qc/0411060].
268 Hamma, A., Markopoulou, F., Lloyd, S., Caravelli, F., Severini, S. and Markström, K., “Quantum Bose-Hubbard model with an evolving graph as a toy model for emergent spacetime”, Phys. Rev. D, 81, 104032, (2010). [External LinkDOI], [External LinkarXiv:0911.5075 [gr-qc]].
269 Hassan, S.F. and Sloth, M.S., “Trans-Planckian effects in inflationary cosmology and the modified uncertainty principle”, Nucl. Phys. B, 674, 434–458, (2003). [External LinkDOI], [External Linkhep-th/0204110].
270 Hawking, S.W., “Black hole explosions?”, Nature, 248, 30–31, (1974). [External LinkDOI].
271 Hawking, S.W., “Particle creation by black holes”, Commun. Math. Phys., 43, 199–220, (1975). [External LinkDOI]. Online version (accessed 23 March 2011):
External Link
272 Hawking, S.W., “Chronology protection conjecture”, Phys. Rev. D, 46, 603–611, (1992). [External LinkDOI].
273 Hawking, S.W., “The Chronology Protection Conjecture”, in Sato, H. and Nakamura, T., eds., The Sixth Marcel Grossmann Meeting: on recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories, Proceedings of the meeting held in Kyoto, Japan, 23 – 29 June 1991, pp. 3–16, (World Scientific, Singapore, 1992).
274 Hawking, S.W., “Chronology Protection: Making the World Safe for Historians”, in Hawking, S.W., Thorne, K.S., Novikov, I., Ferris, T. and Lightman, A., eds., The Future of Spacetime, pp. 87–108, (W.W. Norton, New York; London, 2002).
275 Hawking, S.W. and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, 1973). [External LinkGoogle Books].
276 Hehl, F.W. and Obukhov, Y.N., “To consider the electromagnetic field as fundamental, and the metric only as a subsidiary field”, Found. Phys., submitted, (2004). [External Linkphysics/0404101].
277 Hehl, F.W. and Obukhov, Y.N., “Linear media in classical electrodynamics and the Post constraint”, Phys. Lett. A, 334, 249–259, (2005). [External LinkDOI], [External Linkphysics/0411038].
278 Helfer, A.D., “Trans-Planckian modes, back-reaction, and the Hawking process”, arXiv e-print, (2000). [External Linkgr-qc/0008016].
279 Helfer, A.D., “Do black holes radiate?”, Rep. Prog. Phys., 66, 943–1008, (2003). [External LinkDOI], [External Linkgr-qc/0304042].
280 Helfer, A.D., “State reduction and energy extraction from black holes”, Phys. Lett. A, 329, 277–283, (2004). [External LinkDOI], [External Linkgr-qc/0407055].
281 Henson, J., “The causal set approach to quantum gravity”, arXiv e-print, (2006). [External LinkarXiv:gr-qc/0601121].
282 Heyl, J. S., “See a Black Hole on a Shoestring”, Phys. Rev. D, 74, 064029, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0602065].
283 Himemoto, Y. and Tanaka, T., “A generalization of the model of Hawking radiation with modified high frequency dispersion relation”, Phys. Rev. D, 61, 064004, 1–18, (2000). [External LinkDOI], [External Linkgr-qc/9904076].
284 Ho, P.-M., “Regularization of Newton constant, trans-Planckian dispersion relation, and symmetry of particle spectrum”, Class. Quantum Grav., 21, 2641–2650, (2004). [External LinkDOI], [External Linkhep-th/0308103].
285 Hochberg, D., “Evaporating black holes and collapsing bubbles in fluids”, unpublished, (1997).
286 Hochberg, D. and Pérez-Mercader, J., “A Liquid Model Analogue for Black Hole Thermodynamics”, Phys. Rev. D, 55, 4880–4888, (1997). [External LinkDOI], [External Linkgr-qc/9609043].
287 Hořava, P., “Quantum Gravity at a Lifshitz Point”, Phys. Rev. D, 79, 084008, (2009). [External LinkDOI], [External LinkarXiv:0901.3775 [hep-th]].
288 Hořava, P., “Spectral Dimension of the Universe in Quantum Gravity at a Lifshitz Point”, Phys. Rev. Lett., 102, 161301, (2009). [External LinkDOI], [External LinkarXiv:0902.3657 [hep-th]].
289 Hořava, P. and Melby-Thompson, C.M., “General Covariance in Quantum Gravity at a Lifshitz Point”, Phys. Rev. D, 82, 064027, (2010). [External LinkarXiv:1007.2410 [hep-th]].
290 Horstmann, B., Reznik, B., Fagnocchi, S. and Cirac, J.I., “Hawking Radiation from an Acoustic Black Hole on an Ion Ring”, Phys. Rev. Lett., 104, 250403, (2010). [External LinkDOI], [External LinkarXiv:0904.4801 [quant-ph]].
291 Horstmann, B., Schützhold, R., Reznik, B., Fagnocchi, S. and Cirac, J.I., “Measurement of Hawking Radiation with Ions in the Quantum Regime”, arXiv e-print, (2010). [External LinkarXiv:1008.3494 [quant-ph]].
292 Horwitz, L.P. and Oron, O., “Classical Gravity as an Eikonal Approximation to a Manifestly Lorentz Covariant Quantum Theory with Brownian Interpretation”, in Reimer, A., ed., Quantum Gravity Research Trends, Horizons in World Physics, 250, (Nova Science, New York, 2005). [External Linkgr-qc/0407076].
293 Hossenfelder, S., “The minimal length and large extra dimensions”, Mod. Phys. Lett. A, 19, 2727–2744, (2004). [External LinkDOI], [External Linkhep-ph/0410122].
294 Hossenfelder, S., “Running coupling with minimal length”, Phys. Rev. D, 70, 105003, (2004). [External LinkDOI], [External Linkhep-ph/0405127].
295 Hossenfelder, S., “Self-consistency in theories with a minimal length”, Class. Quantum Grav., 23, 1815–1821, (2006). [External LinkDOI], [External LinkarXiv:hep-th/0510245].
296 Hu, B.L., “Dynamical finite size effect, inflationary cosmology and thermal particle production”, in Lee, H.C., ed., CAP–NSERC Summer Institute in Theoretical Physics, Edmonton, Alberta, July 10 – 25, 1987, (World Scientific, Singapore; Teaneck, NJ, 1988).
297 Hu, B.L., “Nonequilibrium quantum fields in cosmology: Comments on selected current topics”, in De Vega, H.J. and Sánchez, N., eds., Second Paris Cosmology Colloquium, 2 – 4 June, 1994, Observatoire de Paris, France, p. 111, (World Scientific, Singapore; River Edge, NJ, 1995). [External Linkgr-qc/9409053].
298 Hu, B.L., “Stochastic gravity”, Int. J. Theor. Phys., 38, 2987–3037, (1999). [External Linkgr-qc/9902064].
299 Hu, B.L., “Can spacetime be a condensate?”, Int. J. Theor. Phys., 44, 1785–1806, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0503067].
300 Hu, B.L., “Emergent/Quantum Gravity: Macro/Micro Structures of Spacetime”, J. Phys.: Conf. Ser., 174, 012015, (2009). [External LinkDOI], [External LinkarXiv:0903.0878 [gr-qc]].
301 Hu, B.L. and Verdaguer, E., “Stochastic gravity: A primer with applications”, Class. Quantum Grav., 20, R1–R42, (2003). [External LinkDOI], [External Linkgr-qc/0211090].
302 Hu, B.L. and Verdaguer, E., “Stochastic Gravity: Theory and Applications”, Living Rev. Relativity, 7, lrr-2004-3, (2004). URL (accessed 31 May 2005):
303 Huhtala, P. and Volovik, G.E., “Fermionic Microstates within the Painlevé–Gullstrand Black Hole”, J. Exp. Theor. Phys., 94, 853–861, (2002). [External LinkDOI], [External Linkgr-qc/0111055].
304 Indurain, J. and Liberati, S., “The Theory of a Quantum Noncanonical Field in Curved Spacetimes”, Phys. Rev. D, 80, 045008, (2009). [External LinkDOI], [External LinkarXiv:0905.4568 [hep-th]].
305 Israel, W., “Dark stars: the evolution of an idea”, in Hawking, S.W. and Israel, W., eds., Three Hundred Years of Gravitation, pp. 199–276, (Cambridge University Press, Cambridge; New York, 1987).
306 Ito, K. and Ugakkai, N.S., eds., Encyclopedic Dictionary of Mathematics, (MIT, Cambridge, MA, 1987), 2nd edition.
307 Jacobson, T.A., “Black-hole evaporation and ultrashort distances”, Phys. Rev. D, 44, 1731–1739, (1991). [External LinkDOI].
308 Jacobson, T.A., “Black hole radiation in the presence of a short distance cutoff”, Phys. Rev. D, 48, 728–741, (1993). [External LinkDOI], [External Linkhep-th/9303103].
309 Jacobson, T.A., “Introduction to Black Hole Microscopy”, in Macías, A., Quevedo, H., Obregón, O. and Matos, T., eds., Recent Developments in Gravitation and Mathematical Physics, Proceedings of the First Mexican School on Gravitation and Mathematical Physics, Guanajuato, Mexico, 12 – 16 December 1994, (World Scientific, Singapore; River Edge, NJ, 1996). [External Linkhep-th/9510026].
310 Jacobson, T.A., “On the origin of the outgoing black hole modes”, Phys. Rev. D, 53, 7082–7088, (1996). [External LinkDOI], [External Linkhep-th/9601064].
311 Jacobson, T.A., “Trans-Planckian redshifts and the substance of the space-time river”, Prog. Theor. Phys. Suppl., 136, 1–17, (1999). [External LinkDOI], [External Linkhep-th/0001085].
312 Jacobson, T.A., “Lorentz violation and Hawking radiation”, in Kostelecký, V.A., ed., CPT and Lorentz Symmetry, Proceedings of the Second Meeting, Bloomington, USA, 15 – 18 August 2001, pp. 316–320, (World Scientific, Singapore; River Edge, NJ, 2002). [External LinkDOI], [External Linkgr-qc/0110079]. Online version (accessed 22 March 2011):
External Link
313 Jacobson, T.A., “Introduction to Quantum Fields in Curved Spacetime and the Hawking Effect”, in Gomberoff, A. and Marolf, D., eds., Lectures on Quantum Gravity, 2002 Pan-American Advanced Studies Institute School, Valdivia, Chile, January 4 – 14, 2002, Series of the Centro de Estudios Científicos, pp. 39–90, (Springer, New York, 2005). [External Linkgr-qc/0308048].
314 Jacobson, T., “Einstein-aether gravity: a status report”, in From Quantum to Emergent Gravity: Theory and Phenomenology, June 11 – 15 2007, Trieste, Italy, Proceedings of Science, (SISSA, Trieste, 2007). [External LinkarXiv:0801.1547 [gr-qc]]. URL (accessed 13 December 2010):
External Link
315 Jacobson, T.A. and Kang, G., “Conformal invariance of black hole temperature”, Class. Quantum Grav., 10, L201–L206, (1993). [External LinkDOI], [External Linkgr-qc/9307002].
316 Jacobson, T.A. and Koike, T., “Black hole and baby universe in a thin film of 3He-A”, in Novello, M., Visser, M. and Volovik, G., eds., Artificial Black Holes, pp. 87–108, (World Scientific, Singapore; River Edge, NJ, 2002). [External Linkcond-mat/0205174], [External LinkGoogle Books].
317 Jacobson, T.A., Liberati, S. and Mattingly, D., “Lorentz violation and Crab synchrotron emission: A new constraint far beyond the Planck scale”, Nature, 424, 1019–1021, (2003). [External Linkastro-ph/0212190].
318 Jacobson, T.A., Liberati, S. and Mattingly, D., “Threshold effects and Planck scale Lorentz violation: Combined constraints from high energy astrophysics”, Phys. Rev. D, 67, 124011, 1–26, (2003). [External LinkDOI], [External Linkhep-ph/0209264].
319 Jacobson, T.A., Liberati, S. and Mattingly, D., “Astrophysical Bounds on Planck Suppressed Lorentz Violation”, in Amelino-Camelia, G. and Kowalski-Glikman, J., eds., Planck Scale Effects in Astrophysics and Cosmology, Lecture Notes in Physics, 669, pp. 101–130, (Springer, Berlin; New York, 2005). [External LinkDOI], [External Linkhep-ph/0407370].
320 Jacobson, T.A., Liberati, S. and Mattingly, D., “Quantum gravity phenomenology and Lorentz violation”, in Trampetić, J. and Wess, J., eds., Particle Physics and the Universe, Proceedings of the 9th Adriatic Meeting, September 2003, Dubrovnik, Springer Proceedings in Physics,  98, (Springer, Berlin; New York, 2005). [External Linkgr-qc/0404067].
321 Jacobson, T., Liberati, S. and Mattingly, D., “Lorentz violation at high energy: concepts, phenomena and astrophysical constraints”, Ann. Phys. (N.Y.), 321, 150–196, (2006). [External LinkDOI], [External LinkarXiv:astro-ph/0505267].
322 Jacobson, T.A. and Mattingly, D., “Hawking radiation on a falling lattice”, Phys. Rev. D, 61, 024017, 1–10, (2000). [External Linkhep-th/9908099].
323 Jacobson, T. and Mattingly, D., “Einstein-aether waves”, Phys. Rev. D, 70, 024003, (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0402005 [gr-qc]].
324 Jacobson, T. and Parentani, R., “Black hole entanglement entropy regularized in a freely falling frame”, Phys. Rev. D, 76, 024006, (2007). [External LinkDOI], [External LinkarXiv:hep-th/0703233].
325 Jacobson, T. and Parentani, R., “Horizon surface gravity as 2d geodesic expansion”, Class. Quantum Grav., 25, 195009, (2008). [External LinkDOI], [External LinkarXiv:0806.1677 [gr-qc]].
326 Jacobson, T.A. and Volovik, G.E., “Effective spacetime and Hawking radiation from moving domain wall in thin film of 3He-A”, J. Exp. Theor. Phys. Lett., 68, 874–880, (1998). [External LinkDOI], [External Linkgr-qc/9811014].
327 Jacobson, T.A. and Volovik, G.E., “Event horizons and ergoregions in 3He”, Phys. Rev. D, 58, 064021, 1–7, (1998). [External LinkDOI].
328 Jain, P., Weinfurtner, S., Visser, M. and Gardiner, C.W., “Analog model of a Friedmann–Robertson–Walker universe in Bose–Einstein condensates: Application of the classical field method”, Phys. Rev. A, 76, 033616, (2007). [External LinkDOI], [External LinkarXiv:0705.2077 [cond-mat.other]].
329 Jannes, G., “On the condensed matter scheme for emergent gravity and interferometry”, arXiv e-print, (2008). [External LinkarXiv:0810.0613 [gr-qc]].
330 Jannes, G., “Condensed matter lessons about the origin of time”, arXiv e-print, (2009). [External LinkarXiv:0904.3627 [gr-qc]].
331 Jannes, G., Emergent gravity: the BEC paradigm, Ph.D. Thesis, (Universidad Complutense de Madrid, Madrid, 2009). [External LinkarXiv:0907.2839 [gr-qc]].
332 Jannes, G., “Some comments on ‘The Mathematical Universe”’, Found. Phys., 39, 397–406, (2009). [External LinkDOI], [External LinkarXiv:0904.0867 [gr-qc]].
333 Jannes, G., Barceló, C., Cano, A. and Garay, L.J., “QNM spectrum in (1+1)-dimensional BEC black holes”, in From Quantum to Emergent Gravity: Theory and Phenomenology, June 11 – 15 2007, Trieste, Italy, Proceedings of Science, (SISSA, Trieste, 2007). URL (accessed 13 December 2010):
External Link
334 Jannes, G., Piquet, R., Maïssa, P., Mathis, C. and Rousseaux, G., “The circular jump is a white hole”, arXiv e-print, (2010). [External LinkarXiv:1010.1701 [physics.flu-dyn]].
335 Jevicki, A. and Thaler, J., “Dynamics of black hole formation in an exactly solvable model”, Phys. Rev. D, 66, 024041, 1–6, (2002). [External LinkDOI], [External Linkhep-th/0203172].
336 Kagan, Y., Surkov, E.L. and Shlyapnikov, G.V., “Evolution of a Bose-condensed gas under variations of the confining potential”, Phys. Rev. A, 54, R1753–R1756, (1996). [External LinkDOI].
337 Kagan, Y., Surkov, E.L. and Shlyapnikov, G.V., “Evolution and global collapse of trapped Bose condensates under variations of the scattering length”, Phys. Rev. Lett., 79, 2604–2607, (1997). [External LinkDOI], [External Linkphysics/9705005].
338 Kash, M.M. et al., “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas”, Phys. Rev. Lett., 82, 5229–5232, (1999). [External LinkDOI].
339 Katsnelson, M.I. and Novoselov, K.S., “Graphene: New bridge between condensed matter physics and quantum electrodynamics”, Solid State Commun., 143, 3–13, (2007). [External LinkDOI].
340 Katti, R., Samuel, J. and Sinha, S., “The Universe in a Soap Film”, Class. Quantum Grav., 26, 135018, (2009). [External LinkDOI], [External LinkarXiv:0904.1057 [gr-qc]].
341 Kempf, A., “Mode generating mechanism in inflation with a cutoff”, Phys. Rev. D, 63, 083514, 1–5, (2001). [External LinkDOI], [External Linkastro-ph/0009209].
342 Kempf, A., “A covariant information-density cutoff in curved space-time”, Phys. Rev. Lett., 92, 221301, (2004). [External LinkDOI], [External Linkgr-qc/0310035].
343 Kempf, A. and Niemeyer, J.C., “Perturbation spectrum in inflation with cutoff”, Phys. Rev. D, 64, 103501, 1–6, (2001). [External LinkDOI], [External Linkastro-ph/0103225].
344 Kim, S.-W., Kim, W.T. and Oh, J.J., “Decay rate and low-energy near-horizon dynamics of acoustic black holes”, Phys. Lett. B, 608, 10–16, (2005). [External LinkDOI], [External Linkgr-qc/0409003].
345 Kim, W. and Shin, H., “Anomaly Analysis of Hawking Radiation from Acoustic Black Hole”, J. High Energy Phys., 2007(07), 070, (2007). [External LinkDOI], [External LinkarXiv:0706.3563 [hep-th]].
346 Kim, W., Son, E.J. and Yoon, M., “Thermodynamics of (2+1)-dimensional acoustic black hole based on the generalized uncertainty principle”, arXiv e-print, (2008). [External LinkarXiv:0801.1439 [gr-qc]].
347 Kim, W.T., Son, E.J., Yoon, M.S. and Park, Y.J., “Statistical entropy and superradiance in 2+1 dimensional acoustic black holes”, J. Korean Phys. Soc., 49, 15–20, (2006). [External Linkgr-qc/0504127].
348 Kiss, T. and Leonhardt, U., “Towards a classification of wave catastrophes”, J. Opt. A, 6, S246–S247, (2004). [External LinkDOI], [External Linkphysics/0309036].
349 Klinkhamer, F.R. and Volovik, G.E., “Dynamic vacuum variable and equilibrium approach in cosmology”, Phys. Rev. D, 78, 063528, (2008). [External LinkDOI], [External LinkarXiv:0806.2805 [gr-qc]].
350 Klinkhamer, F.R. and Volovik, G.E., “Self-tuning vacuum variable and cosmological constant”, Phys. Rev. D, 77, 085015, (2008). [External LinkDOI], [External LinkarXiv:0711.3170 [gr-qc]].
351 Klinkhamer, F.R. and Volovik, G.E., “Towards a solution of the cosmological constant problem”, J. Exp. Theor. Phys. Lett., 91, 259–265, (2010). [External LinkDOI], [External LinkarXiv:0907.4887 [hep-th]].
352 Kobes, R., “Superresonance effect and energy flow in acoustic black holes”, Can. J. Phys., 84, 501–506, (2006). [External LinkDOI].
353 Kocharovskaya, O., Rostovtsev, Y. and Scully, M.O., “Stopping Light via Hot Atoms”, Phys. Rev. Lett., 86, 628–631, (2001). [External LinkDOI].
354 Kokkotas, K.D. and Schmidt, B.G., “Quasi-Normal Modes of Stars and Black Holes”, Living Rev. Relativity, 2, lrr-1999-2, (1999). URL (accessed 31 May 2005):
355 Kolekar, S. and Padmanabhan, T., “Holography in Action”, Phys. Rev. D, 82, 024036, (2010). [External LinkDOI], [External LinkarXiv:1005.0619 [gr-qc]].
356 Konopka, T., “Statistical Mechanics of Graphity Models”, Phys. Rev. D, 78, 044032, (2008). [External LinkDOI], [External LinkarXiv:0805.2283 [hep-th]].
357 Konopka, T. and Markopoulou, F., “Constrained mechanics and noiseless subsystems”, arXiv e-print, (2006). [External LinkarXiv:gr-qc/0601028].
358 Konopka, T., Markopoulou, F. and Severini, S., “Quantum Graphity: a model of emergent locality”, Phys. Rev. D, 77, 104029, (2008). [External LinkDOI], [External LinkarXiv:0801.0861 [hep-th]].
359 Kopnin, N.B. and Volovik, G.E., “Critical velocity and event horizon in pair-correlated systems with relativistic fermionic quasiparticles”, J. Exp. Theor. Phys. Lett., 67, 528–532, (1998). [External LinkDOI], [External Linkcond-mat/9712187].
360 Kostelecký, V.A. and Samuel, S., “Spontaneous breaking of Lorentz symmetry in string theory”, Phys. Rev. D, 39, 683–685, (1989). [External LinkDOI].
361 Kowalski-Glikman, J., “Testing dispersion relations of quantum kappa-Poincare algebra on cosmological ground”, Phys. Lett. B, 499, 1–8, (2001). [External LinkDOI], [External Linkastro-ph/0006250].
362 Kowalski-Glikman, J., “De Sitter space as an arena for doubly special relativity”, Phys. Lett. B, 547, 291–296, (2002). [External LinkDOI], [External Linkhep-th/0207279].
363 Kowalski-Glikman, J., “Doubly special relativity: A kinematics of quantum gravity?”, in Semikhatov, A.M., Vasiliev, M.V. and Zaikin, V., eds., 3rd International Sakharov Conference on Physics, Proceedings of the conference, Moscow, Russia, June 24 – 29, 2002, (Scientific World, Moscow, 2002). [External Linkhep-th/0209264].
364 Kraus, P. and Wilczek, F., “A Simple Stationary Line Element for the Schwarzschild Geometry, and Some Applications”, arXiv e-print, (June 1994). [External Linkgr-qc/9406042].
365 Krein, G., Menezes, G. and Svaiter, N.F., “Analog model for quantum gravity effects: phonons in random fluids”, Phys. Rev. Lett., 105, 131301, (2010). [External LinkDOI], [External LinkarXiv:1006.3350 [hep-th]].
366 Kugo, T., “Limitations on the existence of massless composite states”, Phys. Lett. B, 109, 205–208, (1982). [External LinkDOI].
367 Kurita, Y., Kobayashi, M., Ishihara, H. and Tsubota, M., “Particle creation in Bose–Einstein condensates: Theoretical formulation based on conserving gapless mean-field theory”, Phys. Rev. A, 82, 053602, (2010). [External LinkDOI], [External LinkarXiv:1007.0073 [cond-mat.quant-gas]].
368 Kurita, Y., Kobayashi, M., Morinari, T., Tsubota, M. and Ishihara, H., “Spacetime analogue of Bose-Einstein condensates: Bogoliubov-de Gennes formulation”, arXiv e-print, (2008). [External LinkarXiv:0810.3088 [cond-mat.other]].
369 Lahav, O., Itah, A., Blumkin, A., Gordon, C. and Steinhauer, J., “Realization of a Sonic Black Hole Analog in a Bose–Einstein Condensate”, Phys. Rev. Lett., 105, 240401, (2010). [External LinkDOI], [External LinkarXiv:0906.1337].
370 Lamb, H., Hydrodynamics, (Dover, Mineola, NY, 1932), 6th edition. Reissue of 1932 ed., first edition publ. 1879.
371 Lämmerzahl, C. and Hehl, F.W., “Riemannian light cone from vanishing birefringence in premetric vacuum electrodynamics”, Phys. Rev. D, 70, 105022, 1–10, (2004). [External LinkDOI], [External Linkgr-qc/0409072].
372 Landau, L.D. and Lifshitz, E.M., Fluid Mechanics, Course of Theoretical Physics,  6, (Pergamon; Addison-Wesley, London; Reading, MA, 1959).
373 Landau, L.D. and Lifshitz, E.M., The classical theory of fields, (Pergamon Press, Oxford; New York, 1971), 3rd edition.
374 Landau, L.D., Lifshitz, E.M. and Pitaevskii, L.P., Statistical Physics, Part 2, Course of Theoretical Physics,  9, (Pergamon Press, Oxford; New York, 1980).
375 Landau, L.D., Lifshitz, E.M. and Pitaevskii, L.P., Electrodynamics of continuous media, Course of Theoretical Physics,  8, (Pergamon Press, Oxford; New York, 1984), 2nd edition.
376 Larsen, A.L., “Cosmic strings and black holes”, arXiv e-print, (1996). [External Linkhep-th/9610063].
377 Laschkarew, W., “Zur Theorie der Gravitation”, Z. Phys., 35, 473–476, (1926). [External LinkDOI].
378 Laughlin, R.B., “Emergent relativity”, Int. J. Mod. Phys. A, 18, 831–854, (2003). [External LinkDOI], [External Linkgr-qc/0302028].
379 Lemaître, G., “L’univers en expansion”, Ann. Soc. Sci. Bruxelles, Ser. A, 53, 51–85, (1933).
380 Lemoine, M., Lubo, M., Martin, J. and Uzan, J.-P., “Stress-energy tensor for trans-Planckian cosmology”, Phys. Rev. D, 65, 023510, 1–14, (2002). [External Linkhep-th/0109128].