References

1 Andersson, L., Beig, R. and Schmidt, B.G., “Static self-gravitating elastic bodies in Einstein gravity”, Commun. Pure Appl. Math., 61, 988–1023, (2008). [External LinkDOI].
2 Andersson, L., Beig, R. and Schmidt, B.G., “Rotating elastic bodies in Einstein gravity”, Commun. Pure Appl. Math., 63, 559–589, (2009). [External LinkDOI].
3 Andréasson, H., “Controlling the propagation of the support for the relativistic Vlasov equation with a selfconsistent Lorentz invariant field”, Indiana Univ. Math. J., 45, 617–642, (1996). [External LinkDOI].
4 Andréasson, H., “Regularity of the gain term and strong L1 convergence to equilibrium for the relativistic Boltzmann equation”, SIAM J. Math. Anal., 27, 1386–1405, (1996). [External LinkDOI].
5 Andréasson, H., “Global existence of smooth solutions in three dimensions for the semiconductor Vlasov–Poisson–Boltzmann equation”, Nonlinear Anal., 28, 1193–1211, (1997). [External LinkDOI].
6 Andréasson, H., “Global foliations of matter spacetimes with Gowdy symmetry”, Commun. Math. Phys., 206, 337–365, (1999). [External LinkDOI], [External Linkgr-qc/9812035].
7 Andréasson, H., “On global existence for the spherically symmetric Einstein-Vlasov system in Schwarzschild coordinates”, Indiana Univ. Math. J., 56, 523–552, (2007). [External LinkDOI].
8 Andréasson, H., “On static shells and the Buchdahl inequality for the spherically symmetric Einstein-Vlasov system”, Commun. Math. Phys., 274, 409–425, (2007). [External LinkDOI], [External Linkgr-qc/0605151].
9 Andréasson, H., “On the Buchdahl inequality for spherically symmetric static shells”, Commun. Math. Phys., 274, 399–408, (2007). [External LinkDOI], [External Linkgr-qc/0605097].
10 Andréasson, H., “Sharp bounds on 2m∕r of general spherically symmetric static objects”, J. Differ. Equations, 245, 2243–2266, (2008). [External LinkDOI].
11 Andréasson, H., “Sharp bounds on the critical stability radius for relativistic charged spheres”, Commun. Math. Phys., 288, 715–730, (2009). [External LinkDOI], [External LinkarXiv:0804.1882].
12 Andréasson, H., “Regularity results for the spherically symmteric Einstein-Vlasov system”, Ann. Henri Poincare, 11, 781–803, (2010). [External LinkDOI], [External LinkarXiv:1006.2248].
13 Andréasson, H. and Böhmer, C.G., “Bounds on M∕R for static objects with a positive cosmological constant”, Class. Quantum Grav., 26, 195007, 1–11, (2009). [External LinkDOI].
14 Andréasson, H., Calogero, S. and Illner, R., “On Blowup for Gain-Term-Only classical and relativistic Boltzmann equations”, Math. Method. Appl. Sci., 27, 2231–2240, (2004). [External LinkDOI].
15 Andréasson, H., Calogero, S. and Rein, G., “Global classical solutions to the spherically symmetric Nordström-Vlasov system”, Math. Proc. Camb. Phil. Soc., 138, 533–539, (2005). [External LinkDOI], [External Linkgr-qc/0311027].
16 Andréasson, H., Eklund, M. and Rein, G., “A numerical investigation of the steady states of the spherically symmetric Einstein-Vlasov-Maxwell system”, Class. Quantum Grav., 26, 145003, (2009). [External LinkDOI].
17 Andréasson, H., Kunze, M. and Rein, G., “Global existence for the spherically symmetric Einstein-Vlasov system with outgoing matter”, Commun. Part. Diff. Eq., 33, 656–668, (2008). [External LinkDOI].
18 Andréasson, H., Kunze, M. and Rein, G., “Existence of axially symmetric static solutions of the Einstein-Vlasov system”, Commun. Math. Phys., accepted, (2010). [External LinkarXiv:1006.1225 [gr-qc]].
19 Andréasson, H., Kunze, M. and Rein, G., “Gravitational collapse and the formation of black holes for the spherically symmetric Einstein-Vlasov system”, Quart. Appl. Math., 68, 17–42, (2010).
20 Andréasson, H., Kunze, M. and Rein, G., “The formation of black holes in spherically symmetric gravitational collapse”, Math. Ann., in press, (2011). [External LinkDOI], [External LinkarXiv:0706.3787 [gr-qc]].
21 Andréasson, H. and Rein, G., “A numerical investigation of the stability of steady states and critical phenomena for the spherically symmetric Einstein–Vlasov system”, Class. Quantum Grav., 23, 3659–3677, (2006). [External LinkDOI].
22 Andréasson, H and Rein, G., “On the steady states of the spherically symmetric Einstein-Vlasov system”, Class. Quantum Grav., 24, 1809–1832, (2007). [External LinkDOI].
23 Andréasson, H. and Rein, G., “The asymptotic behaviour in Schwarzschild time of Vlasov matter in spherically symmetric gravitational collapse”, Math. Proc. Camb. Phil. Soc., 149, 173–188, (2010). [External LinkDOI].
24 Andréasson, H. and Rein, G., “Formation of trapped surfaces for the spherically symmetric Einstein-Vlasov system”, J. Hyperbol. Differ. Equations, 7, 707–731, (2010). [External LinkDOI].
25 Andréasson, H., Rein, G. and Rendall, A.D., “On the Einstein–Vlasov system with hyperbolic symmetry”, Math. Proc. Camb. Phil. Soc., 134, 529–549, (2003). [External LinkDOI].
26 Andréasson, H., Rendall, A.D. and Weaver, M., “Existence of CMC and constant areal time foliations in T2 symmetric spacetimes with Vlasov matter”, Commun. Part. Diff. Eq., 29, 237–262, (2004). [External LinkDOI], [External Linkgr-qc/0211063].
27 Anguige, K., “Isotropic Cosmological Singularities. III. The Cauchy Problem for the Inhomogeneous Conformal Einstein–Vlasov Equations”, Ann. Phys. (N.Y.), 282, 395–419, (2000). [External LinkDOI].
28 Anguige, K. and Tod, K.P., “Isotropic Cosmological Singularities II. The Einstein–Vlasov System”, Ann. Phys. (N.Y.), 276, 294–320, (1999). [External LinkDOI].
29 Arkeryd, L., “On the strong L1 trend to equilibrium for the Boltzmann equation”, Stud. Appl. Math., 87, 283–288, (1992).
30 Bancel, D. and Choquet-Bruhat, Y., “Existence, Uniqueness and Local Stability for the Einstein–Maxwell–Boltzmann System”, Commun. Math. Phys., 33, 83–96, (1973). [External LinkDOI].
31 Bardeen, J.M., “Rapidly rotating stars, disks, and black holes”, in DeWitt, C. and DeWitt, B.S., eds., Black Holes, Based on lectures given at the 23rd session of the Summer School of Les Houches, 1972, pp. 241–289, (Gordon and Breach, New York, 1973).
32 Bardos, C. and Degond, P., “Global existence for the Vlasov–Poisson equation in three space variables with small initial data”, Ann. Inst. Henri Poincare, 2, 101–118, (1985).
33 Bardos, C., Degond, P. and Ha, T.N., “Existence globale des solutions des équations de Vlasov–Poisson relativistes en dimension 3”, C. R. Acad. Sci., 301, 265–268, (1985).
34 Batt, J., “Global symmetric solutions of the initial value problem of stellar dynamics”, J. Differ. Equations, 25, 342–364, (1977). [External LinkDOI].
35 Batt, J., Faltenbacher, W. and Horst, E., “Stationary Spherically Symmetric Models in Stellar Dynamics”, Arch. Ration. Mech. Anal., 93, 159–183, (1986). [External LinkDOI].
36 Bauer, S., Kunze, M., Rein, G. and Rendall, A.D., “Multipole radiation in a collisionless gas coupled to electromagnetism or scalar gravitation”, Commun. Math. Phys., 266, 267–288, (2006). [External LinkDOI].
37 Berger, B.K., Chruściel, P.T., Isenberg, J. and Moncrief, V., “Global Foliations of Vacuum Spacetimes with T2 Isometry”, Ann. Phys. (N.Y.), 260, 117–148, (1997). [External LinkDOI], [External Linkgr-qc/9702007].
38 Binney, J. and Tremaine, S., Galactic Dynamics, Princeton Series in Astrophysics, (Princeton University Press, Princeton, NJ, 1987). [External LinkGoogle Books].
39 Bouchut, F., Golse, F. and Pallard, C., “Classical solutions and the Glassey–Strauss theorem for the 3D Vlasov–Maxwell system”, Arch. Ration. Mech. Anal., 170, 1–15, (2003). [External LinkDOI].
40 Brauer, U., Rendall, A.D. and Reula, O., “The cosmic no-hair theorem and the non-linear stability of homogeneous Newtonian cosmological models”, Class. Quantum Grav., 11, 2283–2296, (1994). [External LinkDOI], [External Linkgr-qc/9403050].
41 Buchdahl, H.A., “General relativistic fluid spheres”, Phys. Rev., 116, 1027–1034, (1959). [External LinkDOI].
42 Burnett, G.A. and Rendall, A.D., “Existence of maximal hypersurfaces in some spherically symmetric spacetimes”, Class. Quantum Grav., 13, 111–123, (1996). [External LinkDOI].
43 Calogero, S., “Spherically symmetric steady states of galactic dynamics in scalar gravity”, Class. Quantum Grav., 20, 1729–1741, (2003). [External LinkDOI].
44 Calogero, S., “The Newtonian limit of the relativistic Boltzmann equation”, J. Math. Phys., 45, 4042–4052, (2004). [External LinkDOI].
45 Calogero, S., “Global classical solutions to the 3D Nordström-Vlasov system”, Commun. Math. Phys., 266, 343–353, (2006). [External LinkDOI].
46 Calogero, S. and Heinzle, J.M., “Dynamics of Bianchi type I solutions of the Einstein equations with anisotropic matter”, Ann. Henri Poincare, 10, 225–274, (2009). [External LinkDOI].
47 Calogero, S. and Heinzle, J.M., “Oscillations toward the singularity of LRS Bianchi type IX cosmological models with Vlasov matter”, SIAM J. Appl. Dyn. Syst., 9, 1244–1262, (2010). [External LinkDOI].
48 Calogero, S. and Heinzle, J.M., “Bianchi Cosmologies with Anisotropic Matter: Locally Rotationally Symmetric Models”, Physica D, 240, 636–669, (2011). [External LinkDOI].
49 Calogero, S. and Lee, H., “The non-relativistic limit of the Nordström–Vlasov system”, Commun. Math. Sci., 2, 19–34, (2004).
50 Calogero, S. and Rein, G., “On classical solutions of the Nordström–Vlasov system”, Commun. Part. Diff. Eq., 28, 1863–1885, (2003). [External LinkDOI].
51 Calogero, S. and Rein, G., “Global weak solutions to the Nordström–Vlasov system”, J. Differ. Equations, 204, 323–338, (2004). [External LinkDOI].
52 Calogero, S., Sanchez, O. and Soler, J., “Asymptotic behavior and orbital stability of galactic dynamics in relativistic scalar gravity”, Arch. Ration. Mech. Anal., 194, 743–773, (2009). [External LinkDOI].
53 Cercignani, C., Illner, R. and Pulvirenti, M., The Mathematical Theory of Dilute Gases, Applied Mathematical Sciences, 106, (Springer, Berlin; New York, 1988).
54 Cercignani, C. and Kremer, G.M., The Relativistic Boltzmann Equation: Theory and Applications, Progress in Mathematical Physics,  22, (Birkhäuser, Basel, 2002).
55 Choquet-Bruhat, Y., “Problème de Cauchy pour le système intégro différentiel d’Einstein–Liouville”, Ann. Inst. Fourier, 21, 181–201, (1971).
56 Choquet-Bruhat, Y. and Noutchegueme, N., “Systéme de Yang–Mills–Vlasov en jauge temporelle”, Ann. Inst. Henri Poincare, 55, 759–787, (1991).
57 Christodoulou, D., “A mathematical theory of gravitational collapse”, Commun. Math. Phys., 109, 613–647, (1987). [External LinkDOI].
58 Christodoulou, D., “The formation of black holes and singularities in spherically symmetric gravitational collapse”, Commun. Pure Appl. Math., 44, 339–373, (1991). [External LinkDOI].
59 Christodoulou, D., “Examples of Naked Singularity Formation in the Gravitational Collapse of a Scalar Field”, Ann. Math. (2), 140, 607–653, (1994). [External LinkDOI].
60 Christodoulou, D., “The instability of naked singularities in the gravitational collapse of a scalar field”, Ann. Math. (2), 149, 183–217, (1999). [External LinkDOI].
61 Christodoulou, D., “On the global initial value problem and the issue of singularities”, Class. Quantum Grav., 16, A23–A35, (1999). [External LinkDOI].
62 Dafermos, M., “Spherically symmetric spacetimes with a trapped surface”, Class. Quantum Grav., 22, 2221–2232, (2005). [External LinkDOI], [External Linkgr-qc/0403032].
63 Dafermos, M., “A note on the collapse of small data self-gravitating massless collisionless matter”, J. Hyperbol. Differ. Equations, 3, 589–598, (2006).
64 Dafermos, M. and Rendall, A.D., “An extension principle for the Einstein–Vlasov system in spherical symmetry”, Ann. Henri Poincare, 6, 1137–1155, (2005). [External LinkDOI], [External Linkgr-qc/0411075].
65 Dafermos, M. and Rendall, A.D., “Inextendibility of expanding cosmological models with symmetry”, Class. Quantum Grav., 22, L143–L147, (2005). [External LinkDOI], [External Linkgr-qc/0509106].
66 Dafermos, M. and Rendall, A.D., “Strong cosmic censorship for T2-symmetric cosmological spacetimes with collisionless matter”, arXiv e-print, (2006). [External Linkgr-qc/0610075].
67 Dafermos, M. and Rendall, A.D., “Strong cosmic censorship for surface-symmetric cosmological spacetimes with collisionless matter”, arXiv e-print, (2007). [External Linkgr-qc/0701034].
68 de Groot, S.R., van Leeuwen, W.A. and van Weert, C.G., Relativistic Kinetic Theory: Principles and Applications, (North-Holland; Elsevier, Amsterdam; New York, 1980).
69 Desvillettes, L. and Villani, C., “On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation”, Invent. Math., 159, 245–316, (2005). [External LinkDOI].
70 DiPerna, R.J. and Lions, P.L., “Global weak solutions of Vlasov-Maxwell systems”, Commun. Pure Appl. Math., 42, 729–757, (1989). [External LinkDOI].
71 DiPerna, R.J. and Lions, P.-L., “On the Cauchy problem for Boltzmann equations: Global existence and weak stability”, Ann. Math., 130, 321–366, (1989). [External LinkDOI].
72 Dudyński, M. and Ekiel-Jeżewska, M., “Global existence proof for the relativistic Boltzmann equation”, J. Stat. Phys., 66, 991–1001, (1992). [External LinkDOI].
73 Ehlers, J., “Survey of general relativity theory”, in Israel, W., ed., Relativity, Astrophysics, and Cosmology, Proceedings of the summer school held 14 – 26 August 1972 at the Banff Centre, Banff, Alberta, Atrophysics and Space Science Library,  38, pp. 1–125, (Reidel, Dordrecht; Boston, 1973).
74 Fiřt, R. and Rein, G., “Stability of disk-like galaxies – Part I: Stability via reduction”, Analysis, 26, 507–525, (2007). [External LinkDOI], [External LinkarXiv:math-ph/0605070].
75 Fjällborg, M., “On the cylindrically symmetric Einstein-Vlasov system”, Commun. Part. Diff. Eq., 31, 1381–1405, (2006). [External LinkDOI], [External Linkgr-qc/0503098].
76 Fjällborg, M., Heinzle, M. and Uggla, C., “Self-gravitating stationary spherically symmetric systems in relativistic galactic dynamics”, Math. Proc. Camb. Phil. Soc., 143, 731–752, (2007). [External LinkDOI].
77 Ganguly, K. and Victory, H., “On the convergence for particle methods for multidimensional Vlasov–Poisson systems”, SIAM J. Numer. Anal., 26, 249–288, (1989). [External LinkDOI].
78 Giuliani, A. and Rothman, T., “Absolute stability limit for relativistic charged spheres”, Gen. Relativ. Gravit., 40, 1427–1447, (2008). [External LinkDOI].
79 Glassey, R.T., The Cauchy Problem in Kinetic Theory, (SIAM, Philadelphia, 1996). [External LinkGoogle Books].
80 Glassey, R., “Global solutions to the Cauchy problem for the relativistic Boltzmann equation with near-vacuum data”, Commun. Math. Phys., 264, 705–724, (2006). [External LinkDOI].
81 Glassey, R.T. and Schaeffer, J., “On symmetric solutions to the relativistic Vlasov–Poisson system”, Commun. Math. Phys., 101, 459–473, (1985). [External LinkDOI].
82 Glassey, R.T. and Schaeffer, J., “The ‘Two and One–Half Dimensional’ Relativistic Vlasov–Maxwell System”, Commun. Math. Phys., 185, 257–284, (1997). [External LinkDOI].
83 Glassey, R.T. and Schaeffer, J., “The Relativistic Vlasov–Maxwell System in Two Space Dimensions: Part II”, Arch. Ration. Mech. Anal., 141, 355–374, (1998).
84 Glassey, R.T. and Schaeffer, J., “On global symmetric solutions to the relativistic Vlasov–Poisson equation in three space dimensions”, Math. Method. Appl. Sci., 24, 143–157, (2001). [External LinkDOI].
85 Glassey, R.T. and Strauss, W., “Singularity formation in a collisionless plasma could only occur at high velocities”, Arch. Ration. Mech. Anal., 92, 56–90, (1986). [External LinkDOI].
86 Glassey, R.T. and Strauss, W., “Absence of shocks in an initially dilute collisionless plasma”, Commun. Math. Phys., 113, 191–208, (1987). [External LinkDOI].
87 Glassey, R.T. and Strauss, W., “Asymptotic stability of the relativistic Maxwellian”, Publ. Res. Inst. Math. Sci., 29, 301–347, (1993). [External LinkDOI].
88 Glassey, R.T. and Strauss, W., “Asymptotic stability of the relativistic Maxwellian”, Transp. Theor. Stat. Phys., 24, 657–678, (1995). [External LinkDOI].
89 Gundlach, C., “Critical phenomena in gravitational collapse”, Adv. Theor. Math. Phys., 2, 1–49, (1998). [External Linkgr-qc/9712084].
90 Guo, Y., “The Vlasov-Maxwell-Boltzmann system near Maxwellians”, Invent. Math., 153, 593–630, (2003). [External LinkDOI].
91 Guven, J. and ÓMurchadha, N., “Bounds on 2m∕R for static spherical objects”, Phys. Rev. D, 60, 084020, (1999). [External LinkDOI].
92 Heilig, U., “On the existence of rotating stars in general relativity”, Commun. Math. Phys., 166, 457–493, (1995). [External LinkDOI].
93 Heinzle, J.M. and Uggla, C., “Dynamics of the spatially homogeneous Bianchi type I Einstein-Vlasov equations”, Class. Quantum Grav., 23, 3463–3490, (2006). [External LinkDOI].
94 Henkel, O., “Global prescribed mean curvature foliations in cosmological space-times. I”, J. Math. Phys., 43, 2439–2465, (2002). [External LinkDOI].
95 Henkel, O., “Global prescribed mean curvature foliations in cosmological space-times. II”, J. Math. Phys., 43, 2466–2485, (2002). [External LinkDOI].
96 Horst, E., “On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation (Parts I and II)”, Math. Method. Appl. Sci., 6, 262–279, (1982). [External LinkDOI].
97 Horst, E., “On the asymptotic growth of the solutions of the Vlasov–Poisson system”, Math. Method. Appl. Sci., 16, 75–86, (1993). [External LinkDOI].
98 Illner, R. and Rein, G., “Time decay of the solutions of the Vlasov–Poisson system in the plasma physical case”, Math. Method. Appl. Sci., 19, 1409–1413, (1996). [External LinkDOI].
99 Illner, R. and Shinbrot, M., “The Boltzmann equation, global existence for a rare gas in an infinite vacuum”, Commun. Math. Phys., 95, 217–226, (1984). [External LinkDOI].
100 Ipser, J.R., “Relativistic, spherically symmetric star clusters: III. Stability of compact isotropic models”, Astrophys. J., 158, 17–43, (1969). [External LinkDOI].
101 Isenberg, J.A. and Rendall, A.D., “Cosmological spacetimes not covered by a constant mean curvature slicing”, Class. Quantum Grav., 15, 3679–3688, (1998). [External LinkDOI].
102 Jiang, Z., “Global existence proof for relativistic Boltzmann equation with hard interactions”, J. Stat. Phys., 130, 535–544, (2008). [External LinkDOI].
103 Karageorgis, P. and Stalker, J., “Sharp bounds on 2m∕r for static spherical objects”, Class. Quantum Grav., 25, 195021, (2008). [External LinkDOI].
104 Klainerman, S. and Staffilani, G., “A new approach to study the Vlasov–Maxwell system”, Commun. Pure Appl. Anal., 1, 103–125, (2002).
105 Kunze, M. and Rendall, A.D., “The Vlasov–Poisson system with radiation damping”, Ann. Henri Poincare, 2, 857–886, (2001). [External LinkDOI].
106 Lee, H., “Asymptotic behaviour of the Einstein-Vlasov system with a positive cosmological constant”, Math. Proc. Camb. Phil. Soc., 137, 495–509, (2004). [External LinkDOI].
107 Lee, H., “The Einstein–Vlasov System with a Scalar Field”, Ann. Henri Poincare, 6, 697–723, (2005). [External LinkDOI], [External Linkgr-qc/0404007].
108 Lee, H., “Global existence of solutions of the Nordström-Vlasov system in two space dimensions”, Commun. Part. Diff. Eq., 30, 663–687, (2005). [External LinkDOI], [External Linkmath-ph/0312014].
109 Lee, H., “Classical solutions to the Vlasov–Poisson system in an accelerating cosmological setting”, J. Differ. Equations, 249, 1111–1130, (2010). [External LinkDOI].
110 Lemaître, G., “L’univers en expansion”, Ann. Soc. Sci. Bruxelles, Ser. A, 53, 51–85, (1933).
111 Lemou, M., Méhats, F. and Raphaël, P., “Stable self-similar blow up dynamics for the three dimensional relativistic gravitational Vlasov-Poisson system”, J. Amer. Math. Soc., 21, 1019–1063, (2008).
112 Lions, P.L., “Compactness in Boltzmann’s equation via Fourier integral operators and applications. I”, J. Math. Kyoto Univ., 34, 391–427, (1994).
113 Lions, P.L. and Perthame, B., “Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system”, Invent. Math., 105, 415–430, (1991). [External LinkDOI].
114 Makino, T., “On spherically symmetric stellar models in general relativity”, J. Math. Kyoto Univ., 38, 55–69, (1998).
115 Martín-García, J.M. and Gundlach, C., “Self-similar spherically symmetric solutions of the massless Einstein–Vlasov system”, Phys. Rev. D, 65, 084026, 1–18, (2002). [External LinkDOI], [External Linkgr-qc/0112009].
116 Moncrief, V. and Eardley, D.M., “The Global Existence Problem and Cosmic Censorship in General Relativity”, Gen. Relativ. Gravit., 13, 887–892, (1981). [External LinkDOI].
117 Mucha, P.B., “The Cauchy Problem for the Einstein-Boltzmann System”, J. Appl. Anal., 4, 129–141, (1998). [External LinkDOI].
118 Mucha, P.B., “The Cauchy Problem for the Einstein-Vlasov System”, J. Appl. Anal., 4, 111–126, (1998). [External LinkDOI].
119 Nishida, T. and Imai, K., “Global solutions to the initial value problem for the nonlinear Boltzmann equation”, Publ. Res. Inst. Math. Sci., 12, 229–239, (1976). [External LinkDOI].
120 Nordström, G., “Zur Theorie der Gravitation vom Standpunkt des Relativitätsprinzips”, Ann. Phys. (Leipzig), 42, 533–554, (1913). [External LinkDOI].
121 Noundjeu, P., “The Einstein-Vlasov-Maxwell(EVM) System with Spherical Symmetry”, Class. Quantum Grav., 22, 5365–5384, (2005). [External LinkDOI].
122 Noundjeu, P. and Noutchegueme, N., “Local existence and continuation criterion for solutions of the spherically symmetric Einstein–Vlasov-Maxwell system”, Gen. Relativ. Gravit., 36, 1373–1398, (2004). [External LinkDOI], [External Linkgr-qc/0311081].
123 Noundjeu, P., Noutchegueme, N. and Rendall, A.D., “Existence of initial data satisfying the constraints for the spherically symmetric Einstein–Vlasov–Maxwell system”, J. Math. Phys., 45, 668–676, (2004). [External LinkDOI].
124 Noutchegueme, N. and Dongo, D., “Global existence of solutions for the Einstein-Boltzmann system in a Bianchi type I spacetime for arbitrarily large initial data”, Class. Quantum Grav., 23, 2979–3003, (2006). [External LinkDOI].
125 Noutchegueme, N. and Takou, E., “Global existence of solutions for the Einstein-Boltzmann system with cosmological constant in the Robertson-Walker space-time”, Commun. Math. Sci., 4, 291–314, (2006).
126 Noutchegueme, N. and Tetsadjio, M.E., “Global solutions for the relativistic Boltzmann equation in the homogeneous case on the Minkowski space-time”, arXiv e-print, (2003). [External Linkgr-qc/0307065].
127 Nungesser, E., “Isotropization of non-diagonal Bianchi I spacetimes with collisionless matter at late times assuming small data”, Class. Quantum Grav., 27, 235025, (2010). [External LinkDOI].
128 Olabarrieta, I. and Choptuik, M.W., “Critical phenomena at the threshold of black hole formation for collisionless matter in spherical symmetry”, Phys. Rev. D, 65, 024007, 1–10, (2001). [External LinkDOI], [External Linkgr-qc/0107076].
129 Pallard, C., “On the boundedness of the momentum support of solutions to the relativistic Vlasov-Maxwell system”, Indiana Univ. Math. J., 54, 1395–1409, (2005). [External LinkDOI].
130 Pallard, C., “A pointwise bound on the electromagnetic field generated by a collisionless plasma”, Math. Mod. Meth. Appl. Sci., 15, 1371–1391, (2005). [External LinkDOI].
131 Pallard, C., “On global smooth solutions to the 3D Vlasov-Nordström system”, Ann. Inst. Henri Poincare C, 23, 85–96, (2006). [External LinkDOI].
132 Perthame, B., “Time decay, propagation of low moments and dispersive effects for kinetic equations”, Commun. Part. Diff. Eq., 21, 659–686, (1996).
133 Pfaffelmoser, K., “Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data”, J. Differ. Equations, 95, 281–303, (1992). [External LinkDOI].
134 Rein, G., “Static solutions of the spherically symmetric Vlasov–Einstein system”, Math. Proc. Camb. Phil. Soc., 115, 559–570, (1994). [External LinkDOI].
135 Rein, G., The Vlasov-Einstein system with surface symmetry, Habilitation, (Ludwig-Maximilians-Universität, München, 1995). Online version (accessed 02 March 2011):
External Linkhttp://www.math.uni-bayreuth.de/org/mathe6/staff/memb/grein/publications/publ.html.
136 Rein, G., “Cosmological solutions of the Vlasov–Einstein system with spherical, plane and hyperbolic symmetry”, Math. Proc. Camb. Phil. Soc., 119, 739–762, (1996). [External LinkDOI].
137 Rein, G., “Growth estimates for the Vlasov–Poisson system in the plasma physics case”, Math. Nachr., 191, 269–278, (1998). [External LinkDOI].
138 Rein, G., “Static shells for the Vlasov–Poisson and Vlasov–Einstein systems”, Indiana Univ. Math. J., 48, 335–346, (1999). [External LinkDOI].
139 Rein, G., “Global weak solutions of the relativistic Vlasov–Maxwell system revisited”, Commun. Math. Sci., 2, 145–148, (2004).
140 Rein, G., “On future completeness for the Einstein–Vlasov system with hyperbolic symmtery”, Math. Proc. Camb. Phil. Soc., 137, 237–244, (2004). [External LinkDOI].
141 Rein, G., “Collisionless Kinetic Equations from Astrophysics – The Vlasov–Poisson System”, in Dafermos, C.M. and Feireisl, E., eds., Handbook of Differential Equations: Evolutionary Equations, Vol. 3, pp. 383–476, (Elsevier/North-Holland, Amsterdam, 2006). [External LinkGoogle Books].
142 Rein, G. and Rendall, A.D., “Global existence of solutions of the spherically symmetric Vlasov–Einstein system with small initial data”, Commun. Math. Phys., 150, 561–583, (1992). [External LinkDOI].
143 Rein, G. and Rendall, A.D., “The Newtonian limit of the spherically symmetric Vlasov–Einstein system”, Commun. Math. Phys., 150, 585–591, (1992). [External LinkDOI].
144 Rein, G. and Rendall, A.D., “Smooth static solutions of the spherically symmetric Vlasov–Einstein system”, Ann. Inst. Henri Poincare A, 59, 383–397, (1993).
145 Rein, G. and Rendall, A.D., “Compact support of spherically symmetric equilibria in relativistic and non-relativistic galactic dynamics”, Math. Proc. Camb. Phil. Soc., 128, 363–380, (2000). [External LinkDOI].
146 Rein, G., Rendall, A.D. and Schaeffer, J., “A regularity theorem for solutions of the spherically symmetric Vlasov–Einstein system”, Commun. Math. Phys., 168, 467–478, (1995). [External LinkDOI].
147 Rein, G., Rendall, A.D. and Schaeffer, J., “Critical collapse of collisionless matter: A numerical investigation”, Phys. Rev. D, 58, 044007, 1–8, (1998). [External LinkDOI], [External Linkgr-qc/9804040].
148 Rein, G. and Rodewis, T., “Convergence of a particle-in-cell scheme for the spherically symmetric Vlasov–Einstein system”, Indiana Univ. Math. J., 52, 821–862, (2003). [External LinkDOI].
149 Rendall, A.D., “Cosmic censorship and the Vlasov equation”, Class. Quantum Grav., 9, L99–L104, (1992). [External LinkDOI].
150 Rendall, A.D., “The Newtonian limit for asymptotically flat solutions of the Einstein-Vlasov system”, Commun. Math. Phys., 163, 89–112, (1994). [External LinkDOI].
151 Rendall, A.D., “Crushing singularities in spacetimes with spherical, plane and hyperbolic symmetry”, Class. Quantum Grav., 12, 1517–1533, (1995). [External LinkDOI].
152 Rendall, A.D., “Global properties of locally spatially homogeneous cosmological models with matter”, Math. Proc. Camb. Phil. Soc., 118, 511–526, (1995). [External LinkDOI].
153 Rendall, A.D., “The initial singularity in solutions of the Einstein-Vlasov system of Bianchi type I.”, J. Math. Phys., 37, 438–451, (1996). [External LinkDOI].
154 Rendall, A.D., “Existence and non-existence results for global constant mean curvature foliations”, Nonlinear Anal., 30, 3589–3598, (1997). [External LinkDOI].
155 Rendall, A.D., “Existence of constant mean curvature foliations in spacetimes with two-dimensional local symmetry”, Commun. Math. Phys., 189, 145–164, (1997). [External LinkDOI].
156 Rendall, A.D., “An introduction to the Einstein–Vlasov system”, in Chruściel, P.T., ed., Mathematics of Gravitation, Part I: Lorentzian Geometry and Einstein Equations, Proceedings of the Workshop on Mathematical Aspects of Theories of Gravitation, held in Warsaw, February 29 – March 30, 1996, Banach Center Publications,  41, pp. 35–68, (Polish Academy of Sciences, Institute of Mathematics, Warsaw, 1997).
157 Rendall, A.D., “Cosmological Models and Centre Manifold Theory”, Gen. Relativ. Gravit., 34, 1277–1294, (2002). [External LinkDOI].
158 Rendall, A.D., Partial Differential Equations in General Relativity, Oxford Graduate Texts in Mathematics,  16, (Oxford University Press, Oxford; New York, 2008).
159 Rendall, A.D. and Tod, K.P., “Dynamics of spatially homogeneous solutions of the Einstein-Vlasov equations which are locally rotationally symmetric”, Class. Quantum Grav., 16, 1705–1726, (1999). [External LinkDOI].
160 Rendall, A.D. and Uggla, C., “Dynamics of spatially homogeneous locally rotationally symmetric solutions of the Einstein-Vlasov equations”, Class. Quantum Grav., 17, 4697–4713, (2000). [External LinkDOI].
161 Rendall, A.D. and Velazquez, J.J.L., “A class of dust-like self-similar solutions of the massless Einstein-Vlasov system”, arXiv e-print, (2010). [External LinkarXiv:1009.2596 [gr-qc]].
162 Ringström, H., “Future stability of some models of the universe - with an introduction to the Einstein-Vlasov system”, unpublished manuscript.
163 Ringström, H., “Future stability of the Einstein-non-linear scalar field system”, Invent. Math., 173, 123–208, (2008). [External LinkDOI].
164 Ringström, H., “Power law inflation”, Commun. Math. Phys., 290, 155–218, (2009). [External LinkDOI].
165 Rodnianski, I. and Speck, J., “The stability of the irrotational Euler–Einstein system with a positive cosmological constant”, arXiv e-print, (2009). [External LinkarXiv:0911.5501 [gr-qc]].
166 Schaeffer, J., “The classical limit of the relativistic Vlasov–Maxwell system”, Commun. Math. Phys., 104, 403–421, (1986). [External LinkDOI].
167 Schaeffer, J., “Discrete approximation of the Poisson–Vlasov system”, Quart. Appl. Math., 45, 59–73, (1987).
168 Schaeffer, J., “Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions”, Commun. Part. Diff. Eq., 16, 1313–1335, (1991). [External LinkDOI].
169 Schaeffer, J., “A class of counterexamples to Jeans’ theorem for the Vlasov–Einstein system”, Commun. Math. Phys., 204, 313–327, (1999). [External LinkDOI].
170 Schwarzschild, K., “Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie”, Sitzungsber. K. Preuss. Akad. Wiss., Phys.-Math. Kl., 1916(III), 424–434, (1916). [External LinkarXiv:physics/9912033].
171 Shapiro, S.L. and Teukolsky, S.A., “Relativistic stellar dynamics on the computer: II. Physical applications”, Astrophys. J., 298, 58–79, (1985). [External LinkDOI].
172 Shizuta, Y., “On the classical solutions of the Boltzmann equation”, Commun. Pure Appl. Math., 36, 705–754, (1983). [External LinkDOI].
173 Smulevici, J., “Strong cosmic censorship for T2-symmetric spacetimes with cosmological constant and matter”, Ann. Henri Poincare, 9, 1425–1453, (2008). [External LinkDOI], [External LinkarXiv:0710.1351].
174 Smulevici, J., “On the area of the symmetry orbits of cosmological spacetimes with toroidal or hyperbolic symmetry”, arXiv e-print, (2009). [External LinkarXiv:0904.0806 [gr-qc]].
175 Speck, J., “The nonlinear future-stability of the FLRW family of solutions to the Euler–Einstein system with a positive cosmological constant”, arXiv e-print, (2011). [External LinkarXiv:1102.1501 [gr-qc]].
176 Stewart, J.M., Non-equilibrium relativistic kinetic theory, Lecture Notes in Physics,  10, (Springer, Berlin; New York, 1971).
177 Strain, R.M., “Asymptotic Stability of the Relativistic Boltzmann Equation for the Soft Potentials”, Commun. Math. Phys., 300, 529–597, (2010). [External LinkDOI], [External LinkarXiv:1003.4893 [math.AP]].
178 Strain, R.M., “Global Newtonian limit for the relativistic Boltzmann equation near vacuum”, SIAM J. Math. Anal., 42, 1568–1601, (2010). [External LinkDOI].
179 Strain, R.M., “Coordinates in the relativistic Boltzmann theory”, Kinet. Relat. Mod., 4, 345–359, (2011). [External LinkDOI], [External LinkarXiv:1011.5093 [math.AP]].
180 Strain, R.M. and Guo, Y., “Stability of the relativistic Maxwellien in a collisional plasma”, Commun. Math. Phys., 251, 263–320, (2004). [External LinkDOI].
181 Synge, J.L., The Relativistic Gas, (North-Holland; Interscience, Amsterdam; New York, 1957).
182 Tchapnda, S.B., “Structure of solutions near the initial singularity for the surface-symmetric Einstein–Vlasov system”, Class. Quantum Grav., 21, 5333–5346, (2004). [External LinkDOI], [External Linkgr-qc/0407062].
183 Tchapnda, S.B., “On surface-symmetric spacetimes with collisionless and charged matter”, Ann. Henri Poincare, 8, 1221–1253, (2007). [External LinkDOI].
184 Tchapnda, S.B. and Noutchegueme, N., “The surface-symmetric Einstein–Vlasov system with cosmological constant”, Math. Proc. Camb. Phil. Soc., 18, 541–553, (2005). [External LinkDOI], [External Linkgr-qc/0304098].
185 Tchapnda, S.B. and Rendall, A.D., “Global existence and asymptotic behaviour in the future for the Einstein–Vlasov system with positive cosmological constant”, Class. Quantum Grav., 20, 3037–3049, (2003). [External LinkDOI].
186 Tegankong, D., “Global existence and future asymptotic behaviour for solutions of the Einstein–Vlasov-scalar field system with surface symmetry”, Class. Quantum Grav., 22, 2381–2391, (2005). [External LinkDOI], [External Linkgr-qc/0501062].
187 Tegankong, D., Noutchegueme, N. and Rendall, A.D., “Local existence and continuation criteria for solutions of the Einstein–Vlasov-scalar field system with surface symmetry”, J. Hyperbol. Differ. Equations, 1, 691–724, (2004). [External LinkDOI], [External Linkgr-qc/0405039].
188 Tegankong, D. and Rendall, A.D., “On the nature of initial singularities for solutions of the Einstein-Vlasov-scalar field system with surface symmetry”, Math. Proc. Camb. Phil. Soc., 141, 547–562, (2006). [External LinkDOI].
189 Ukai, S., “On the existence of global solutions of a mixed problem for the nonlinear Boltzmann equation”, Proc. Japan Acad., 50, 179–184, (1974). [External LinkDOI].
190 Villani, C., “A review of mathematical topics in collisional kinetic theory”, in Friedlander, S. and Serre, D., eds., Handbook of Mathematical Fluid Dynamics, Vol. 1, pp. 71–305, (Elsevier, Amsterdam; Boston, 2002). Online version (accessed 11 February 2011):
External Linkhttp://math.univ-lyon1.fr/homes-www/villani/surveys.html.
191 Wald, R.M., General Relativity, (University of Chicago Press, Chicago, 1984). [External LinkGoogle Books].
192 Weaver, M., “On the area of the symmetry orbits in T2 symmetric pacetimes with Vlasov matter”, Class. Quantum Grav., 21, 1079–1097, (2004). [External LinkDOI], [External Linkgr-qc/0308055].
193 Wennberg, B., “Regularity in the Boltzmann equation and the Radon transform”, Commun. Part. Diff. Eq., 19, 2057–2074, (1994). [External LinkDOI].
194 Wennberg, B., “The geometry of binary collisions and generalized Radon transforms”, Arch. Ration. Mech. Anal., 139, 291–302, (1997). [External LinkDOI].
195 Wolansky, G., “Static Solutions of the Vlasov–Einstein System”, Arch. Ration. Mech. Anal., 156, 205–230, (2001). [External LinkDOI].
196 Zel’dovich, Y.B. and Novikov, I.D., Relativistic Astrophysics,  1, (University of Chicago Press, Chicago, 1971).
197 Zel’dovich, Y.B. and Podurets, M.A., “The evolution of a system of gravitationally interacting point masses”, Sov. Astron., 9, 742–749, (1965). Translated from Astron. Zh. 42, 963–973 (1965).