References

1 Abadie, J. et al. (LIGO Scientific Collaboration), “Calibration of the LIGO Gravitational Wave Detectors in the Fifth Science Run”, Nucl. Instrum. Methods A, 624, 223–240, (2010). [External LinkDOI], [External LinkarXiv:1007.3973].
2 Abbott, B.P. et al. (LIGO Scientific Collaboration), “LIGO: the Laser Interferometer Gravitational-Wave Observatory”, Rep. Prog. Phys., 72, 076901, (2009). [External LinkDOI].
3 Accadia, T. et al. (Virgo Collaboration), “Calibration and sensitivity of the Virgo dector during its second science run”, Class. Quantum Grav., 28, 025005, (2011). [External LinkDOI], [External LinkarXiv:1009.5190].
4 Acernese, F. et al. (Virgo Collaboration), “Status of VIRGO”, Class. Quantum Grav., 25, 114045, (2008). [External LinkDOI].
5 Ajith, P. et al., “Template bank for gravitational waveforms from coalescing binary black holes: Nonspinning binaries”, Phys. Rev. D, 77, 104017, (2008). [External LinkDOI], [External LinkarXiv:0710.2335].
6 Anderson, M., Hirschmann, E.W., Lehner, L., Liebling, S.L., Motl, P.M., Neilsen, D., Palenzuela, C. and Tohline, J.E., “Simulating binary neutron stars: Dynamics and gravitational waves”, Phys. Rev. D, 77, 024006, (2008). [External LinkDOI], [External LinkADS].
7 Anderson, M., Hirschmann, E.W., Liebling, S.L. and Neilsen, D., “Relativistic MHD with adaptive mesh refinement”, Class. Quantum Grav., 23, 6503–6524, (2006). [External LinkDOI].
8 Ansorg, M., “A multi-domain spectral method for initial data of arbitrary binaries in general relativity”, Class. Quantum Grav., 24, S1–S14, (2007). [External LinkDOI], [External LinkADS].
9 Asada, H., “Formulation for the internal motion of quasiequilibrium configurations in general relativity”, Phys. Rev. D, 57, 7292–7298, (1998). [External LinkDOI].
10 Ashtekar, A. and Krishnan, B., “Isolated and Dynamical Horizons and Their Applications”, Living Rev. Relativity, 7, lrr-2004-10, (2004). URL (accessed 20 December 2010):
http://www.livingreviews.org/lrr-2004-10.
11 Baiotti, L., Damour, T., Giacomazzo, B., Nagar, A. and Rezzolla, L., “Analytic modelling of tidal effects in the relativistic inspiral of binary neutron stars”, arXiv, e-print, (2010). [External LinkarXiv:1009.0521 [gr-qc]].
12 Baiotti, L., Damour, T., Giacomazzo, B., Nagar, A. and Rezzolla, L., “Accurate numerical simulations of inspiralling binary neutron stars and their comparison with effective-one-body analytical models”, arXiv, e-print, (2011). [External LinkarXiv:1103.3874 [gr-qc]].
13 Baiotti, L., Giacomazzo, B. and Rezzolla, L., “Accurate evolutions of inspiraling neutron-star binaries: Prompt and delayed collapse to a black hole”, Phys. Rev. D, 78, 084033, (2008). [External LinkDOI], [External LinkarXiv:0804.0594].
14 Baiotti, L., Shibata, M. and Yamamoto, T., “Binary neutron-star mergers with Whisly and SACRA: First quantitative comparison of results from independent general-relativistic hydrodynamics codes”, Phys. Rev. D, 82, 064015, (2010). [External LinkDOI].
15 Baker, J.G., Centrella, J., Choi, D.-I., Koppitz, M. and van Meter, J., “Gravitational-Wave Extraction from an Inspiraling Configuration of Merging Black Holes”, Phys. Rev. Lett., 96, 111102, (2006). [External LinkDOI].
16 Bardeen, J.M., Press, W.H. and Teukolsky, S.A., “Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation”, Astrophys. J., 178, 347–369, (1972). [External LinkDOI], [External LinkADS].
17 Baumgarte, T.W., Ó Murchadha, N. and Pfeiffer, H.P., “Einstein constraints: uniqueness and nonuniqueness in the conformal thin sandwich approach”, Phys. Rev. D, 75, 044009, (2007). [External LinkDOI].
18 Baumgarte, T.W. and Shapiro, S.L., “Numerical integration of Einstein’s field equation”, Phys. Rev. D, 59, 024007, (1998). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9810065].
19 Baumgarte, T.W., Skoge, M.L. and Shapiro, S.L., “Black hole-neutron star binaries in general relativity: quasiequilibrium formulation”, Phys. Rev. D, 70, 064040, (2004). [External LinkDOI].
20 Belczynski, K., Taam, R.E., Kalogera, V., Rasio, F.A. and Bulik, T., “On the rarity of double black hole binaries: consequences for gravitational wave detection”, Astrophys. J., 662, 504, (2007). [External LinkDOI].
21 Belczynski, K., Taam, R.E., Rantsiou, E. and van der Sluys, M., “Black hole spin evolution: implications on short-hard gamma-ray bursts and gravitational wave detection”, Astrophys. J., 682, 474, (2008). [External LinkDOI].
22 Benz, W., Bowers, R.L., Cameron, A.G.W. and Press, W.H., “Dynamic mass exchange in doubly degenerate binaries”, Astrophys. J., 348, 647, (1990). [External LinkDOI].
23 Berger, M. and Oliger, J., “Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations”, J. Comput. Phys., 53, 484, (1984). [External LinkDOI].
24 Bildsten, L. and Cutler, C., “Tidal interactions of inspiraling compact binaries”, Astrophys. J., 400, 175–180, (1992). [External LinkDOI].
25 Blanchet, L., “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries”, Living Rev. Relativity, 9, lrr-2006-4, (2006). [External Linkgr-qc/0202016]. URL (accessed 20 December 2010):
http://www.livingreviews.org/lrr-2006-4.
26 Bonazzola, S., Gourgoulhon, E. and Marck, J.-A., “Relativistic formalism to compute quasiequilibrium configurations of nonsynchronized neutron star binaries”, Phys. Rev. D, 56, 7740–7749, (1997). [External LinkDOI].
27 Bonazzola, S., Gourgoulhon, E. and Marck, J.-A., “Numerical approach for high presicion 3D relativistic star models”, Phys. Rev. D, 58, 104020, (1998). [External LinkDOI], [External LinkADS].
28 Bonazzola, S., Gourgoulhon, E. and Marck, J.-A., “Spectral methods in general astrophysics”, J. Comput. Appl. Math., 109, 433–473, (1999). [External LinkDOI], [External LinkADS].
29 Bowen, J.M. and York Jr, J.W., “Time-asymmetric initial data for black holes and black-hole collisions”, Phys. Rev. D, 21, 2047–2056, (1980). [External LinkDOI].
30 Boyle, M., Brown, D.A., Kidder, L.E., Mroué, A.H., Pfeiffer, H.P., Scheel, M.A., Cook, G.B. and Teukolsky, S.A., “High-accuracy comparison of numerical relativity simulations with post-Newtonian expansions”, Phys. Rev. D, 76, 124038, (2007). [External LinkDOI], [External LinkarXiv:0710.0158].
31 Boyle, M., Buonanno, A., Kidder, L.E., Mroué, A.H., Pan, Y., Pfeiffer, H.P. and Scheel, M.A., “High-accuracy numerical simulation of black-hole binaries: computation of gravitational-wave energy flux and comparisons with post-Newtonian approximants”, Phys. Rev. D, 78, 104020, (2008). [External LinkDOI].
32 Brandt, S. and Brügmann, B., “A simple construction of initial data for multiple black holes”, Phys. Rev. Lett., 78, 3606–3609, (1997). [External LinkDOI].
33 Brill, D.R. and Lindquist, R.W., “Interaction Energy in Geometrostatics”, Phys. Rev., 131, 471–476, (1963). [External LinkDOI], [External LinkADS].
34 Brown, D., Sarbach, O., Schnetter, E., Tiglio, M., Diener, P., Hawke, I. and Pollney, D., “Excision without excision”, Phys. Rev. D, 76, 081503, (2007). [External LinkDOI].
35 Brügmann, B., González, J.A., Hannam, M., Husa, S., Sperhake, U. and Tichy, W., “Calibration of moving puncture simulations”, Phys. Rev. D, 77, 024027, (2008).
36 Buonanno, A., Cook, G.B. and Pretorius, F., “Inspiral, merger, and ring-down of equal-mass black-hole binaries”, Phys. Rev. D, 75, 124018, (2007). [External LinkDOI].
37 Buonanno, A. and Damour, T., “Effective one-body approach to general relativistic two-body dynamics”, Phys. Rev. D, 59, 084006, (1999). [External LinkDOI], [External Linkgr-qc/9811091].
38 Cameron, A.G.W. and Iben Jr, I., “On the behavior of double degenerate binaries associated with Type I supernovae”, Astrophys. J., 305, 228, (1986). [External LinkDOI].
39 Campanelli, M., Lousto, C.O., Marronetti, P. and Zlochower, Y., “Accurate evolutions of orbiting black-hole binaries without excision”, Phys. Rev. Lett., 96, 111101, (2006). [External LinkDOI], [External LinkADS].
40 Caudill, M., Cook, G.B., Grigsby, J.D. and Pfeiffer, H.P., “Circular orbits and spin in black-hole initial data”, Phys. Rev. D, 74, 064011, (2006). [External LinkDOI], [External LinkADS].
41 Chawla, S., Anderson, M., Besselman, M., Lehner, L., Liebling, S.L., Motl, P.M. and Neilsen, D., “Mergers of Magnetized Neutron Stars with Spinning Black Holes: Disruption, Accretion and Fallback”, Phys. Rev. Lett., 105, 111101, (2010). [External LinkDOI].
42 Christodoulou, D., “Reversible and irreversible transformations in black-hole physics”, Phys. Rev. Lett., 25, 1596, (1970). [External LinkDOI].
43 Clark, J.P.A. and Eardley, D.M., “Evolution of close neutron star binaries”, Astrophys. J., 215, 311–322, (1977). [External LinkDOI].
44 Cook, G.B., “Initial Data for Numerical Relativity”, Living Rev. Relativity, 3, lrr-2000-5, (2000). URL (accessed 20 December 2010):
http://www.livingreviews.org/lrr-2000-5.
45 Cook, G.B., “Corotating and irrotational binary black holes in quasicircular orbits”, Phys. Rev. D, 65, 084003, (2002). [External LinkDOI], [External LinkADS].
46 Cook, G.B. and Baumgarte, T.W., “Excision boundary conditions for the conformal metric”, Phys. Rev. D, 78, 104016, (2008). [External LinkDOI].
47 Cook, G.B. and Pfeiffer, H.P., “Excision boundary conditions for black hole initial data”, Phys. Rev. D, 70, 104016, (2004). [External LinkDOI], [External LinkADS].
48 Cook, G.B. and Whiting, B.F., “Approximate Killing vectors on S2”, Phys. Rev. D, 76, 041501, (2007). [External LinkDOI], [External LinkarXiv:0706.0199].
49 Cutler, C. and Flanagan, É.É., “Gravitational waves from merging compact binaries: How accurately can one extract the binary’s parameters from the inspiral waveform?”, Phys. Rev. D, 49, 2658–2697, (1994). [External LinkDOI], [External Linkgr-qc/9402014].
50 Damour, T. and Nagar, A., “Effective one body description of tidal effects in inspiralling compact binaries”, Phys. Rev. D, 81, 084016, (2010). [External LinkDOI].
51 Demorest, P.B., Pennucci, T., Ransom, S.M., Roberts, M.S.E. and Hessels, J.W.T., “Shapiro delay measurement of a two solar mass neutron star”, Nature, 467, 1081, (2010). [External LinkDOI].
52 Dimmelmeier, H., Novak, J., Font, J.A., Ibáñez, J.M. and Müller, E., “Combining spectral and shock-capturing methods: A new numerical approach for 3D relativistic core collapse simulations”, Phys. Rev. D, 71, 064023, (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0407174].
53 Dimmelmeier, H., Ott, C.D., Janka, H.-T., Marek, A. and Müller, E., “Generic gravitational-wave signals from the collapse of rotating stellar cores”, Phys. Rev. Lett., 98, 251101, (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0702305].
54 Dimmelmeier, H., Ott, C.D., Marek, A. and Janka, H.-T., “Gravitational wave burst signal from the core collapse of rotating stars”, Phys. Rev. D, 78, 064056, (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0806.4953].
55 Dreyer, O., Krishnan, B., Shoemaker, D. and Schnetter, E., “Introduction to isolated horizon in numerical relativity”, Phys. Rev. D, 67, 024018, (2003). [External LinkDOI].
56 Duez, M.D., “Numerical relativity confronts compact neutron star binaries: a review and status report”, Class. Quantum Grav., 27, 114002, (2010). [External LinkDOI].
57 Duez, M.D., Foucart, F., Kidder, L.E., Ott, C.D. and Teukolsky, S.A., “Equation of state effects in black hole-neutron star mergers”, Class. Quantum Grav., 27, 114106, (2010). [External LinkDOI].
58 Duez, M.D., Foucart, F., Kidder, L.E., Pfeiffer, H.P., Scheel, M.A. and Teukolsky, S.A., “Evolving black hole-neutron star binaries in general relativity using pseudospectral and finite difference methods”, Phys. Rev. D, 78, 104015, (2008). [External LinkDOI].
59 Duez, M.D., Marronetti, P., Shapiro, S.L. and Baumgarte, T.W., “Hydrodynamic simulations in 3+1 general relativity”, Phys. Rev. D, 67, 024004, (2003). [External LinkDOI].
60 Eggleton, P.P., “Approximations to the radii of Roche lobes”, Astrophys. J., 268, 368–369, (1983). [External LinkDOI].
61 Etienne, Z.B., Faber, J.A., Liu, Y.T., Shapiro, S.L. and Baumgarte, T.W., “Filling the holes: evolving excised binary black hole initial data with puncture techniques”, Phys. Rev. D, 76, 101503, (2007). [External LinkDOI].
62 Etienne, Z.B., Faber, J.A., Liu, Y.T., Shapiro, S.L., Taniguchi, K. and Baumgarte, T.W., “Fully general relativistic simulations of black hole-neutron star mergers”, Phys. Rev. D, 77, 084002, (2008). [External LinkDOI], [External LinkarXiv:0712.2460].
63 Etienne, Z.B., Liu, Y.T., Shapiro, S.L. and Baumgarte, T.W., “Relativistic simulations of black hole-neutron star mergers: effects of black hole spin”, Phys. Rev. D, 79, 044024, (2009). [External LinkDOI].
64 Faber, J.A., Baumgarte, T.W., Shapiro, S.L. and Taniguchi, K., “General Relativistic Binary Merger Simulations and Short Gamma-Ray Bursts”, Astrophys. J. Lett., 641, L93–L96, (2006). [External LinkDOI].
65 Faber, J.A., Baumgarte, T.W., Shapiro, S.L., Taniguchi, K. and Rasio, F., “Dynamical evolution of black hole-neutron star binaries in general relativity: Simulations of tidal disruption”, Phys. Rev. D, 73, 024012, (2006). [External LinkDOI], [External LinkADS].
66 Faber, J.A. and Rasio, F., “Post-Newtonian SPH calculations of binary neutron star coalescence: Method and first results”, Phys. Rev. D, 62, 064012, (2000). [External LinkDOI].
67 Faber, J.A. and Rasio, F., “Post-Newtonian SPH calculations of binary neutron star coalescence. III. Irrotational systems and gravitational wave spectra”, Phys. Rev. D, 65, 084042, (2002). [External LinkDOI].
68 Faber, J.A., Rasio, F. and Manor, J.B., “Post-Newtonian smoothed particle hydrodynamics calculations of binary neutron star coalescence. II. Binary mass ratio, equation of state, and spin dependence”, Phys. Rev. D, 63, 044012, (2001). [External LinkDOI].
69 Ferrari, V., Gualtieri, L. and Pannarale, F., “A semi-relativistic model for tidal interactions in BH-NS coalescing binaries”, Class. Quantum Grav., 26, 125004, (2009). [External LinkDOI].
70 Ferrari, V., Gualtieri, L. and Pannarale, F., “Neutron star tidal disruption in mixed binaries: The imprint of the equation of state”, Phys. Rev. D, 81, 064026, (2010). [External LinkDOI].
71 Fishbone, L.G., “The Relativistic Roche Problem. I. Equilibrium Theory for a Body in Equatorial, Circular Orbit around a Kerr Black Hole”, Astrophys. J., 185, 43, (1973). [External LinkDOI].
72 Flanagan, É.É. and Hinderer, T., “Constraining neutron star tidal Love numbers with gravitational wave detectors”, Phys. Rev. D, 77, 021502, (2008). [External LinkDOI].
73 Font, J.A., “Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity”, Living Rev. Relativity, 11, lrr-2008-7, (2008). URL (accessed 20 December 2010):
http://www.livingreviews.org/lrr-2008-7.
74 Foucart, F., Duez, M.D., Kidder, L.E. and Teukolsky, S.A., “Black hole-neutron star mergers: Effects of the orientation of the black hole spin”, Phys. Rev. D, 83, 024005, (2010). [External LinkDOI].
75 Foucart, F., Kidder, L.E., Pfeiffer, H.P. and Teukolsky, S.A., “Initial data for black hole-neutron star binaries: a flexible, high-accuracy spectral method”, Phys. Rev. D, 77, 124051, (2008). [External LinkDOI].
76 Friedman, J.L., Uryū, K. and Shibata, M., “Thermodynamics of binary black holes and neutron stars”, Phys. Rev. D, 65, 064035, (2002). [External LinkDOI].
77 Garfinkle, D., “Harmonic coordinate method for simulating generic singularities”, Phys. Rev. D, 65, 044029, (2002). [External LinkDOI], [External LinkADS].
78 Gourgoulhon, E., Grandclément, P. and Bonazzola, S., “Binary black holes in circular orbits. I. A global spacetime approach”, Phys. Rev. D, 65, 044020, (2002). [External LinkDOI], [External LinkADS].
79 Gourgoulhon, E., Grandclément, P., Marck, J.-A. and Novak, J., “LORENE: Langage Objet pour la RElativité NumériquE”, project homepage, L’Observatoire de Paris. URL (accessed 20 December 2010):
External Linkhttp://www.lorene.obspm.fr.
80 Gourgoulhon, E., Grandclément, P., Taniguchi, K., Marck, J.-A. and Bonazzola, S., “Quasiequilibrium sequences of synchronized and irrotational binary neutron stars in general relativity. Methods and tests”, Phys. Rev. D, 63, 064029, (2001). [External LinkDOI], [External LinkADS].
81 Gourgoulhon, E. and Jaramillo, J.L., “A 3+1 perspective on null hypersurfaces and isolated horizons”, Phys. Rep., 423, 159–294, (2006). [External LinkDOI], [External LinkADS].
82 Grandclément, P., “Accurate and realistic initial data for black hole-neutron star binaries”, Phys. Rev. D, 74, 124002, (2006). [External LinkDOI], [External LinkADS].
83 Grandclément, P., “Erratum: Accurate and realistic initial data for black hole-neutron star binaries [Phys. Rev. D 74, 124002 (2006)]”, Phys. Rev. D, 75, 129903(E), (2007). [External LinkDOI].
84 Grandclément, P., Bonazzola, S., Gourgoulhon, E. and Marck, J.-A., “A multidomain spectral method for scalar and vectorial poisson equations with noncompact sources”, J. Comput. Phys., 170, 231–260, (2001). [External LinkDOI], [External LinkADS].
85 Grandclément, P. and Novak, J., “Spectral Methods for Numerical Relativity”, Living Rev. Relativity, 12, lrr-2009-1, (2009). URL (accessed 20 December 2010):
http://www.livingreviews.org/lrr-2009-1.
86 Gundlach, C., Calabrese, G., Hinder, I. and Martín-García, J.M., “Constraint damping in the Z4 formulation and harmonic gauge”, Class. Quantum Grav., 22, 3767–3773, (2005). [External LinkDOI], [External LinkADS].
87 Haensel, P. and Potekhin, A.Y., “Analytical representations of unified equations of state of neutron-star matter”, Astron. Astrophys., 428, 191, (2004). [External LinkDOI].
88 Hannam, M., Husa, S., Brügmann, B. and Ó Murchadha, N., “Geometry and Regularity of Moving Punctures”, Phys. Rev. Lett., 99, 241102, (2007). [External LinkDOI].
89 Harten, A., Lax, P.D. and van Leer, B., “On upstream differencing and Godunov-type schemes for hyperbolic conservation laws”, SIAM Rev., 25, 35–61, (1983). [External LinkDOI].
90 Hawley, J.F., “Three-dimensional simulations of black hole tori”, Astrophys. J., 381, 496–507, (1991). [External LinkDOI], [External LinkADS].
91 Hild, S., Chelkowski, S. and Freise, A., “Pushing towards the ET sensitivity using ‘conventional’ technology”, arXiv, e-print, (2008). [External LinkarXiv:0810.0604 [gr-qc]].
92 Hild, S. et al., “Sensitivity Studies for Third-Generation Gravitational Wave Observatories”, arXiv, e-print, (2010). [External LinkarXiv:1012.0908 [gr-qc]].
93 Imbirba, B., Baker, J., Choi, D.-I., Centrella, J., Fiske, D.F., Brown, D. and van Meter, J.R., “Evolving a puncture black hole with fixed mesh refinement”, Phys. Rev. D, 70, 124025, (2004). [External LinkDOI].
94 Ishii, M., Shibata, M. and Mino, Y., “Black hole tidal problem in the Fermi normal coordniates”, Phys. Rev. D, 71, 044017, (2005). [External LinkDOI].
95 Janka, H.-T., Eberl, T., Ruffert, M. and Fryer, C.L., “Black Hole-Neutron Star Mergers as Central Engines of Gamma-Ray Bursts”, Astrophys. J. Lett., 527, L39, (1999). [External LinkDOI].
96 Jaranowski, P. and Królak, A., “Gravitational-Wave Data Analysis. Formalism and Sample Applications: The Gaussian Case”, Living Rev. Relativity, 8, lrr-2005-3, (2005). URL (accessed 20 December 2010):
http://www.livingreviews.org/lrr-2005-3.
97 Kalogera, V., Belczynski, K., Kim, C., O’Shaughnessy, R. and Willems, B., “Formation of double compact objects”, Phys. Rep., 442, 75, (2007). [External LinkDOI].
98 Kalogera, V. et al., “The Cosmic Coalescence Rates for Double Neutron Star Binaries”, Astrophys. J. Lett., 601, L179–L182, (2004). [External LinkDOI].
99 Kaspi, V.M., Roberts, M.S.E. and Harding, A.K., “Isolated neutron stars”, in Lewin, W.H.G. and van der Klis, M., eds., Compact Stellar X-ray Sources, Cambridge Astrophysics Series,  39, pp. 279–340, (Cambridge University Press, Cambridge, 2006). [External LinkGoogle Books].
100 Kidder, L.E., “Coalescing binary systems of compact objects to (post)52-Newtonian order. V. Spin effects”, Phys. Rev. D, 52, 821–847, (1995). [External LinkDOI], [External LinkADS].
101 Kidder, L.E., “Using full information when computing modes of post-Newtonian waveforms from inspiraling compact binaries in circular orbit”, Phys. Rev. D, 77, 044016, (2008). [External LinkDOI], [External LinkarXiv:0710.0614].
102 Kidder, L.E., Will, C.M. and Wiseman, A.G., “Spin effects in the inspiral of coalescing compact binaries”, Phys. Rev. D, 47, R4183–R4187, (1993). [External LinkDOI].
103 Kiuchi, K., Shibata, M., Montero, P.J. and Font, J.A., “Gravitational waves from the Papaloizou-Pringle instability in black hole-torus systems”, Phys. Rev. Lett., 106, 251102, (2011). [External LinkDOI], [External LinkarXiv:1105.5035].
104 Kochanek, C.S., “Coalescing Binary Neutron Stars”, Astrophys. J., 398, 234–247, (1992). [External LinkDOI].
105 Kurganov, A. and Tadmor, E., “New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations”, J. Comput. Phys., 160, 241–282, (2000). [External LinkDOI].
106 Kyutoku, K., Shibata, M. and Taniguchi, K., “Quasiequilibrium states of black hole-neutron star binaries in moving-puncture framework”, Phys. Rev. D, 79, 124018, (2009). [External LinkDOI].
107 Kyutoku, K., Shibata, M. and Taniguchi, K., “Gravitational waves from nonspinning black hole-neutron star binaries: Dependence on equations of state”, Phys. Rev. D, 82, 044049, (2010). [External LinkDOI], [External Link1008.1460 [astro-ph.HE]].
108 Kyutoku, K., Shibata, M. and Taniguchi, K., “Erratum: Gravitational waves from nonspinning black hole-neutron star binaries: Dependence on equations of state [Phys. Rev. D 82, 044049 (2010)]”, arXiv, e-print, (2011). [External LinkarXiv:1008.1460v3 [astro-ph.HE]].
109 Kyutoku, K., Shibata, M. and Taniguchi, K., “Gravitational waves from spinning black hole-neutron star binaries: Dependence on black hole spins and on neutron star equations of state”, Phys. Rev. D, accepted, (2011). [External LinkarXiv:1108.1189].
110 Lackey, B.D., Kyutoku, K., Shibata, M. and Brady, P.R. abd Friedman, J.L., “Extracting equation of state parameters from black hole-neutron star mergers. I. Nonspinning black holes”, Phys. Rev. D, in preparation, (2011).
111 Lai, D., Rasio, F.A. and Shapiro, S.L., “Ellipsoidal figures of equilibrium: compressible models”, Astrophys. J. Suppl. Ser., 88, 205–252, (1993). [External LinkDOI].
112 Lai, D., Rasio, F.A. and Shapiro, S.L., “Equilibrium, stability, and orbital evolution of close binary systems”, Astrophys. J., 423, 344, (1994). [External LinkDOI].
113 Lai, D., Rasio, F.A. and Shapiro, S.L., “Hydrodynamic instability and coalescence of binary neutron stars”, Astrophys. J., 420, 811, (1994). [External LinkDOI].
114 Lai, D. and Wiseman, A.G., “Innermost stable circular orbit of inspiraling neutron-star binaries: Tidal effects, post-Newtonian effects, and the neutron-star equation of state”, Phys. Rev. D, 54, 3958, (1996). [External LinkDOI].
115 Lattimer, J.M. and Prakash, M., “Neutron star structure and the equation of state”, Astrophys. J., 550, 426–442, (2001). [External LinkDOI], [External LinkADS].
116 Lattimer, J.M. and Prakash, M., “The Physics of Neutron Stars”, Science, 304, 536–542, (2004). [External LinkDOI], [External Linkastro-ph/0405262].
117 Lattimer, J.M. and Prakash, M., “Neutron star observations: Prognosis for equation of state constraints”, Phys. Rep., 442, 109–165, (2007). [External LinkDOI], [External Linkastro-ph/0612440].
118 Lattimer, J.M. and Schramm, D.N., “Black-hole-neutron-star collisions”, Astrophys. J. Lett., 192, L145, (1974). [External LinkDOI].
119 Lattimer, J.M. and Swesty, D.F., “A generalized equation of state for hot, dense matter”, Nucl. Phys. A, 535, 331–376, (1991). [External LinkDOI].
120 “LCGT: Large-scale Cryogenic Gravitational wave Telescope”, project homepage, ICRR. URL (accessed 20 December 2010):
External Linkhttp://gw.icrr.u-tokyo.ac.jp/lcgt/.
121 Lee, W.H., “Newtonian hydrodynamics of the coalescence of black holes with neutron stars – III. Irrotational binaries with a stiff equation of state”, Mon. Not. R. Astron. Soc., 318, 606, (2000). [External LinkDOI].
122 Lee, W.H., “Newtonian hydrodynamics of the coalescence of black holes with neutron stars – IV. Irrotational binaries with a soft equation of state”, Mon. Not. R. Astron. Soc., 328, 583, (2001). [External LinkDOI].
123 Lee, W.H. and Kluźniak, W., “Newtonian hydrodynamics of the coalescence of black holes with neutron stars – II. Tidally locked binaries with a soft equation of state”, Mon. Not. R. Astron. Soc., 308, 780, (1999). [External LinkDOI].
124 Lee, W.H. and Kluźniak, W., “Newtonian Hydrodynamics of the Coalescence of Black Holes with Neutron Stars. I. Tidally Locked Binaries with a Stiff Equation of State”, Astrophys. J. Lett., 526, L178, (1999). [External LinkDOI].
125 Lee, W.H., Ramirez-Ruiz, E. and van de Ven, G., “Short gamma-ray bursts from dynamically assembled compact binaries in globular clusters: Pathways, rates, hydrodynamics, and cosmological setting”, Astrophys. J., 720, 953, (2010). [External LinkDOI].
126 “LIGO Laboratory Home Page”, project homepage, California Institute of Technology. URL (accessed 20 December 2010):
External Linkhttp://www.ligo.caltech.edu/.
127 Lindblom, L., “Determining the nuclear equation of state from neutron-star masses and radii”, Astrophys. J., 398, 569, (1992). [External LinkDOI].
128 Lindblom, L., “Spectral representations of neutron-star equations of state”, Phys. Rev. D, 82, 103011, (2010). [External LinkDOI].
129 Lindblom, L., Scheel, M.A., Kidder, L.E., Owen, R. and Rinne, O., “A new generalized harmonic evolution system”, Class. Quantum Grav., 23, S447–S462, (2006). [External LinkDOI], [External LinkADS].
130 Liu, Y.T., Etienne, Z.B. and Shapiro, S.L., “Evolution of near-extremal-spin black holes using the moving puncture technique”, Phys. Rev. D, 80, 121503(R), (2010).
131 Lorimer, D.R., “Binary and Millisecond Pulsars”, Living Rev. Relativity, 11, lrr-2008-8, (2008). URL (accessed 20 December 2010):
http://www.livingreviews.org/lrr-2008-8.
132 Lovelace, G., Owen, R., Pfeiffer, H.P. and Chu, T., “Binary-black-hole initial data with nearly extremal spins”, Phys. Rev. D, 78, 084017, (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0805.4192].
133 Lovelace, G., Scheel, M.A. and Szilágyi, B., “Simulating merging binary black holes with nearly extremal spins”, Phys. Rev. D, 83, 024010, (2010). [External LinkDOI], [External Link1010.2777 [gr-qc]].
134 Manasse, F.K. and Misner, C.W., “Fermi Normal Coordinates and Some Basic Concepts in Differential Geometry”, J. Math. Phys., 4, 735–745, (1963). [External LinkDOI].
135 Marck, J.-A., “Solution to the Equations of Parallel Transport in Kerr Geometry; Tidal Tensor”, Proc. R. Soc. London, Ser. A, 385, 431, (1983). [External LinkDOI].
136 Marronetti, P., Tichy, W., Brügmann, B., González, J.A. and Sperhake, U., “High-spin binary black hole mergers”, Phys. Rev. D, 77, 064010, (2008). [External LinkDOI], [External LinkarXiv:arXiv:0709.2160].
137 Mashhoon, B., “On tidal phenomena in a strong gravitational field”, Astrophys. J., 197, 705, (1975). [External LinkDOI].
138 Miller, M., “General Relativistic Initial Data for the Binary Black Hole / Neutron Star System in Quasicircular Orbit”, arXiv, e-print, (2001). [External LinkarXiv:gr-qc/0106017].
139 Nakamura, T. and Oohara, K., “Gravitational radiation emitted by N particles in circular orbits”, Phys. Lett. A, 98, 483, (1983). [External LinkDOI].
140 Nakamura, T., Oohara, K. and Kojima, Y., “General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes”, Prog. Theor. Phys. Suppl., 90, 1–218, (1987). [External LinkDOI].
141 Nakamura, T. and Sasaki, M., “Is collapse of a deformed star always effectual for gravitational radiation?”, Phys. Lett. B, 106, 69–72, (1981). [External LinkDOI].
142 Nakar, E., “Short-hard gamma-ray bursts”, Phys. Rep., 442, 166, (2007). [External LinkDOI].
143 Narayan, R., Paczyński, B. and Piran, T., “Gamma-Ray Bursts as the Death Throes of Massive Binary Stars”, Astrophys. J. Lett., 395, L83–L86, (1992). [External LinkDOI], [External LinkADS].
144 Narayan, R., Piran, T. and Shemi, A., “Neutron star and black hole binaries in the Galaxy”, Astrophys. J. Lett., 379, L17–L20, (1991). [External LinkDOI], [External LinkADS].
145 Ó Murchadha, N. and York Jr, J.W., “Initial-value problem of general relativity. I. General formulation and physical interpretation”, Phys. Rev. D, 10, 428–436, (1974).
146 Oechslin, R., Janka, H.-T. and Marek, A., “Relativistic neutron star merger simulations with non-zero temperature equations of state. I. Variation of binary parameters and equation of state”, Astron. Astrophys., 467, 395–409, (2007). [External LinkDOI].
147 O’Shaughnessy, R., Kalogera, V. and Belczynski, K., “Binary compact object coalescence rates: the role of elliptical galaxies”, Astrophys. J., 715, 1453, (2010). [External LinkDOI].
148 O’Shaughnessy, R., Kim, C., Kalogera, V. and Belczynski, K., “Constraining Population Synthesis Models via Empirical Binary Compact Object Merger and Supernova Rates”, Astrophys. J., 672, 479–488, (2008). [External LinkDOI].
149 Ott, C.D. et al., “Dynamics and Gravitational Wave Signature of Collapsar Formation”, Phys. Rev. Lett., 106, 161103, (2011). [External LinkDOI], [External LinkarXiv:1012.1853 [astro-ph.HE]].
150 Özel, F. and Psaltis, D., “Reconstructing the neutron-star equation of state from astrophysical measurements”, Phys. Rev. D, 80, 103003, (2009). [External LinkDOI], [External LinkarXiv:0905.1959].
151 Paczyński, B., “Evolutionary process in close binary systems”, Annu. Rev. Astron. Astrophys., 9, 183, (1971). [External LinkDOI].
152 Paczyński, B. and Wiita, P.J., “Thick accretion disks and supercritical luminosities”, Astron. Astrophys., 88, 23–31, (1980). [External LinkADS].
153 Pannarale, F., Rezzolla, L., Ohme, F. and Read, J.S., “Will black hole-neutron star binary inspirals tell us about the neutron star equation of state?”, arXiv, e-print, (2011). [External LinkarXiv:1103.3526].
154 Pannarale, F., Tonita, A. and Rezzolla, L., “Black hole-neutron star mergers and short GRBs: a relativistic toy model to estimate the mass of the torus”, Astrophys. J., 95, (2010). [External LinkDOI], [External Link1007.4160 [astro-ph.HE]].
155 Peters, P.C., “Gravitational Radiation and the Motion of Two Point Masses”, Phys. Rev., 136, B1224–B1232, (1964). [External LinkDOI].
156 Peters, P.C. and Mathews, J., “Gravitational radiation from point masses in a Keplerian orbit”, Phys. Rev., 131, 435–440, (1963). [External LinkDOI].
157 Pfeiffer, H.P., Brown, D.A., Kidder, L.E., Lindblom, L., Lovelace, G. and Scheel, M.A., “Reducing orbital eccentricity in binary black hole simulations”, Class. Quantum Grav., 24, S59–S81, (2007). [External LinkDOI], [External LinkADS].
158 Pfeiffer, H.P., Teukolsky, S.A. and Cook, G.B., “Quasicircular orbits for spinning binary black holes”, Phys. Rev. D, 62, 104018, (2000). [External LinkDOI], [External LinkADS], [External Linkgr-qc/0006084].
159 Pfeiffer, H.P. and York Jr, J.W., “Uniqueness and Nonuniqueness in the Einstein Constraints”, Phys. Rev. Lett., 95, 091101, (2005). [External LinkDOI].
160 Phinney, E.S., “The rate of neutron star binary mergers in the universe: Minimal predictions for gravity wave detectors”, Astrophys. J. Lett., 380, L17–L21, (1991). [External LinkDOI].
161 Piran, T., “The physics of gamma-ray bursts”, Rev. Mod. Phys., 76, 1143, (2005). [External LinkDOI].
162 Pretorius, F., “Evolution of Binary Black-Hole Spacetimes”, Phys. Rev. Lett., 95, 121101, (2005). [External LinkDOI], [External LinkADS].
163 Pretorius, F., “Simulation of binary black hole spacetimes with a harmonic evolution scheme”, Class. Quantum Grav., 23, S529, (2006). [External LinkDOI].
164 Rantisou, E., Kobayashi, S., Rasio, F.A. and Laguna, P., “Mergers of Black Hole-Neutron Star Binaries. I. Methods and First Results”, Astrophys. J., 680, 1326, (2008). [External LinkDOI].
165 Rasio, F.A. and Shapiro, S.L., “Hydrodynamic evolution of coalescing binary neutron stars”, Astrophys. J., 401, 226, (1992). [External LinkDOI].
166 Rasio, F.A. and Shapiro, S.L., “Hydrodynamics of binary coalesce: Polytropes with stiff equations of state”, Astrophys. J., 432, 242, (1994). [External LinkDOI].
167 Read, J.S., Lackey, B.D., Owen, B.J. and Friedman, J.L., “Constraints on a phenomenologically parametrized neutron-star equation of state”, Phys. Rev. D, 79, 124032, (2009). [External LinkDOI].
168 Read, J.S., Markakis, C., Shibata, M., Uryū, K., Creighton, J.D.E. and Friedman, J.L., “Measuring the neutron star equation of state with gravitational wave observations”, Phys. Rev. D, 79, 124033, (2009). [External LinkDOI].
169 Rosswog, S., “Mergers of Neutron Star-Black Hole Binaries with Small Mass Ratios: Nucleosynthesis, Gamma-Ray Bursts, and Electromagnetic Transients”, Astrophys. J., 634, 1202, (2005). [External LinkDOI].
170 Rosswog, S. and Liebendörfer, M., “High-resolution calculations of merging neutron stars – II. Neutrino emission”, Mon. Not. R. Astron. Soc., 342, 673, (2003). [External LinkDOI].
171 Rosswog, S., Speith, R. and Wynn, G.A., “Accretion dynamics in neutron star-black hole binaries”, Mon. Not. R. Astron. Soc., 351, 1121, (2004). [External LinkDOI].
172 Ruffert, M. and Janka, H.-T., “Colliding neutron stars: Gravitational waves, neutrino emission, and gamma-ray bursts”, Astron. Astrophys., 338, 535–555, (1998). [External LinkADS], [External Linkastro-ph/9804132].
173 Ruffert, M. and Janka, H.-T., “Coalescing neutron stars – A step towards physical models. III. Improved numerics and different neutron star masses and spins”, Astron. Astrophys., 380, 544, (2001). [External LinkDOI], [External Linkastro-ph/0106229].
174 Ruffert, M. and Janka, H.-T., “Polytropic neutron star-black hole merger simulations with a Paczyński-Wiita potential”, Astron. Astrophys., 514, 66, (2010). [External LinkDOI].
175 Ruffert, M., Janka, H.-T. and Schäfer, G., “Coalescing neutron stars – a step towards physical models. I. Hydrodynamic evolution and gravitational-wave emission”, Astron. Astrophys., 311, 532–566, (1996). [External Linkastro-ph/9509006].
176 Ruffert, M., Janka, H.-T., Takahashi, K. and Schäfer, G., “Coalescing neutron stars – a step towards physical models. II. Neutrino emission, neutron tori, and gamma-ray bursts”, Astron. Astrophys., 319, 122, (1997).
177 Saijo, M. and Nakamura, T., “Possible Direct Method to Determine the Radius of a Star from the Spectrum of Gravitational Wave Signals”, Phys. Rev. Lett., 85, 2665, (2000). [External LinkDOI].
178 Saijo, M. and Nakamura, T., “Possible Direct Method to Determine the Radius of a Star from the Spectrum of Gravitational Wave Signals”, Phys. Rev. D, 63, 064004, (2001). [External LinkDOI].
179 Santamaría, L. et al., “Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries”, Phys. Rev. D, 82, 064016, (2010). [External LinkDOI], [External LinkarXiv:1005.3306].
180 Sathyaprakash, B.S. and Schutz, B.F., “Physics, Astrophysics and Cosmology with Gravitational Waves”, Living Rev. Relativity, 12, lrr-2009-2, (2009). [External LinkarXiv:0903.0338]. URL (accessed 20 December 2010):
http://www.livingreviews.org/lrr-2009-2.
181 Scheel, M.A., Boyle, M., Chu, T., Kidder, L.E., Matthews, K.D. and Pfeiffer, H.P., “High-accuracy waveforms for binary black hole inspiral, merger, and ringdown”, Phys. Rev. D, 79, 024003, (2009). [External LinkDOI], [External LinkarXiv:0810.1767].
182 Schnetter, E., Hawley, S.H. and Hawke, I., “Evolutions in 3D numerical relativity using fixed mesh refinement”, Class. Quantum Grav., 21, 1465–1488, (2004). [External LinkDOI].
183 Sekiguchi, Y.-I., “An implementation of the microphysics in full general relativity: A general relativistic neutrino leakage scheme”, Class. Quantum Grav., 27, 114107, (2010). [External LinkDOI].
184 Sekiguchi, Y.-I., “Stellar Core Collapse in Full General Relativity with Microphysics: Formulation and Spherical Collapse Test”, Prog. Theor. Phys., 124, 331, (2010). [External LinkDOI].
185 Sekiguchi, Y.-I., Kiuchi, K., Kyutoku, K. and Shibata, M., “Gravitational waves and neutrino emission from the merger of binary neutron stars”, Phys. Rev. Lett., 107, 051102, (2011). [External LinkDOI], [External LinkarXiv:1105.2125].
186 Shapiro, S.L. and Teukolsky, S.A., Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects, (Wiley, New York, 1983). [External LinkGoogle Books].
187 Shapiro, S.L. and Wasserman, I., “Gravitational radiation from nonspherical infall into black holes”, Astrophys. J., 260, 838–848, (1982). [External LinkDOI].
188 Shen, H., Toki, H., Oyamatsu, K. and Sumiyoshi, K., “Relativistic equation of state of nuclear matter for supernova and neutron star”, Nucl. Phys. A, 637, 435–450, (1998). [External LinkDOI].
189 Shen, H., Toki, H., Oyamatsu, K. and Sumiyoshi, K., “Relativistic Equation of State of Nuclear Matter for Supernova Explosion”, Prog. Theor. Phys., 100, 1013–1031, (1998). [External LinkDOI].
190 Shibata, M., “Instability of synchronized binary neutron stars in the first post-Newtonian approximation of general relativity”, Prog. Theor. Phys., 96, Binary neutron stars, (1996). [External LinkDOI].
191 Shibata, M., “Relativistic Roche-Riemann problem around a black hole”, Prog. Theor. Phys., 96, 917, (1996). [External LinkDOI].
192 Shibata, M., “Relativistic formalism for computation of irrotational binary stars in quasiequilibrium states”, Phys. Rev. D, 58, 024012, (1998). [External LinkDOI].
193 Shibata, M., “Fully General Relativistic Simulation of Coalescing Binary Neutron Stars: Preparatory Tests”, Phys. Rev. D, 60, 104052, (1999). [External LinkDOI], [External LinkADS].
194 Shibata, M., Kyutoku, K., Yamamoto, T. and Taniguchi, K., “Gravitational waves from black hole-neutron star binaries: classification of waveforms”, Phys. Rev. D, 79, 044030, (2009). [External LinkDOI].
195 Shibata, M. and Nakamura, T., “Evolution of three-dimensional gravitational waves: harmonic slicing case”, Phys. Rev. D, 52, 5428–5444, (1995). [External LinkDOI], [External LinkADS].
196 Shibata, M. and Taniguchi, K., “Merger of binary neutron stars to a black hole: Disk mass, short gamma-ray bursts, and quasinormal mode ringing”, Phys. Rev. D, 73, 064027, (2006). [External LinkDOI].
197 Shibata, M. and Taniguchi, K., “Merger of black hole and neutron star in general relativity: Tidal disruption, torus mass, and gravitational waves”, Phys. Rev. D, 77, 084015, (2008). [External LinkDOI], [External LinkarXiv:0711.1410].
198 Shibata, M., Taniguchi, K. and Uryū, K., “Merger of binary neutron stars of unequal mass in full general relativity”, Phys. Rev. D, 68, 084020, (2003). [External LinkDOI], [External LinkADS].
199 Shibata, M., Taniguchi, K. and Uryū, K., “Merger of binary neutron stars with realistic equations of state in full general relativity”, Phys. Rev. D, 71, 084021, (2005). [External LinkDOI].
200 Shibata, M. and Uryū, K., “Simulation of merging binary neutron stars in full general relativity: Γ = 2 case”, Phys. Rev. D, 61, 064001, (2000). [External LinkDOI].
201 Shibata, M. and Uryū, K., “Gravitational waves from the merger of binary neutron stars in a fully general relativistic simulation”, Prog. Theor. Phys., 107, 265–303, (2002). [External LinkDOI].
202 Shibata, M. and Uryū, K., “Merger of black hole-neutron star binaries: nonspinning black hole case”, Phys. Rev. D, 74, 121503(R), (2006). [External LinkDOI], [External LinkADS].
203 Shibata, M. and Uryū, K., “Merger of black hole-neutron star binaries in full general relativity”, Class. Quantum Grav., 24, S125–S137, (2007). [External LinkDOI].
204 Shibata, M., Uryū, K. and Friedman, J.L., “Deriving formulations for numerical computation of binary neutron stars in quasicircular orbits”, Phys. Rev. D, 70, 044044, (2004).
205 Stairs, I.H., “Pulsars in Binary Systems: Probing Binary Stellar Evolution and General Relativity”, Science, 304, 547–552, (2004). [External LinkDOI].
206 Szilágyi, B., Lindblom, L. and Scheel, M.A., “Simulations of binary black hole mergers using spectral methods”, Phys. Rev. D, 80, 124010, (2009). [External LinkDOI].
207 Taniguchi, K., Baumgarte, T.W., Faber, J.A. and Shapiro, S.L., “Black hole-neutron star binaries in general relativity: Effects of neutron star spin”, Phys. Rev. D, 72, 044008, (2005). [External LinkDOI], [External LinkADS].
208 Taniguchi, K., Baumgarte, T.W., Faber, J.A. and Shapiro, S.L., “Quasiequilibrium sequences of black-hole–neutron-star binaries in general relativity”, Phys. Rev. D, 74, 041502(R), (2006). [External LinkDOI], [External LinkADS].
209 Taniguchi, K., Baumgarte, T.W., Faber, J.A. and Shapiro, S.L., “Quasiequilibrium black hole-neutron star binaries in general relativity”, Phys. Rev. D, 75, 084005, (2007). [External LinkDOI], [External LinkADS].
210 Taniguchi, K., Baumgarte, T.W., Faber, J.A. and Shapiro, S.L., “Relativistic black hole-neutron star binaries in quasiequilibrium: effects of the black hole excision boundary condition”, Phys. Rev. D, 77, 044003, (2008). [External LinkDOI], [External LinkADS].
211 Taniguchi, K. and Gourgoulhon, E., “Quasiequilibrium sequences of synchronized and irrotational binary neutron stars in general relativity. III. Identical and different mass stars with γ = 2”, Phys. Rev. D, 66, 104019, (2002). [External LinkDOI], [External LinkADS].
212 Taniguchi, K. and Gourgoulhon, E., “Various features of quasiequilibrium sequences of binary neutron stars in general relativity”, Phys. Rev. D, 68, 124025, (2003). [External LinkDOI], [External LinkADS].
213 Taniguchi, K. and Nakamura, T., “Innermost stable circular orbit od coalescing neutron star-black hole binary – Generalized pseudo-Newtonian potential approach –”, Prog. Theor. Phys., 96, 693, (1996).
214 Taniguchi, K. and Shibata, M., “Binary neutron stars in quasi-equilibrium”, Astrophys. J. Suppl. Ser., 188, 187, (2010). [External LinkDOI].
215 Teukolsky, S.A., “Irrotational binary neutron stars in quasi-equilibrium in general relativity”, Astrophys. J., 504, 442–449, (1998). [External LinkDOI].
216 Tsokaros, A.A. and Uryū, K., “Numerical method for binary black hole/neutron star initial data: Code test”, Phys. Rev. D, 75, 044026, (2007). [External LinkDOI].
217 Uryū, K. and Eriguchi, Y., “Newtonian models for black hole-gaseous star close binary systems”, Mon. Not. R. Astron. Soc., 303, 329, (1999). [External LinkDOI].
218 Uryū, K., Limousin, F., Friedman, J.L., Gourgoulhon, E. and Shibata, M., “Binary Neutron Stars: Equilibrium Models beyond Spatial Conformal Flatness”, Phys. Rev. Lett., 97, 171101, (2006). [External LinkDOI], [External LinkADS].
219 Uryū, K., Limousin, F., Friedman, J.L., Gourgoulhon, E. and Shibata, M., “Nonconformally flat initial data for binary compact objects”, Phys. Rev. D, 80, 124004, (2009). [External LinkDOI].
220 Vallisneri, M., “Prospects for Gravitational-Wave Observations of Neutron-Star Tidal Disruption in Neutron-Star-Black-Hole Binaries”, Phys. Rev. Lett., 84, 3519, (2000). [External LinkDOI].
221 van Meters, J.R., Baker, J.G., Koppitz, M. and Choi, D-I., “How to move a black hole without excision: Gauge conditions for the numerical evolution of a moving puncture”, Phys. Rev. D, 73, 124011, (2006). [External LinkDOI].
222 “Virgo”, project homepage, INFN. URL (accessed 20 December 2010):
External Linkhttp://www.virgo.infn.it/.
223 Voss, R. and Tauris, T.M., “Galactic distribution of merging neutron stars and black holes – prospects for short gamma-ray burst progenitors and LIGO/VIRGO”, Mon. Not. R. Astron. Soc., 342, 1169–1184, (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0303227].
224 Walsh, D.M., “Non-uniqueness in conformal formulations of the Einstein constraints”, Class. Quantum Grav., 24, 1911, (2007). [External LinkDOI].
225 Wiggins, P. and Lai, D., “Tidal interaction between a fluid star and a Kerr black hole in circular orbit”, Astrophys. J., 532, 530, (2000). [External LinkDOI].
226 Will, C.M., “Gravitational Waves from Inspiralling Compact Binaries: A Post-Newtonian Approach”, in Sasaki, M., ed., Relativistic Cosmology, Proceedings of the 8th Nishinomiya-Yukawa Memorial Symposium, Shukugawa City Hall, Nishinomiya, Hyogo, Japan, 28 – 29 October, 1993, NYMSS,  8, pp. 83–98, (Universal Academy Press, Tokyo, 1993). [External Linkgr-qc/9403033].
227 Will, C.M., Theory and Experiment in Gravitational Physics, (Cambridge University Press, Cambridge; New York, 1993), 2nd edition. [External LinkGoogle Books].
228 Yamamoto, T., Shibata, M. and Taniguchi, K., “Simulating coalescing compact binaries by a new code (SACRA)”, Phys. Rev. D, 78, 064054, (2008). [External LinkDOI].
229 York Jr, J.W., “Conformally invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial-value problem of general relativity”, J. Math. Phys., 14, 456–464, (1973).
230 York Jr, J.W., “Kinematics and Dynamics of General Relativity”, in Smarr, L.L., ed., Sources of Gravitational Radiation, Proceedings of the Battelle Seattle Workshop, July 24 – August 4, 1978, pp. 83–126, (Cambridge University Press, Cambridge; New York, 1979). [External LinkADS].
231 York Jr, J.W., “Conformal ‘Thin-Sandwich’ Data for the Initial-Value Problem of General Relativity”, Phys. Rev. Lett., 82, 1350–1353, (1999). [External LinkDOI].
232 Zhang, B. and Mészáros, P., “Gamma-ray bursts: Progress, problems, and prospects”, Int. J. Mod. Phys. A, 19, 2385–2472, (2004). [External LinkDOI], [External Linkastro-ph/0311321].