References

1 Akcay, S., “Fast frequency-domain algorithm for gravitational self-force: Circular orbits in Schwarzschild spacetime”, Phys. Rev. D, 83, 124026, (2011). [External LinkDOI], [External LinkarXiv:1012.5860].
2 Alvi, K., “Approximate binary-black-hole metric”, Phys. Rev. D, 61, 124013, 1–19, (2000). [External LinkDOI], [External LinkarXiv:gr-qc/9912113].
3 Anderson, P.R., Eftekharzadeh, A. and Hu, B.L., “Self-force on a scalar charge in radial infall from rest using the Hadamard-WKB expansion”, Phys. Rev. D, 73, 064023, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0507067].
4 Anderson, P.R. and Hu, B.L., “Radiation reaction in Schwarzschild spacetime: Retarded Green’s function via Hadamard-WKB expansion”, Phys. Rev. D, 69, 064039, (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0308034].
5 Anderson, W.G., Flanagan, É.É. and Ottewill, A.C., “Quasilocal contribution to the gravitational self-force”, Phys. Rev. D, 71, 024036, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0412009].
6 Anderson, W.G. and Wiseman, A.G., “A matched expansion approach to practical self-force calculations”, Class. Quantum Grav., 22, S783–S800, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0506136].
7 Barack, L., “Self-force on a scalar particle in spherically symmetric spacetime via mode-sum regularization: Radial trajectories”, Phys. Rev. D, 62, 084027, 1–21, (2000). [External LinkDOI], [External LinkarXiv:gr-qc/0005042].
8 Barack, L., “Gravitational self-force by mode sum regularization”, Phys. Rev. D, 64, 084021, 1–16, (2001). [External LinkDOI], [External LinkarXiv:gr-qc/0105040].
9 Barack, L., “Gravitational self-force in extreme mass-ratio inspirals”, Class. Quantum Grav., 26, 213001, (2009). [External LinkDOI], [External LinkarXiv:0902.0573].
10 Barack, L. and Burko, L.M., “Radiation-reaction force on a particle plunging into a black hole”, Phys. Rev. D, 62, 084040, 1–5, (2000). [External LinkDOI], [External LinkarXiv:gr-qc/0007033].
11 Barack, L., Damour, T. and Sago, N., “Precession effect of the gravitational self-force in a Schwarzschild spacetime and the effective one-body formalism”, Phys. Rev. D, 82, 084036, (2010). [External LinkDOI], [External LinkarXiv:1008.0935].
12 Barack, L. and Golbourn, D.A., “Scalar-field perturbations from a particle orbiting a black hole using numerical evolution in 2+1 dimensions”, Phys. Rev. D, 76, 044020, (2007). [External LinkDOI], [External LinkarXiv:0705.3620].
13 Barack, L., Golbourn, D.A. and Sago, N., “m-mode regularization scheme for the self-force in Kerr spacetime”, Phys. Rev. D, 76, 124036, (2007). [External LinkDOI], [External LinkarXiv:0709.4588].
14 Barack, L. and Lousto, C.O., “Computing the gravitational self-force on a compact object plunging into a Schwarzschild black hole”, Phys. Rev. D, 66, 061502, 1–5, (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0205043].
15 Barack, L., Mino, Y., Nakano, H., Ori, A. and Sasaki, M., “Calculating the Gravitational Self-Force in Schwarzschild Spacetime”, Phys. Rev. Lett., 88, 091101, 1–4, (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0111001].
16 Barack, L. and Ori, A., “Mode sum regularization approach for the self-force in black hole spacetime”, Phys. Rev. D, 61, 061502, 1–5, (2000). [External LinkDOI], [External LinkarXiv:gr-qc/9912010].
17 Barack, L. and Ori, A., “Gravitational self-force and gauge transformations”, Phys. Rev. D, 64, 124003, 1–13, (2001). [External LinkDOI], [External LinkarXiv:gr-qc/0107056].
18 Barack, L. and Ori, A., “Regularization parameters for the self-force in Schwarzschild spacetime: Scalar case”, Phys. Rev. D, 66, 084022, 1–15, (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0204093].
19 Barack, L. and Ori, A., “Gravitational Self-Force on a Particle Orbiting a Kerr Black Hole”, Phys. Rev. Lett., 90, 111101, 1–4, (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0212103].
20 Barack, L. and Ori, A., “Regularization parameters for the self-force in Schwarzschild spacetime. II. Gravitational and electromagnetic cases”, Phys. Rev. D, 67, 024029, 1–11, (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0209072].
21 Barack, L. and Sago, N., “Gravitational self-force on a particle in circular orbit around a Schwarzschild black hole”, Phys. Rev. D, 75, 064021, (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0701069].
22 Barack, L. and Sago, N., “Gravitational Self-Force Correction to the Innermost Stable Circular Orbit of a Schwarzschild Black Hole”, Phys. Rev. Lett., 102, 191101, (2009). [External LinkDOI], [External LinkarXiv:0902.0573].
23 Barack, L. and Sago, N., “Gravitational self-force on a particle in eccentric orbit around a Schwarzschild black hole”, Phys. Rev. D, 81, 084021, (2010). [External LinkDOI], [External LinkarXiv:1002.2386].
24 Barack, L. and Sago, N., “Beyond the geodesic approximation: Conservative effects of the gravitational self-force in eccentric orbits around a Schwarzschild black hole”, Phys. Rev. D, 83, 084023, (2011). [External LinkDOI], [External LinkarXiv:1101.3331].
25 Barton, J.L., Lazar, D., Kennefick, D.J., Khanna, G. and Burko, L.M., “Computational efficiency of frequency- and time-domain calculations of extreme mass-ratio binaries: Equatorial orbits”, Phys. Rev. D, 78, 064042, (2010). [External LinkarXiv:0804.1075].
26 Blanchet, L., “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries”, Living Rev. Relativity, 9, lrr-2006-4, (2006). URL (accessed 25 August 2010):
http://www.livingreviews.org/lrr-2006-4.
27 Blanchet, L. and Damour, T., “Radiative gravitational fields in general relativity I. General structure of the field outside the source”, Philos. Trans. R. Soc. London, Ser. A, 320, 379–430, (1986).
28 Blanchet, L., Detweiler, S., Le Tiec, A. and Whiting, B.F., “High-order post-Newtonian fit of the gravitational self-force for circular orbits in the Schwarzschild geometry”, Phys. Rev. D, 81, 084033, (2010). [External LinkarXiv:1002.0726].
29 Blanchet, L., Detweiler, S., Le Tiec, A. and Whiting, B.F., “Post-Newtonian and numerical calculations of the gravitational self-force for circular orbits in the Schwarzschild geometry”, Phys. Rev. D, 81, 064004, (2010). [External LinkarXiv:0910.0207].
30 Burko, L.M., “Self-Force on a Particle in Orbit around a Black Hole”, Phys. Rev. Lett., 84, 4529–4532, (2000). [External LinkDOI], [External LinkarXiv:gr-qc/0003074].
31 Burko, L.M., “Self-force on static charges in Schwarzschild spacetime”, Class. Quantum Grav., 17, 227–250, (2000). [External LinkDOI], [External LinkarXiv:gr-qc/9911042].
32 Burko, L.M., “The importance of conservative self forces for binaries undergoing radiation damping”, Int. J. Mod. Phys. A, 16, 1471–1479, (2001). [External LinkDOI].
33 Burko, L.M., Harte, A.I. and Poisson, E., “Mass loss by a scalar charge in an expanding universe”, Phys. Rev. D, 65, 124006, 1–11, (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0201020].
34 Burko, L. and Khanna, G., “Accurate time-domain gravitational waveforms for extreme-mass-ratio binaries”, Europhys. Lett., 78, 60005, (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0609002].
35 Burko, L.M. and Liu, Y.T., “Self-force on a scalar charge in the spacetime of a stationary, axisymmetric black hole”, Phys. Rev. D, 64, 024006, 1–21, (2001). [External LinkDOI], [External LinkarXiv:gr-qc/0103008].
36 Burko, L.M., Liu, Y.T. and Soen, Y., “Self-force on charges in the spacetime of spherical shells”, Phys. Rev. D, 63, 024015, 1–18, (2001). [External LinkarXiv:gr-qc/0008065].
37 Canizares, P. and Sopuerta, C.F., “Efficient pseudospectral method for the computation of the self-force on a charged particle: Circular geodesics around a Schwarzschild black hole”, Phys. Rev. D, 79, 084020, (2009). [External LinkarXiv:0903.0505].
38 Canizares, P., Sopuerta, C.F. and Jaramillo, J.L., “Pseudospectral collocation methods for the computation of the self-force on a charged particle: Generic orbits around a Schwarzschild black hole”, Phys. Rev. D, 82, 044023, (2010). [External LinkDOI], [External LinkarXiv:1006.3201].
39 Casals, M., Dolan, S., Ottewill, A.C. and Wardell, B., “Padé approximants of the Green function in spherically symmetric spacetimes”, Phys. Rev. D, 79, 124044, (2009). [External LinkDOI], [External LinkarXiv:0903.5319].
40 Casals, M., Dolan, S., Ottewill, A.C. and Wardell, B., “Self-force calculations with matched expansions and quasinormal mode sums”, Phys. Rev. D, 79, 124043, (2009). [External LinkDOI], [External LinkarXiv:0903.0395].
41 Chrzanowski, P.L., “Vector potential and metric perturbations of a rotating black hole”, Phys. Rev. D, 11, 2042–2062, (1975). [External LinkDOI].
42 Cohen, J.M. and Kegeles, L.S., “Electromagnetic fields in curved spaces: a constructive procedure”, Phys. Rev. D, 10, 1070–1084, (1974). [External LinkDOI].
43 Copson, E.T., “On Electrostatics in a Gravitational Field”, Proc. R. Soc. London, Ser. A, 116, 720–735, (1928).
44 Damour, T., “Gravitational self-force in a Schwarzschild background and the effective one-body formalism”, Phys. Rev. D, 81, 024017, (2010). [External LinkDOI], [External LinkarXiv:0910.5533].
45 Damour, T. and Iyer, B.R., “Multipole analysis for electromagnetism and linearized gravity with irreducible Cartesian tensors”, Phys. Rev. D, 43, 3259–3272, (1991). [External LinkDOI].
46 D’Eath, P.D., “Dynamics of a small black hole in a background universe”, Phys. Rev. D, 11, 1387, (1975). [External LinkDOI].
47 D’Eath, P.D., Black Holes: Gravitational Interactions, (Clarendon Press; Oxford University Press, Oxford; New York, 1996).
48 Décanini, Y. and Folacci, A., “Off-diagonal coefficients of the DeWitt-Schwinger and Hadamard representations of the Feynman propagator”, Phys. Rev. D, 73, 044027, 1–38, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0511115].
49 Detweiler, S., “Perspective on gravitational self-force analyses”, Class. Quantum Grav., 22, 681–716, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0501004].
50 Detweiler, S., “Consequence of the gravitational self-force for circular orbits of the Schwarzschild geometry”, Phys. Rev. D, 77, 124026, (2008). [External LinkDOI], [External LinkarXiv:gr-qc/0410011].
51 Detweiler, S., Messaritaki, E. and Whiting, B.F., “Self-force of a scalar field for circular orbits about a Schwarzschild black hole”, Phys. Rev. D, 67, 1–18, (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0205079].
52 Detweiler, S. and Poisson, E., “Low multipole contributions to the gravitational self-force”, Phys. Rev. D, 69, 084019, (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0312010].
53 Detweiler, S. and Whiting, B.F., “Self-force via a Green’s function decomposition”, Phys. Rev. D, 67, 024025, (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0202086].
54 DeWitt, B.S. and Brehme, R.W., “Radiation Damping in a Gravitational Field”, Ann. Phys. (N.Y.), 9, 220–259, (1960). [External LinkDOI].
55 Diaz-Rivera, L.M., Messaritaki, E., Whiting, B.F. and Detweiler, S., “Scalar field self-force effects on orbits about a Schwarzschild black hole, eccentric orbits”, Phys. Rev. D, 70, 124018, (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0410011].
56 Dirac, P.A.M., “Classical theory of radiating electrons”, Proc. R. Soc. London, Ser. A, 167, 148, (1938).
57 Dixon, W.G., “Dynamics of extended bodies in general relativity. I. Momentum and angular momentum”, Proc. R. Soc. London, Ser. A, 314, 499–527, (1970).
58 Dixon, W.G., “Dynamics of extended bodies in general relativity. II. Moments of the charge-current vector”, Proc. R. Soc. London, Ser. A, 319, 509–547, (1970).
59 Dixon, W.G., “Dynamics of Extended Bodies in General Relativity. III. Equations of Motion”, Philos. Trans. R. Soc. London, Ser. A, 277, 59–119, (1974).
60 Dolan, S. and Barack, L., “Self-force via m-mode regularization and 2+1D evolution: Foundations and a scalar-field implementation on Schwarzschild spacetime”, Phys. Rev. D, 83, 124019, (2011). [External LinkDOI], [External LinkarXiv:1010.5255].
61 Drasco, S., Flanagan, É.É. and Hughes, S.A., “Computing inspirals in Kerr in the adiabatic regime: I. The scalar case”, Class. Quantum Grav., 22, S801–S846, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0505075].
62 Drasco, S. and Hughes, S.A., “Gravitational wave snapshots of generic extreme mass ratio inspirals”, Phys. Rev. D, 73, 024027, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0509101].
63 Eckhaus, W., Asymptotic Analysis of Singular Perturbations, Studies in Mathematics and its Applications,  9, (North-Holland, Amsterdam; New York, 1979). [External LinkGoogle Books].
64 Ehlers, J. and Geroch, R., “Equation of motion of small bodies in relativity”, Ann. Phys. (N.Y.), 309, 232–236, (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0309074].
65 Ehlers, J. and Rudolph, E., “Dynamics of extended bodies in general relativity center-of-mass description and quasirigidity”, Gen. Relativ. Gravit., 8, 197–217, (1977). [External LinkDOI].
66 Einstein, A. and Infeld, L., “On the motion of particles in general relativity theory”, Can. J. Math., 1, 209, (1949). [External LinkDOI].
67 Field, S.E., Hesthaven, J.S. and Lau, S.R., “Discontinuous Galerkin method for computing gravitational waveforms from extreme mass ratio binaries”, Class. Quantum Grav., 26, 165010, (2009). [External LinkDOI], [External LinkarXiv:0902.1287].
68 Field, S.E., Hesthaven, J.S. and Lau, S.R., “Persistent junk solutions in time-domain modeling of extreme mass ratio binaries”, Phys. Rev. D, 81, 124030, (2010). [External LinkDOI], [External LinkarXiv:1001.2578].
69 Flanagan, É.É. and Hinderer, T., “Transient resonances in the inspirals of point particles into black holes”, arXiv, e-print, (2010). [External LinkarXiv:1009.4923 [gr-qc]].
70 Flanagan, É.É. and Wald, R.M., “Does back reaction enforce the averaged null energy condition in semiclassical gravity?”, Phys. Rev. D, 54, 6233–6283, (1996). [External LinkDOI], [External LinkarXiv:gr-qc/9602052].
71 Friedlander, F.G., The wave equation on a curved space-time, Cambridge Monographs on Mathematical Physics,  2, (Cambridge University Press, Cambridge; New York, 1975). [External LinkGoogle Books].
72 Fukumoto, T., Futamase, T. and Itoh, Y., “On the equation of motion for a fast moving small object using the strong field point particle limit”, Prog. Theor. Phys., 116, 423–428, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0606114].
73 Futamase, T., Hogan, P.A. and Itoh, Y., “Equations of Motion in General Relativity of a Small Charged Black Hole”, Phys. Rev. D, 78, 104014, (2008). [External LinkarXiv:0811.4020].
74 Futamase, T. and Itoh, Y., “The Post-Newtonian Approximation for Relativistic Compact Binaries”, Living Rev. Relativity, 10, lrr-2007-2, (2007). URL (accessed 25 August 2010):
http://www.livingreviews.org/lrr-2007-2.
75 Galley, C.R. and Hu, B.L., “Self-force on extreme mass ratio inspirals via curved spacetime effective field theory”, Phys. Rev. D, 79, 064002, (2009). [External LinkDOI], [External LinkarXiv:0801.0900].
76 Galley, C.R., Hu, B.L. and Lin, S.-Y., “Electromagnetic and gravitational self-force on a relativistic particle from quantum fields in curved space”, Phys. Rev. D, 74, 024017, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0603099].
77 Gal’tsov, D.V., “Radiation reaction in the Kerr gravitational field”, J. Phys. A: Math. Gen., 15, 3737–3749, (1982). [External LinkDOI].
78 Ganz, K., Hikida, W., Nakano, H., Sago, N. and Tanaka, T., “Adiabatic evolution of three ‘constants’ of motion for greatly inclined orbits in Kerr spacetime”, Prog. Theor. Phys., 117, 1041–1066, (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0702054].
79 Geroch, R. and Jang, P.S., “Motion of a body in general relativity”, J. Math. Phys., 16, 65–67, (1975). [External LinkDOI].
80 Geroch, R. and Traschen, J., “Strings and other distributional sources in general relativity”, Phys. Rev. D, 36, 1017–1031, (1987). [External LinkDOI].
81 Gralla, S.E., “Comments on First and Second Order Gravitational Self-Force”, Presentation at the 12th Capra Meeting on Radiation Reaction, conference paper, (2009).
82 Gralla, S.E., Harte, A.I. and Wald, R.M., “A Rigorous Derivation of Electromagnetic Self-force”, Phys. Rev. D, 80, 024031, (2009). [External LinkDOI], [External LinkarXiv:0905.2391].
83 Gralla, S.E. and Wald, R.M., “A Rigorous Derivation of Gravitational Self-force”, Class. Quantum Grav., 25, 205009, (2008). [External LinkDOI], [External LinkarXiv:0806.3293].
84 Haas, R., “Scalar self-force on eccentric geodesics in Schwarzschild spacetime: a time-domain computation”, Phys. Rev. D, 75, 124011, (2007). [External LinkDOI], [External LinkarXiv:0704.0797].
85 Haas, R., Self-force on point particles in orbit around a Schwarzschild black hole, Ph.D. Thesis, (University of Guelph, Guelph, 2008). [External LinkADS].
86 Haas, R. and Poisson, E., “Mass change and motion of a scalar charge in cosmological spacetimes”, Class. Quantum Grav., 22, S739–S752, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0411108].
87 Haas, R. and Poisson, E., “Mode-sum regularization of the scalar self-force: Formulation in terms of a tetrad decomposition of the singular field”, Phys. Rev. D, 74, 004009, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0605077].
88 Hadamard, J., Lectures on Cauchy’s Problem in Linear Partial Differential Equations, (Yale University Press, New Haven, CT, 1923). [External LinkGoogle Books]. Online version (accessed 3 February 2011):
External Linkhttp://www.archive.org/details/lecturesoncauchy00hadauoft.
89 Harte, A.I., “Self-forces from generalized Killing fields”, Class. Quantum Grav., 25, 235020, (2008). [External LinkDOI], [External LinkarXiv:0807.1150].
90 Harte, A.I., “Electromagnetic self-forces and generalized Killing fields”, Class. Quantum Grav., 26, 155015, (2009). [External LinkDOI], [External LinkarXiv:0903.0167].
91 Harte, A.I., “Effective stress-energy tensors, self-force, and broken symmetry”, Class. Quantum Grav., 27, 135002, (2010). [External LinkDOI], [External LinkarXiv:0910.4614].
92 Havas, P., “Radiation Damping in General Relativity”, Phys. Rev., 108(5), 1351–1352, (1957). [External LinkDOI].
93 Havas, P. and Goldberg, J.N., “Lorentz-Invariant Equations of Motion of Point Masses in the General Theory of Relativity”, Phys. Rev., 128(1), 398–414, (1962). [External LinkDOI].
94 Hinderer, T. and Flanagan, É.É., “Two timescale analysis of extreme mass ratio inspirals in Kerr. I. Orbital Motion”, Phys. Rev. D, 78, 064028, (2008). [External LinkDOI], [External LinkarXiv:0805.3337].
95 Hobbs, J.M., “A Vierbein Formalism for Radiation Damping”, Ann. Phys. (N.Y.), 47, 141–165, (1968).
96 Holmes, M.H., Introduction to Perturbation Methods, Texts in Applied Mathematics,  20, (Springer, Berlin; New York, 1995). [External LinkGoogle Books].
97 Huerta, E.A. and Gair, J.R., “Influence of conservative corrections on parameter estimation for EMRIs”, Phys. Rev. D, 79, 084021, (2009). [External LinkDOI], [External LinkarXiv:0812.4208].
98 Hughes, S., “Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational-wave emission”, Phys. Rev. D, 61, 084004, (2000). [External LinkDOI], [External LinkarXiv:gr-qc/9910091].
99 Hughes, S., Drasco, S., Flanagan, É.É. and Franklin, J., “Gravitational radiation reaction and inspiral waveforms in the adiabatic limit”, Phys. Rev. Lett., 94, 221101, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0504015].
100 Infeld, L. and Schild, A., “On the Motion of Test Particles in General Relativity”, Rev. Mod. Phys., 21, 408–413, (1949). [External LinkDOI].
101 Jackson, J.D., Classical Electrodynamics, (Wiley, New York, 1999), 3rd edition.
102 Kates, R.E., “Motion of a small body through an external field in general relativity calculated by matched asymptotic expansions”, Phys. Rev. D, 22, 1853–1870, (1980). [External LinkDOI].
103 Kates, R.E., “Motion of an electrically or magnetically charged body with possibly strong internal gravity through external electromagnetic and gravitational fields”, Phys. Rev. D, 22, 1879–1881, (1980). [External LinkDOI].
104 Kates, R.E., “Underlying structure of singular perturbations on manifolds”, Ann. Phys. (N.Y.), 132, 1–17, (1981). [External LinkDOI].
105 Kegeles, L.S. and Cohen, J.M., “Constructive procedure for perturbations of spacetimes”, Phys. Rev. D, 19, 1641–1664, (1979). [External LinkDOI].
106 Keidl, T., Self-force for extreme mass ratio inspiral, Ph.D. Thesis, (University of Wisconsin-Milwaukee, Milwaukee, 2008). [External LinkADS].
107 Keidl, T.S., Friedman, J.L. and Wiseman, A.G., “Finding fields and self-force in a gauge appropriate to separable wave equations”, Phys. Rev. D, 75, 124009, (2006). [External LinkarXiv:gr-qc/0611072].
108 Keidl, T.S., Shah, A.G., Friedman, J.L., Kim, D.H. and Price, L.R., “Gravitational self-force in a radiation gauge”, Phys. Rev. D, 82, 124012, (2010). [External LinkDOI], [External LinkarXiv:1004.2276].
109 Kevorkian, J. and Cole, J.D., Multiple Scale and Singular Perturbation Methods, Applied Mathematical Sciences, 114, (Springer, New York, 1996). [External LinkGoogle Books].
110 Khanna, G., “Teukolsky evolution of particle orbits around Kerr black holes in the time domain: Elliptic and inclined orbits”, Phys. Rev. D, 69, 024016, (2006). [External LinkarXiv:gr-qc/0309107].
111 Lagerstrom, P.A., Matched Asymptotic Expansions: Ideas and Techniques, Applied Mathematical Sciences,  76, (Springer, New York, 1988).
112 Landau, L.D. and Lifshitz, E.M., The Classical Theory of Fields, Course of Theoretical Physics,  2, (Pergamon Press, Oxford,; New York, 1975), 4th edition. [External LinkGoogle Books].
113 Leaute, B. and Linet, B., “Electrostatics in a Reissner-Nordström space-time”, Phys. Lett. A, 58, 5–6, (1976). [External LinkDOI].
114 Linet, B., “Electrostatics and magnetostatics in Schwarzschild metric”, J. Phys. A: Math. Gen., 9, 1081–1087, (1976). [External LinkDOI].
115 “LISA Home Page (NASA)”, project homepage, Jet Propulsion Laboratory/NASA. URL (accessed 2 April 2004):
External Linkhttp://lisa.jpl.nasa.gov/.
116 Lopez-Aleman, R., Khanna, G. and Pullin, J., “Perturbative evolution of particle orbits around Kerr black holes: time domain calculation”, Class. Quantum Grav., 20, 3259–3268, (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0303054].
117 Lousto, C.O., “Pragmatic Approach to Gravitational Radiation Reaction in Binary Black Holes”, Phys. Rev. Lett., 84, 5251–5254, (2000). [External LinkDOI], [External LinkarXiv:gr-qc/9912017].
118 Lousto, C.O., ed., Gravitational Radiation from Binary Black Holes: Advances in the Perturbative Approach, Class. Quantum Grav.,  22, (IOP Publishing, Bristol, 2005).
119 Lousto, C.O. and Nakano, H., “A new method to integrate (2+1)-wave equations with Dirac’s delta functions as sources”, Class. Quantum Grav., 25, 145018, (2008). [External LinkDOI], [External LinkarXiv:0802.4277].
120 Lousto, C.O. and Price, R.H., “Understanding initial data for black hole collisions”, Phys. Rev. D, 56, 6439–6457, (1997). [External LinkDOI], [External LinkarXiv:gr-qc/9705071].
121 Lousto, C.O. and Whiting, B.F., “Reconstruction of black hole metric perturbations from the Weyl curvature”, Phys. Rev. D, 66, 024026, 1–7, (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0203061].
122 Manasse, F.K. and Misner, C.W., “Fermi normal coordinates and some basic concepts in differential geometry”, J. Math. Phys., 4, 735–745, (1963). [External LinkDOI].
123 Martel, K. and Poisson, E., “One-parameter family of time-symmetric initial data for the radial infall of a particle into a Schwarzschild black hole”, Phys. Rev. D, 66, 084001, (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0107104].
124 Mino, Y., “Perturbative approach to an orbital evolution around a supermassive black hole”, Phys. Rev. D, 67, 084027, 1–17, (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0302075].
125 Mino, Y., “Self-force in the radiation reaction formula – adiabatic approximation of a metric perturbation and an orbit”, Prog. Theor. Phys., 113, 733–761, (2005). [External LinkarXiv:gr-qc/0506003].
126 Mino, Y., “Adiabatic expansion for a metric perturbation and the condition to solve the gauge problem for gravitational radiation reaction problem”, Prog. Theor. Phys., 115, 43–61, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0601019].
127 Mino, Y., Nakano, H. and Sasaki, M., “Covariant Self-Force Regularization of a Particle Orbiting a Schwarzschild Black Hole – Mode Decomposition Regularization”, Prog. Theor. Phys., 108, 1039–1064, (2003). [External LinkarXiv:gr-qc/0111074].
128 Mino, Y. and Price, R., “Two-timescale adiabatic expansion of a scalar field model”, Phys. Rev. D, 77, 064001, (2008). [External LinkDOI], [External LinkarXiv:0801.0179].
129 Mino, Y., Sasaki, M. and Tanaka, T., “Gravitational radiation reaction”, Prog. Theor. Phys. Suppl., 128, 373–406, (1997). [External LinkDOI], [External LinkarXiv:gr-qc/9712056].
130 Mino, Y., Sasaki, M. and Tanaka, T., “Gravitational radiation reaction to a particle motion”, Phys. Rev. D, 55, 3457–3476, (1997). [External LinkDOI], [External LinkarXiv:gr-qc/9606018].
131 Misner, C.W., Thorne, K.S. and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, 1973).
132 Morette-DeWitt, C. and DeWitt, B.S., “Falling charges”, Physics, 1, 3–20, (1964).
133 Morette-DeWitt, C. and Ging, J.L., “Freinage dû à la radiation gravitationnelle”, C. R. Hebd. Seanc. Acad. Sci., 251, 1868, (1960).
134 Ori, A., “Reconstruction of inhomogeneous metric perturbations and electromagnetic four-potential in Kerr spacetime”, Phys. Rev. D, 67, 124010, 1–19, (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0207045].
135 Ori, A. and Thorne, K.S., “Transition from inspiral to plunge for a compact body in a circular equatorial orbit around a massive, spinning black hole”, Phys. Rev. D, 62, 124022, (2000). [External LinkDOI], [External LinkarXiv:gr-qc/0003032].
136 Ottewill, A.C. and Wardell, B., “Quasilocal contribution to the scalar self-force: Geodesic motion”, Phys. Rev. D, 77, 104002, (2008). [External LinkDOI], [External LinkarXiv:0711.2469].
137 Ottewill, A.C. and Wardell, B., “Quasilocal contribution to the scalar self-force: Nongeodesic motion”, Phys. Rev. D, 79, 024031, (2009). [External LinkDOI], [External LinkarXiv:0810.1961].
138 Papapetrou, A., “Spinning Test-Particles in General Relativity. I”, Proc. R. Soc. London, Ser. A, 209, 248–258, (1951).
139 Peters, P.C., “Gravitational radiation and the motion of two point masses”, Phys. Rev., 136, B1224–B1232, (1964). [External LinkDOI].
140 Peters, P.C. and Mathews, J., “Gravitational radiation from point masses in a Keplerian orbit”, Phys. Rev., 131, 435–440, (1963). [External LinkDOI].
141 Pfenning, M.J. and Poisson, E., “Scalar, electromagnetic, and gravitational self-forces in weakly curved spacetimes”, Phys. Rev. D, 65, 084001, 1–30, (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0012057].
142 Poisson, E., “Retarded coordinates based at a world line and the motion of a small black hole in an external universe”, Phys. Rev. D, 69, 084007, (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0311026].
143 Pound, A., Motion of small bodies in general relativity: foundations and implementations of the self-force, Ph.D. Thesis, (University of Guelph, Guelph, 2010). [External LinkarXiv:1006.3903].
144 Pound, A., “Self-consistent gravitational self-force”, Phys. Rev. D, 81, 024023, (2010). [External LinkDOI], [External LinkarXiv:0907.5197].
145 Pound, A., “Singular perturbation techniques in the gravitational self-force problem”, Phys. Rev. D, 81, 124009, (2010). [External LinkDOI], [External LinkarXiv:1003.3954].
146 Pound, A. and Poisson, E., “Multi-scale analysis of the electromagnetic self-force in a weak gravitational field”, Phys. Rev. D, 77, 044012, (2008). [External LinkDOI], [External LinkarXiv:0708.3037].
147 Pound, A. and Poisson, E., “Osculating orbits in Schwarzschild spacetime, with an application to extreme mass-ratio inspirals”, Phys. Rev. D, 77, 044013, (2008). [External LinkDOI], [External LinkarXiv:0708.3033].
148 Pound, A., Poisson, E. and Nickel, B.G., “Limitations of the adiabatic approximation to the gravitational self-force”, Phys. Rev. D, 72, 124001, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0509122].
149 Quinn, T.C., “Axiomatic approach to radiation reaction of scalar point particles in curved spacetime”, Phys. Rev. D, 62, 064029, 1–9, (2000). [External LinkDOI], [External LinkarXiv:gr-qc/0005030].
150 Quinn, T.C. and Wald, R.M., “An axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved spacetime”, Phys. Rev. D, 56, 3381–3394, (1997). [External LinkDOI], [External LinkarXiv:gr-qc/9610053].
151 Quinn, T.C. and Wald, R.M., “Energy conservation for point particles undergoing radiation reaction”, Phys. Rev. D, 60, 064009, 1–20, (1999). [External LinkDOI], [External LinkarXiv:gr-qc/9903014].
152 Racine, E. and Flanagan, É.É., “Post-1-Newtonian equations of motion for systems of arbitrarily structured bodies”, Phys. Rev. D, 71, 044010, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0404101].
153 Roach, G.F., Green’s Functions, (Cambridge University Press, Cambridge; New York, 1982), 2nd edition. [External LinkGoogle Books].
154 Rohrlich, F., Classical Charged Particles, (World Scientific, Singapore; Hackensack, NJ, 2007), 3rd edition. [External LinkGoogle Books].
155 Rosenthal, E., “Construction of the second-order gravitational perturbations produced by a compact object”, Phys. Rev. D, 73, 044034, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0602066].
156 Rosenthal, E., “Second-order gravitational self-force”, Phys. Rev. D, 74, 084018, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0609069].
157 Sago, N., Barack, L. and Detweiler, S., “Two approaches for the gravitational self force in black hole spacetime: Comparison of numerical results”, Phys. Rev. D, 78, 124024, (2008). [External LinkDOI], [External LinkarXiv:0810.2530].
158 Sago, N., Tanaka, T., Hikida, W., Ganz, K. and Nakano, H., “Adiabatic evolution of orbital parameters in the Kerr spacetime”, Prog. Theor. Phys., 115, 873–907, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0511151].
159 Sago, N., Tanaka, T., Hikida, W. and Nakano, H., “Adiabatic radiation reaction to orbits in Kerr spacetime”, Prog. Theor. Phys., 114, 509–514, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0506092].
160 Schattner, R., “The center of mass in general relativity”, Gen. Relativ. Gravit., 10, 377–393, (1979).
161 Sciama, D.W., Waylen, P.C. and Gilman, R.C., “Generally Covariant Integral Formulation of Einstein’s Field Equations”, Phys. Rev., 187, 1762–1766, (1969). [External LinkDOI].
162 Shankar, K. and Whiting, B.F., “Self-force of a static electric charge near a Schwarzschild star”, Phys. Rev. D, 76, 124027, (2007). [External LinkDOI], [External LinkarXiv:0707.0042].
163 Smith, A.G. and Will, C.M., “Force on a static charge outside a Schwarzschild black hole”, Phys. Rev. D, 22, 1276–1284, (1980). [External LinkDOI].
164 Steinbauer, R. and Vickers, J.A., “The use of Generalised Functions and Distributions in General Relativity”, Class. Quantum Grav., 23, R91–R114, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0603078].
165 Steinhoff, J. and Puetzfeld, D., “Multipolar equations of motion for extended test bodies in General Relativity”, Phys. Rev. D, 81, 044019, (2010). [External LinkDOI], [External LinkarXiv:0909.3756].
166 Stewart, J.M., “Hertz–Bromwich–Debye–Whittaker–Penrose potentials in general relativity”, Proc. R. Soc. London, Ser. A, 367, 527–538, (1979).
167 Sundararajan, P., “Transition from adiabatic inspiral to geodesic plunge for a compact object around a massive Kerr black hole: Generic orbits”, Phys. Rev. D, 77, 124050, (2008). [External LinkDOI], [External LinkarXiv:0803.4482].
168 Sundararajan, P., Khanna, G. and Hughes, S.A., “Towards adiabatic waveforms for inspiral into Kerr black holes: I. A new model of the source for the time domain perturbation equation”, Phys. Rev. D, 76, 104005, (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0703028].
169 Synge, J.L., Relativity: The General Theory, (North-Holland, Amsterdam, 1960).
170 Taylor, S. and Poisson, E., “Nonrotating black hole in a post-Newtonian tidal environment”, Phys. Rev. D, 78, 084016, (2008). [External LinkDOI], [External LinkarXiv:0806.3052].
171 Teitelboim, C., Villarroel, D. and van Weert, C.G., “Classical electrodynamics of retarded fields and point particles”, Riv. Nuovo Cimento, 3, 9, (1980). [External LinkDOI].
172 Teukolsky, S.A., “Perturbations of a Rotating Black Hole. I. Fundamental Equations for Gravitational, Electromagnetic, and Neutrino-Field Perturbations”, Astrophys. J., 185, 635–647, (1973). [External LinkDOI], [External LinkADS].
173 Thorne, K.S., “Multipole expansions of gravitational radiation”, Rev. Mod. Phys., 52, 299–339, (1980). [External LinkDOI], [External LinkADS].
174 Thorne, K.S. and Hartle, J.B., “Laws of motion and precession for black holes and other bodies”, Phys. Rev. D, 31, 1815–1837, (1985). [External LinkDOI].
175 Vega, I., The dynamics of point particles around black holes, Ph.D. Thesis, (University of Florida, Gainesville, 2009).
176 Vega, I. and Detweiler, S., “Regularization of fields for self-force problems in curved spacetime: Foundations and a time-domain application”, Phys. Rev. D, 77, 084008, (2008). [External LinkDOI], [External LinkarXiv:0712.4405].
177 Vega, I., Diener, P., Tichy, W. and Detweiler, S., “Self-force with (3+1) codes: a primer for numerical relativists”, Phys. Rev. D, 80, 084021, (2009). [External LinkDOI], [External LinkarXiv:0908.2138].
178 Verhulst, F., Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics, Texts in Applied Mathematics,  50, (Springer, New York, 2005). [External LinkGoogle Books].
179 Wald, R.M., “Construction of Solutions of Gravitational, Electromagnetic, or Other Perturbation Equations from Solutions of Decoupled Equations”, Phys. Rev. Lett., 41, 203–206, (1978). [External LinkDOI].
180 Walker, M. and Will, C.M., “The approximation of radiative effects in relativistic gravity – Gravitational radiation reaction and energy loss in nearly Newtonian systems”, Astrophys. J. Lett., 242, L129–L133, (1980). [External LinkDOI].
181 Warburton, N. and Barack, L., “Self-force on a scalar charge in Kerr spacetime: Circular equatorial orbits”, Phys. Rev. D, 81, 084039, (2010). [External LinkDOI], [External LinkarXiv:1003.1860].
182 Wardell, B., Green Functions and Radiation Reaction From a Spacetime Perspective, Ph.D. Thesis, (University College Dublin, Dublin, 2009). [External LinkarXiv:0910.2634].
183 Whiting, B.F., “Identifying the singular field for self-force evaluation”, Class. Quantum Grav., 22, S661–S679, (2005). [External LinkDOI].
184 Whiting, B.F. and Price, L.P., “Metric reconstruction from Weyl scalars”, Class. Quantum Grav., 22, S589–S604, (2005). [External LinkDOI].
185 Wiseman, A.G., “Self-force on a static scalar test charge outside a Schwarzschild black hole”, Phys. Rev. D, 61, 084014, 1–14, (2000). [External LinkDOI], [External LinkarXiv:gr-qc/0001025].
186 Zel’nikov, A.I and Frolov, V.P., “Influence of gravitation on the self-energy of charged particles”, Sov. Phys. JETP, 55, 919–198, (1982).
187 Zhang, X.-H., “Multipole expansions of the general-relativistic gravitational field of the external universe”, Phys. Rev. D, 34, 991–1004, (1986). [External LinkDOI].