References

1 Abrahams, A.M. and Evans, C.R., “Gauge-invariant treatment of gravitational radiation near the source: Analysis and numerical simulations”, Phys. Rev. D, 42, 2585–2594, (1990). [External LinkDOI], [External LinkADS].
2 Abrahams, A.M. and Price, R.H., “Applying black hole perturbation theory to numerically generated spacetimes”, Phys. Rev. D, 53, 1963–1971, (1996). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9508059].
3 Abrahams, A.M., Shapiro, S.L. and Teukolsky, S.A., “Calculation of gravitational waveforms from black hole collisions and disk collapse: Applying perturbation theory to numerical spacetimes”, Phys. Rev. D, 51, 4295–4301, (1995). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9408036].
4 Abrahams, A.M. et al. (Binary Black Hole Grand Challenge Alliance), “Gravitational Wave Extraction and Outer Boundary Conditions by Perturbative Matching”, Phys. Rev. Lett., 80, 1812–1815, (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9709082].
5 Alcubierre, M. et al., “Towards standard testbeds for numerical relativity”, Class. Quantum Grav., 21, 589–613, (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0305023].
6 Anderson, J.L., “Gravitational radiation damping in systems with compact components”, Phys. Rev. D, 36, 2301–2313, (1987). [External LinkDOI], [External LinkADS].
7 Anderson, J.L. and Hobill, D.W., “Matched analytic-numerical solutions of wave equations”, in J.M., Centrella., ed., Dynamical Spacetimes and Numerical Relativity, Proceedings of the Workshop held at Drexel University, October 7 – 11, 1985, pp. 389–410, (Cambridge University Press, Cambridge, New York, 1986). [External LinkADS].
8 Anderson, J.L. and Hobill, D.W., “Mixed analytic-numerical solutions for a simple radiating system”, Gen. Relativ. Gravit., 19, 563–580, (1987). [External LinkDOI], [External LinkADS].
9 Anderson, J.L. and Hobill, D.W., “A study of nonlinear radiation damping by matching analytic and numerical solutions”, J. Comput. Phys., 75, 283–299, (1988). [External LinkDOI], [External LinkADS].
10 Anderson, J.L., Kates, R.E., Kegeles, L.S. and Madonna, R.G., “Divergent integrals of post-Newtonian gravity: Nonanalytic terms in the near-zone expansion of a gravitationally radiating system found by matching”, Phys. Rev. D, 25, 2038–2048, (1982). [External LinkDOI], [External LinkADS].
11 Anninos, P., Daues, G., Massó, J., Seidel, E. and Suen, W.-M., “Horizon boundary conditions for black hole spacetimes”, Phys. Rev. D, 51, 5562–5578, (1995). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9412069].
12 Arnowitt, R., Deser, S. and Misner, C.W., “The dynamics of general relativity”, in Witten, L., ed., Gravitation: An Introduction to Current Research, pp. 227–265, (Wiley, New York; London, 1962). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0405109].
13 Babiuc, M.C., Bishop, N.T., Szilágyi, B. and Winicour, J., “Strategies for the characteristic extraction of gravitational waveforms”, Phys. Rev. D, 79, 084011, (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0808.0861 [gr-qc]].
14 Babiuc, M.C., Kreiss, H.-O. and Winicour, J., “Constraint-preserving Sommerfeld conditions for the harmonic Einstein equations”, Phys. Rev. D, 75, 044002, (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0612051].
15 Babiuc, M.C., Szilágyi, B., Hawke, I. and Zlochower, Y., “Gravitational wave extraction based on Cauchy-characteristic extraction and characteristic evolution”, Class. Quantum Grav., 22, 5089–5107, (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0501008].
16 Babiuc, M.C., Szilágyi, B., Winicour, J. and Zlochower, Y., “Characteristic extraction tool for gravitational waveforms”, Phys. Rev. D, 84, 044057, (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1011.4223 [gr-qc]].
17 Babiuc, M.C., Winicour, J. and Zlochower, Y., “Binary black hole waveform extraction at null infinity”, Class. Quantum Grav., 28, 134006, (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1106.4841 [gr-qc]].
18 Babiuc, M.C. et al., “Implementation of standard testbeds for numerical relativity”, Class. Quantum Grav., 25, 125012, (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0709.3559 [gr-qc]].
19 Baker, J., Campanelli, M., Lousto, C.O. and Takahashi, R., “Modeling gravitational radiation from coalescing binary black holes”, Phys. Rev. D, 65, 124012, 1–23, (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0202469].
20 Baker, J.G., Centrella, J., Choi, D.-I., Koppitz, M. and van Meter, J.R., “Binary black hole merger dynamics and waveforms”, Phys. Rev. D, 73, 104002, (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0602026].
21 Baker, J.G., Centrella, J., Choi, D.-I., Koppitz, M. and van Meter, J.R., “Gravitational-Wave Extraction from an Inspiraling Configuration of Merging Black Holes”, Phys. Rev. Lett., 96, 111102, (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0511103].
22 Balean, R., The Null-Timelike Boundary Problem, Ph.D. Thesis, (University of New England, Armidale, NSW, Australia, 1966).
23 Balean, R., “The null-timelike boundary problem for the linear wave equation”, Commun. Part. Diff. Eq., 22, 1325–1360, (1997). [External LinkDOI].
24 Barreto, W., Castillo, L. and Barrios, E., “Central equation of state in spherical characteristic evolutions”, Phys. Rev. D, 80, 084007, (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0909.4500 [gr-qc]].
25 Barreto, W., Castillo, L. and Barrios, E., “Bondian frames to couple matter with radiation”, Gen. Relativ. Gravit., 42, 1845–1862, (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1002.4168 [gr-qc]].
26 Barreto, W. and Da Silva, A., “Gravitational collapse of a charged and radiating fluid ball in the diffusion limit”, Gen. Relativ. Gravit., 28, 735–747, (1996). [External LinkDOI], [External LinkADS].
27 Barreto, W. and Da Silva, A., “Self-similar and charged spheres in the diffusion approximation”, Class. Quantum Grav., 16, 1783–1792, (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0508055].
28 Barreto, W., Da Silva, A., Gómez, R., Lehner, L., Rosales, L. and Winicour, J., “Three-dimensional Einstein–Klein–Gordon system in characteristic numerical relativity”, Phys. Rev. D, 71, 064028, (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0412066].
29 Barreto, W., Gómez, R., Lehner, L. and Winicour, J., “Gravitational instability of a kink”, Phys. Rev. D, 54, 3834–3839, (1996). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0507086].
30 Barreto, W., Peralta, C. and Rosales, L., “Equation of state and transport processes in self-similar spheres”, Phys. Rev. D, 59, 024008, (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0508054].
31 Bartnik, R., “Einstein equations in the null quasispherical gauge”, Class. Quantum Grav., 14, 2185–2194, (1997). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9611045].
32 Bartnik, R., “Shear-free null quasi-spherical space-times”, J. Math. Phys., 38, 5774–5791, (1997). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9705079].
33 Bartnik, R., “Interaction of gravitational waves with a black hole”, in De Wit, D., Bracken, A.J., Gould, M.D. and Pearce, P.A., eds., XIIth International Congress of Mathematical Physics (ICMP ’97), The University of Queensland, Brisbane, 13 – 19 July 1997, pp. 3–14, (International Press, Somerville, 1999).
34 Bartnik, R., “Assessing accuracy in a numerical Einstein solver”, in Weinstein, G. and Weikard, R., eds., Differential Equations and Mathematical Physics, Proceedings of an international conference held at the University of Alabama in Birmingham, March 16 – 20, 1999, AMS/IP Studies in Advanced Mathematics,  16, p. 11, (American Mathematical Society; International Press, Providence, RI, 2000).
35 Bartnik, R. and Norton, A.H., “Numerical solution of the Einstein equations”, in Noye, B.J., Teubner, M.D. and Gill, A.W., eds., Computational Techniques and Applications: CTAC 97, The Eighth Biennial Conference, The University of Adelaide, Australia, 29 September – 1 October 1997, p. 91, (World Scientific, Singapore; River Edge, NJ, 1998).
36 Bartnik, R. and Norton, A.H., “Numerical Methods for the Einstein Equations in Null Quasi-Spherical Coordinates”, SIAM J. Sci. Comput., 22, 917–950, (2000). [External LinkDOI].
37 Bartnik, R. and Norton, A.H., “Numerical Experiments at Null Infinity”, in Friedrich, H. and Frauendiener, J., eds., The Conformal Structure of Space-Time: Geometry, Analysis, Numerics, Proceedings of the international workshop, Tübingen, Germany, 2 – 4 April 2001, Lecture Notes in Physics, 604, pp. 313–326, (Springer, Berlin; New York, 2002). [External LinkDOI], [External LinkADS].
38 Baumgarte, T.W. and Shapiro, S.L., “Numerical integration of Einstein’s field equations”, Phys. Rev. D, 59, 024007, (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9810065].
39 Baumgarte, T.W., Shapiro, S.L. and Teukolsky, S.A., “Computing Supernova Collapse to Neutron Stars and Black Holes”, Astrophys. J., 443, 717–734, (1995). [External LinkDOI], [External LinkADS].
40 Baumgarte, T.W., Shapiro, S.L. and Teukolsky, S.A., “Computing the Delayed Collapse of Hot Neutron Stars to Black Holes”, Astrophys. J., 458, 680–691, (1996). [External LinkDOI], [External LinkADS].
41 Bayliss, A. and Turkel, E., “Radiation boundary conditions for wavelike equations”, Commun. Pure Appl. Math., 33, 707–725, (1980). [External LinkDOI], [External LinkADS].
42 Berger, B.K., “Numerical Approaches to Spacetime Singularities”, Living Rev. Relativity, 5, lrr-2002-1, (2002). URL (accessed 20 July 2005):
http://www.livingreviews.org/lrr-2002-1.
43 Bičák, J., Reilly, P. and Winicour, J., “Boost-rotation symmetric gravitational null cone data”, Gen. Relativ. Gravit., 20, 171–181, (1988). [External LinkDOI], [External LinkADS].
44 Bičák, J. and Schmidt, B.G., “Asymptotically flat radiative space-times with boost-rotation symmetry: the general structure”, Phys. Rev. D, 40, 1827–1853, (1989).
45 Bishop, N.T., “Some aspects of the characteristic initial value problem in numerical relativity”, in d’Inverno, R.A., ed., Approaches to Numerical Relativity, Proceedings of the International Workshop on Numerical Relativity, Southampton, December 1991, pp. 20–33, (Cambridge University Press, Cambridge; New York, 1992). [External LinkADS].
46 Bishop, N.T., “Numerical relativity: combining the Cauchy and characteristic initial value problems”, Class. Quantum Grav., 10, 333–341, (1993). [External LinkDOI], [External LinkADS].
47 Bishop, N.T., “Linearized solutions of the Einstein equations within a Bondi–Sachs framework, and implications for boundary conditions in numerical simulations”, Class. Quantum Grav., 22, 2393–2406, (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0412006].
48 Bishop, N.T. and Deshingkar, S.S., “New approach to calculating the news”, Phys. Rev. D, 68, 024031, (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0303021].
49 Bishop, N.T., Gómez, R., Holvorcem, P.R., Matzner, R.A., Papadopoulos, P. and Winicour, J., “Cauchy-Characteristic Matching: A New Approach to Radiation Boundary Conditions”, Phys. Rev. Lett., 76, 4303–4306, (1996). [External LinkDOI], [External LinkADS].
50 Bishop, N.T., Gómez, R., Holvorcem, P.R., Matzner, R.A., Papadopoulos, P. and Winicour, J., “Cauchy-Characteristic Evolution and Waveforms”, J. Comput. Phys., 136, 140–167, (1997). [External LinkDOI], [External LinkADS]. Erratum J. Comput. Phys., 148, 299–301, DOI:10.1006/jcph.1998.6139.
51 Bishop, N.T., Gómez, R., Husa, S., Lehner, L. and Winicour, J., “Numerical relativistic model of a massive particle in orbit near a Schwarzschild black hole”, Phys. Rev. D, 68, 084015, (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0301060].
52 Bishop, N.T., Gómez, R., Isaacson, R.A., Lehner, L., Szilágyi, B. and Winicour, J., “Cauchy-characteristic matching”, in Bhawal, B. and Iyer, B.R., eds., Black Holes, Gravitational Radiation and the Universe: Essays in Honour of C.V. Vishveshwara, Fundamental Theories of Physics, pp. 383–408, (Kluwer, Dordrecht; Boston, 1999). [External LinkADS], [External LinkarXiv:gr-qc/9801070].
53 Bishop, N.T., Gómez, R., Lehner, L., Maharaj, M. and Winicour, J., “High-powered gravitational news”, Phys. Rev. D, 56, 6298–6309, (1997). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9708065].
54 Bishop, N.T., Gómez, R., Lehner, L., Maharaj, M. and Winicour, J., “The incorporation of matter into characteristic numerical relativity”, Phys. Rev. D, 60, 024005, (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9901056].
55 Bishop, N.T., Gómez, R., Lehner, L., Maharaj, M. and Winicour, J., “Characteristic initial data for a star orbiting a black hole”, Phys. Rev. D, 72, 024002, (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0412080].
56 Bishop, N.T., Gómez, R., Lehner, L. and Winicour, J., “Cauchy-characteristic extraction in numerical relativity”, Phys. Rev. D, 54, 6153–6165, (1996). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9705033].
57 Bishop, N.T. and Haines, P., “Observational cosmology and numerical relativity”, Quaest. Math., 19, 259–274, (1996). [External LinkDOI].
58 Bishop, N.T., Pollney, D. and Reisswig, C., “Initial data transients in binary black hole evolutions”, Class. Quantum Grav., 28, 155019, (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/1101.5492].
59 Bishop, N.T. and Venter, L.R., “Kerr metric in Bondi–Sachs form”, Phys. Rev. D, 73, 084023, (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0506077].
60 Bizoń, P., “Equivariant Self-Similar Wave Maps from Minkowski Spacetime into 3-Sphere”, Commun. Math. Phys., 215, 45–56, (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:math-ph/9910026].
61 Blaschak, J.G. and Kriegsmann, G.A., “A comparative study of absorbing boundary conditions”, J. Comput. Phys., 77, 109–139, (1988). [External LinkDOI], [External LinkADS].
62 Bondi, H., “Gravitational waves in general relativity”, Nature, 186, 535, (1960). [External LinkDOI], [External LinkADS].
63 Bondi, H., van der Burg, M.G.J. and Metzner, A.W.K., “Gravitational Waves in General Relativity. VII. Waves from Axi-Symmetric Isolated Systems”, Proc. R. Soc. London, Ser. A, 269, 21–52, (1962). [External LinkDOI], [External LinkADS].
64 Brady, P.R., Chambers, C.M. and Gonçalves, S.M.C.V., “Phases of massive scalar field collapse”, Phys. Rev. D, 56, R6057–R6061, (1997). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9709014].
65 Brady, P.R., Chambers, C.M., Krivan, W. and Laguna, P., “Telling tails in the presence of a cosmological constant”, Phys. Rev. D, 55, 7538–7545, (1997). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9611056].
66 Brady, P.R. and Smith, J.D., “Black Hole Singularities: A Numerical Approach”, Phys. Rev. Lett., 75, 1256–1259, (1995). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/950607].
67 Brizuela, D., Martín-García, J.M. and Tiglio, M., “A complete gauge-invariant formalism for arbitrary second-order perturbations of a Schwarzschild black hole”, Phys. Rev. D, 80, 024021, (2009). [External LinkDOI], [External Link0903.1134].
68 Browning, G.L., Hack, J.J. and Swarztrauber, P.N., “A Comparison of Three Numerical Methods for Solving Differential Equations on the Sphere”, Mon. Weather Rev., 117, 1058–1075, (1989). [External LinkDOI], [External LinkADS].
69 Buchman, L.T. and Sarbach, O., “Towards absorbing outer boundaries in general relativity”, Class. Quantum Grav., 23, 6709–6744, (2006). [External LinkDOI], [External Linkgr-qc/0608051].
70 Burke, W.L., “Gravitational Radiation Damping of Slowly Moving Systems Calculated Using Matched Asymptotic Expansions”, J. Math. Phys., 12, 401–418, (1971). [External LinkDOI], [External LinkADS].
71 Burko, L.M., “Structure of the Black Hole’s Cauchy-Horizon Singularity”, Phys. Rev. Lett., 79, 4958–4961, (1997). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9710112].
72 Burko, L.M. and Ori, A., “Late-time evolution of nonlinear gravitational collapse”, Phys. Rev. D, 56, 7820–7832, (1997). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9703067].
73 Butler, D.S., “The Numerical Solution of Hyperbolic Systems of Partial Differential Equations in Three Independent Variables”, Proc. R. Soc. London, Ser. A, 255, 232–252, (1960). [External LinkDOI], [External LinkADS].
74 Calabrese, G., Lehner, L. and Tiglio, M., “Constraint-preserving boundary conditions in numerical relativity”, Phys. Rev. D, 65, 104031, (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0111003].
75 Calabrese, G., Pullin, J., Reula, O., Sarbach, O. and Tiglio, M., “Well Posed Constraint-Preserving Boundary Conditions for the Linearized Einstein Equations”, Commun. Math. Phys., 240, 377–395, (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0209017].
76 Calabrese, G., Pullin, J., Sarbach, O. and Tiglio, M., “Convergence and stability in numerical relativity”, Phys. Rev. D, 66, 041501(R), (2002). [External LinkDOI], [External Linkgr-qc/0207018].
77 Campanelli, M., Gómez, R., Husa, S., Winicour, J. and Zlochower, Y., “Close limit from a null point of view: The advanced solution”, Phys. Rev. D, 63, 124013, (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0012107].
78 Campanelli, M., Lousto, C.O., Marronetti, P. and Zlochower, Y., “Accurate Evolutions of Orbiting Black-Hole Binaries without Excision”, Phys. Rev. Lett., 96, 111101, (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0511048].
79 Choptuik, M.W., “‘Critical’ behavior in massless scalar field collapse”, in d’Inverno, R.A., ed., Approaches to Numerical Relativity, Proceedings of the International Workshop on Numerical Relativity, Southampton, December 1991, pp. 202–222, (Cambridge University Press, Cambridge; New York, 1992). [External LinkADS].
80 Choptuik, M.W., “Universality and scaling in gravitational collapse of a massless scalar field”, Phys. Rev. Lett., 70, 9–12, (1993). [External LinkDOI], [External LinkADS].
81 Choquet-Bruhat, Y., Chruściel, P.T. and Martín-García, J.M., “An existence theorem for the Cauchy problem on a characteristic cone for the Einstein equations”, in Agranovsky, M. et al., ed., Complex Analysis and Dynamical Systems IV. Part 2: General Relativity, Geometry, and PDE, Proceedings of the conference held in Nahariya, Israel, May 18 – 22, 2009, Contemporary Mathematics, 554, (American Mathematical Society and Bar-Ilan University, Providence, RI; Ramat-Gan, Israel, 2011). [External LinkADS], [External LinkarXiv:1006.5558 [gr-qc]].
82 Christodoulou, D., “A mathematical theory of gravitational collapse”, Commun. Math. Phys., 109, 613–647, (1987). [External LinkDOI].
83 Christodoulou, D., “The formation of black holes and singularities in spherically symmetric gravitational collapse”, Commun. Pure Appl. Math., 44, 339–373, (1991). [External LinkDOI].
84 Christodoulou, D., “Bounded Variation Solutions of the Spherically Symmetric Einstein-Scalar Field Equations”, Commun. Pure Appl. Math., 46, 1131–1220, (1993). [External LinkDOI].
85 Christodoulou, D., “Examples of Naked Singularity Formation in the Gravitational Collapse of a Scalar Field”, Ann. Math. (2), 140, 607–653, (1994). [External LinkDOI].
86 Christodoulou, D., “The instability of naked singularities in the gravitational collapse of a scalar field”, Ann. Math. (2), 149, 183–217, (1999). [External LinkDOI].
87 Christodoulou, D., “On the global initial value problem and the issue of singularities”, Class. Quantum Grav., 16, A23–A35, (1999). [External LinkDOI].
88 Christodoulou, D. and Klainerman, S., The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical Series,  41, (Princeton University Press, Princeton, NJ, 1993).
89 Clarke, C.J.S. and d’Inverno, R.A., “Combining Cauchy and characteristic numerical evolutions in curved coordinates”, Class. Quantum Grav., 11, 1463–1448, (1994). [External LinkDOI], [External LinkADS].
90 Clarke, C.J.S., d’Inverno, R.A. and Vickers, J.A., “Combining Cauchy and characteristic codes. I. The vacuum cylindrically symmetric problem”, Phys. Rev. D, 52, 6863–6867, (1995). [External LinkDOI], [External LinkADS].
91 Cook, G.B. et al. (Binary Black Hole Grand Challenge Alliance), “Boosted Three-Dimensional Black-Hole Evolutions with Singularity Excision”, Phys. Rev. Lett., 80, 2512–2516, (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9711078].
92 Corkill, R.W. and Stewart, J.M., “Numerical Relativity. II. Numerical Methods for the Characteristic Initial Value Problem and the Evolution of the Vacuum Field Equations for Space- Times with Two Killing Vectors”, Proc. R. Soc. London, Ser. A, 386, 373–391, (1983). [External LinkDOI], [External LinkADS].
93 de Moerloose, J. and de Zutter, D., “Surface integral representation radiation boundary condition for the FDTD method”, IEEE Trans. Ant. Prop., 41, 890–896, (1993). [External LinkDOI], [External LinkADS].
94 de Oliveira, H.P. and Rodrigues, E.L., “A Dynamical System Approach for the Bondi Problem”, Int. J. Mod. Phys. A, 24, 1700–1704, (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0809.2837 [gr-qc]].
95 Derry, L., Isaacson, R.A. and Winicour, J., “Shear-Free Gravitational Radiation”, Phys. Rev., 185, 1647–1655, (1969). [External LinkDOI], [External LinkADS].
96 Diener, P., Dorband, E.N., Schnetter, E. and Tiglio, M., “Optimized High-Order Derivative and Dissipation Operators Satisfying Summation by Parts, and Applications in Three-dimensional Multi-block Evolutions”, J. Sci. Comput., 32, 109–145, (2007). [External LinkDOI], [External Linkgr-qc/0512001].
97 d’Inverno, R.A., ed., Approaches to Numerical Relativity, Proceedings of the International Workshop on Numerical Relativity, Southampton, December 1991, (Cambridge University Press, Cambridge; New York, 1992).
98 d’Inverno, R.A., Dubal, M.R. and Sarkies, E.A., “Cauchy-characteristic matching for a family of cylindrical solutions possessing both gravitational degrees of freedom”, Class. Quantum Grav., 17, 3157–3170, (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0002057].
99 d’Inverno, R.A. and Vickers, J.A., “Combining Cauchy and characteristic codes. III. The interface problem in axial symmetry”, Phys. Rev. D, 54, 4919–4928, (1996). [External LinkDOI], [External LinkADS].
100 d’Inverno, R.A. and Vickers, J.A., “Combining Cauchy and characteristic codes. IV. The characteristic field equations in axial symmetry”, Phys. Rev. D, 56, 772–784, (1997). [External LinkDOI], [External LinkADS].
101 Dorband, E.N., Berti, E., Diener, P., Schnetter, E. and Tiglio, M., “A numerical study of the quasinormal mode excitation of Kerr black holes”, Phys. Rev. D, 74, 084028, (2006). [External LinkDOI], [External Linkgr-qc/0608091].
102 Dubal, M.R., d’Inverno, R.A. and Clarke, C.J.S., “Combining Cauchy and characteristic codes. II. The interface problem for vacuum cylindrical symmetry”, Phys. Rev. D, 52, 6868–6881, (1995). [External LinkDOI], [External LinkADS].
103 Duff, G.F.D., “Mixed problems for linear systems of first order equations”, Can. J. Math., 10, 127–160, (1958). [External LinkDOI].
104 “Einstein Toolkit”, project homepage, Louisiana State University. URL (accessed 7 August 2011):
External Linkhttp://www.einsteintoolkit.org/.
105 Ellis, G.F.R., Nel, S.D., Stoeger, W.J., Maartens, R. and Whitman, A.P., “Ideal observational cosmology”, Phys. Rep., 124, 315–417, (1985). [External LinkDOI], [External LinkADS].
106 Engquist, B. and Majda, A., “Absorbing Boundary Conditions for the Numerical Simulation of Waves”, Math. Comput., 31(139), 629–651, (1977). [External LinkDOI], [External LinkADS].
107 Flanagan, É.É. and Hughes, S.A., “Measuring gravitational waves from binary black hole coalescences. I. Signal to noise for inspiral, merger and ringdown”, Phys. Rev. D, 57, 4535–4565, (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9701039].
108 Fletcher, S.J. and Lun, A.W.C., “The Kerr spacetime in generalized Bondi–Sachs coordinates”, Class. Quantum Grav., 20, 4153–4167, (2003). [External LinkDOI], [External LinkADS].
109 Font, J.A., “Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity”, Living Rev. Relativity, 11, lrr-2008-7, (2008). URL (accessed 3 October 2008):
http://www.livingreviews.org/lrr-2008-7.
110 Frauendiener, J., “Conformal Infinity”, Living Rev. Relativity, 7, lrr-2004-1, (2004). URL (accessed 20 October 2005):
http://www.livingreviews.org/lrr-2004-1.
111 Friedlander, F.G., “On the radiation field of pulse solutions of the wave equation. III”, Proc. R. Soc. London, Ser. A, 299, 264–278, (1967). [External LinkDOI].
112 Friedlander, F.G., The Wave Equation on a Curved Space-Time, Cambridge Monographs on Mathematical Physics,  2, (Cambridge University Press, Cambridge; New York, 1975). [External LinkGoogle Books].
113 Friedman, J.L., Schleich, K. and Witt, D.M., “Topological Censorship”, Phys. Rev. Lett., 71, 1486–1489, (1993). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9305017].
114 Friedrich, H., “The Asymptotic Characteristic Initial Value Problem for Einstein’s Vacuum Field Equations as an Initial Value Problem for a First-Order Quasilinear Symmetric Hyperbolic System”, Proc. R. Soc. London, Ser. A, 378, 401–421, (1981). [External LinkDOI], [External LinkADS].
115 Friedrich, H., “On the regular and the asymptotic characteristic initial value problem for Einstein’s vacuum field equations”, Proc. R. Soc. London, Ser. A, 375, 169–184, (1981). [External LinkADS].
116 Friedrich, H., “Cauchy problems for the conformal vacuum field equations in general relativity”, Commun. Math. Phys., 91, 445–472, (1983). [External LinkDOI], [External LinkADS].
117 Friedrich, H., “Hyperbolic reductions for Einstein’s equations”, Class. Quantum Grav., 13, 1451–1469, (1996). [External LinkDOI], [External LinkADS].
118 Friedrich, H. and Nagy, G., “The Initial Boundary Value Problem for Einstein’s Vacuum Field Equation”, Commun. Math. Phys., 201, 619–655, (1999). [External LinkDOI], [External LinkADS].
119 Friedrich, H. and Rendall, A.D., “The Cauchy problem for the Einstein equations”, in Schmidt, B.G., ed., Einstein’s Field Equations and Their Physical Implications: Selected Essays in Honour of Jürgen Ehlers, Lecture Notes in Physics, 540, pp. 127–223, (Springer, Berlin; New York, 2000). [External Linkgr-qc/0002074], [External LinkGoogle Books].
120 Friedrich, H. and Stewart, J.M., “Characteristic Initial Data and Wavefront Singularities in General Relativity”, Proc. R. Soc. London, Ser. A, 385, 345–371, (1983). [External LinkDOI], [External LinkADS].
121 Frittelli, S., “Estimates for the characteristic problem of the first-order reduction of the wave equation”, J. Phys. A: Math. Gen., 37, 8639–8655, (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:math-ph/0408007].
122 Frittelli, S. and Gómez, R., “Einstein boundary conditions for the 3+1 Einstein equations”, Phys. Rev. D, 68, 044014, (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0302071].
123 Frittelli, S. and Gómez, R., “Initial-boundary-value problem of the self-gravitating scalar field in the Bondi–Sachs gauge”, Phys. Rev. D, 75, 044021, 1–15, (2007). [External LinkDOI], [External LinkADS].
124 Frittelli, S. and Lehner, L., “Existence and uniqueness of solutions to characteristic evolution in Bondi–Sachs coordinates in general relativity”, Phys. Rev. D, 59, 084012, 1–9, (1999). [External LinkDOI], [External LinkADS].
125 Gallo, E., Lehner, L. and Moreschi, O.M., “Estimating total momentum at finite distances”, Phys. Rev. D, 78, 084027, (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0806.4340 [gr-qc]].
126 Garfinkle, D., “Choptuik scaling in null coordinates”, Phys. Rev. D, 51, 5558–5561, (1995). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9412008].
127 Garfinkle, D., Cutler, C. and Duncan, G.C., “Choptuik scaling in six dimensions”, Phys. Rev. D, 60, 104007, (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9908044].
128 Geroch, R.P., “A method for generating solutions of Einstein’s equations”, J. Math. Phys., 12, 918–924, (1971). [External LinkDOI].
129 Givoli, D., “Non-reflecting boundary conditions”, J. Comput. Phys., 94, 1–29, (1991). [External LinkDOI], [External LinkADS].
130 Gleiser, R.J., Nicasio, C.O., Price, R.H. and Pullin, J., “Gravitational radiation from Schwarzschild black holes: the second-order perturbation formalism”, Phys. Rep., 325, 41–81, (2000). [External LinkDOI], [External Linkgr-qc/9807077].
131 Gnedin, M.L. and Gnedin, N.Y., “Destruction of the Cauchy horizon in the Reissner–Nordström black hole”, Class. Quantum Grav., 10, 1083–1102, (1993). [External LinkDOI], [External LinkADS].
132 Goldwirth, D.S. and Piran, T., “Gravitational collapse of massless scalar field and cosmic censorship”, Phys. Rev. D, 36, 3575–3581, (1987). [External LinkDOI], [External LinkADS].
133 Gómez, R., “Gravitational waveforms with controlled accuracy”, Phys. Rev. D, 64, 024007, (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0103011].
134 Gómez, R., Barreto, W. and Frittelli, S., “Framework for large-scale relativistic simulations in the characteristic approach”, Phys. Rev. D, 76, 124029, (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0711.0564 [gr-qc]].
135 Gómez, R. and Frittelli, S., “First-order quasilinear canonical representation of the characteristic formulation of the Einstein equations”, Phys. Rev. D, 68, 084013, (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0303104].
136 Gómez, R., Husa, S., Lehner, L. and Winicour, J., “Gravitational waves from a fissioning white hole”, Phys. Rev. D, 66, 064019, (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0205038].
137 Gómez, R., Husa, S. and Winicour, J., “Complete null data for a black hole collision”, Phys. Rev. D, 64, 024010, (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0009092].
138 Gómez, R., Laguna, P., Papadopoulos, P. and Winicour, J., “Cauchy-characteristic evolution of Einstein–Klein–Gordon systems”, Phys. Rev. D, 54, 4719–4727, (1996). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9603060].
139 Gómez, R., Lehner, L., Marsa, R.L. and Winicour, J., “Moving black holes in 3D”, Phys. Rev. D, 57, 4778–4788, (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9710138].
140 Gómez, R., Lehner, L., Papadopoulos, P. and Winicour, J., “The eth formalism in numerical relativity”, Class. Quantum Grav., 14, 977–990, (1997). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9702002].
141 Gómez, R., Marsa, R.L. and Winicour, J., “Black hole excision with matching”, Phys. Rev. D, 56, 6310–6319, (1997). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9708002].
142 Gómez, R., Papadopoulos, P. and Winicour, J., “Null cone evolution of axisymmetric vacuum space-times”, J. Math. Phys., 35, 4184–4204, (1994). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0006081].
143 Gómez, R., Reilly, P., Winicour, J. and Isaacson, R.A., “Post-Newtonian behavior of the Bondi mass”, Phys. Rev. D, 47, 3292–3302, (1993). [External LinkDOI], [External LinkADS].
144 Gómez, R. and Winicour, J., “Asymptotics of gravitational collapse of scalar waves”, J. Math. Phys., 33, 1445–1457, (1992). [External LinkDOI], [External LinkADS].
145 Gómez, R. and Winicour, J., “Gravitational wave forms at finite distances and at null infinity”, Phys. Rev. D, 45, 2776–2782, (1992). [External LinkDOI], [External LinkADS].
146 Gómez, R., Winicour, J. and Isaacson, R.A., “Evolution of scalar fields from characteristic data”, J. Comput. Phys., 98, 11–25, (1992). [External LinkDOI], [External LinkADS].
147 Gómez, R., Winicour, J. and Schmidt, B.G., “Newman–Penrose constants and the tails of self-gravitating waves”, Phys. Rev. D, 49, 2828–2836, (1994). [External LinkDOI], [External LinkADS].
148 Gómez, R. et al. (Binary Black Hole Grand Challenge Alliance), “Stable characteristic evolution of generic three-dimensional single-black-hole spacetimes”, Phys. Rev. Lett., 80, 3915–3918, (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9801069].
149 Grote, M.J. and Keller, J.B., “Nonreflecting Boundary Conditions for Maxwell’s Equations”, J. Comput. Phys., 139, 327–342, (1998). [External LinkDOI].
150 Gundlach, C. and Martín-García, J.M., “Symmetric hyperbolicity and consistent boundary conditions for second-order Einstein equations”, Phys. Rev. D, 70, 044032, (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0403019].
151 Gundlach, C. and Martín-García, J.M., “Critical Phenomena in Gravitational Collapse”, Living Rev. Relativity, 10, lrr-2007-5, (2007). URL (accessed 3 October 2008):
http://www.livingreviews.org/lrr-2007-5.
152 Gundlach, C., Price, R.H. and Pullin, J., “Late-time behavior of stellar collapse and explosions. I. Linearized perturbations”, Phys. Rev. D, 49, 883–889, (1994). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9307009].
153 Gundlach, C., Price, R.H. and Pullin, J., “Late-time behavior of stellar collapse and explosions. II. Nonlinear evolution”, Phys. Rev. D, 49, 890–899, (1994). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9307010].
154 Gustafsson, B. and Kreiss, H.-O., “Boundary conditions for time dependent problems with an artificial boundary”, J. Comput. Phys., 30, 331–351, (1979). [External LinkDOI], [External LinkADS].
155 Gustafsson, B., Kreiss, H.-O. and Sundström, A., “Stability Theory of Difference Approximations for Mixed Initial Boundary Value Problems. II”, Math. Comput., 26, 649–686, (1972).
156 Hagstrom, T. and Hariharan, S.I., “Accurate Boundary Conditions for Exterior Problems in Gas Dynamics”, Math. Comput., 51, 581–597, (1988). [External LinkDOI], [External LinkADS].
157 Hamadé, R.S., Horne, J.H. and Stewart, J.M., “Continuous self-similarity and S-duality”, Class. Quantum Grav., 13, 2241–2253, (1996). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9511024].
158 Hamadé, R.S. and Stewart, J.M., “The spherically symmetric collapse of a massless scalar field”, Class. Quantum Grav., 13, 497–512, (1996). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9506044].
159 Hayward, S.A., “Dual-null dynamics of the Einstein field”, Class. Quantum Grav., 10, 779–790, (1993). [External LinkDOI], [External LinkADS].
160 Hedstrom, G.W., “Nonreflecting boundary conditions for nonlinear hyperbolic systems”, J. Comput. Phys., 30, 222–237, (1979). [External LinkDOI], [External LinkADS].
161 Higdon, R.L., “Absorbing Boundary Conditions for Difference Approximations to the Multi-Dimensional Wave Equation”, Math. Comput., 47, 437–459, (1986). [External LinkDOI].
162 Hod, S., “High-order contamination in the tail gravitational collapse”, Phys. Rev. D, 60, 104053, (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9907044].
163 Hod, S., “Wave tails in non-trivial backgrounds”, Class. Quantum Grav., 18, 1311–1318, (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0008001].
164 Hod, S., “Wave tails in time-dependent backgrounds”, Phys. Rev. D, 66, 024001, (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0201017].
165 Hod, S. and Piran, T., “Critical behavior and universality in gravitational collapse of a charged scalar field”, Phys. Rev. D, 55, 3485–3496, (1997). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9606093].
166 Hod, S. and Piran, T., “Late-time evolution of charged gravitational collapse and decay of charged scalar hair. I”, Phys. Rev. D, 58, 024017, (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9712041].
167 Hod, S. and Piran, T., “Late-time evolution of charged gravitational collapse and decay of charged scalar hair. II”, Phys. Rev. D, 58, 024018, (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9801001].
168 Hod, S. and Piran, T., “Late-time evolution of charged gravitational collapse and decay of charged scalar hair. III. Nonlinear analysis”, Phys. Rev. D, 58, 024019, (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9801060].
169 Hod, S. and Piran, T., “Late-time tails in gravitational collapse of a self-interacting (massive) scalar-field and decay of a self-interacting scalar hair”, Phys. Rev. D, 58, 044018, (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9801059].
170 Hod, S. and Piran, T., “Mass Inflation in Dynamical Gravitational Collapse of a Charged Scalar Field”, Phys. Rev. Lett., 81, 1554–1557, (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9803004].
171 Husa, S., “Numerical relativity with the conformal field equations”, in Fernández-Jambrina, L. and González-Romero, L.M., eds., Current Trends in Relativistic Astrophysics: Theoretical, Numerical, Observational, Proceedings of the 24th Spanish Relativity Meeting on Relativistic Astrophysics, Madrid, 2001, Lecture Notes in Physics, 617, pp. 159–192, (Springer, Berlin; New York, 2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0204057].
172 Husa, S., Lechner, C., Pürrer, M., Thornburg, J. and Aichelburg, P.C., “Type II critical collapse of a self-gravitating nonlinear σ model”, Phys. Rev. D, 62, 104007, (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0002067].
173 Husa, S. and Winicour, J., “Asymmetric merger of black holes”, Phys. Rev. D, 60, 084019, (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9905039].
174 Husa, S., Zlochower, Y., Gómez, R. and Winicour, J., “Retarded radiation from colliding black holes in the close limit”, Phys. Rev. D, 65, 084034, (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0108075].
175 Ipser, J.R. and Horwitz, G., “The Problem of Maximizing Functionals in Newtonian Stellar Dynamics, and its Relation to Thermodynamic and Dynamical Stability”, Astrophys. J., 232(3), 863–873, (1979). [External LinkDOI], [External LinkADS].
176 Isaacson, R.A., Welling, J.S. and Winicour, J., “Null cone computation of gravitational radiation”, J. Math. Phys., 24, 1824–1834, (1983). [External LinkDOI], [External LinkADS].
177 Israeli, M. and Orszag, S.A., “Approximation of radiation boundary conditions”, J. Comput. Phys., 41, 115–135, (1981). [External LinkDOI], [External LinkADS].
178 Jiang, H. and Wong, Y.S., “Absorbing boundary conditions for second-order hyperbolic equations”, J. Comput. Phys., 88, 205–231, (1990). [External LinkDOI], [External LinkADS].
179 Kates, R.E. and Kegeles, L.S., “Nonanalytic terms in the slow-motion expansion of a radiating scalar field on a Schwarzschild background”, Phys. Rev. D, 25, 2030–2037, (1982). [External LinkDOI], [External LinkADS].
180 Khan, K.A. and Penrose, R., “Scattering of Two Impulsive Gravitational Plane Waves”, Nature, 229, 185–186, (1971). [External LinkDOI], [External LinkADS].
181 Komar, A., “Asymptotic covariant conservation laws for gravitational radiation”, Phys. Rev., 127, 1411–1418, (1962). [External LinkDOI].
182 Korobkin, O., Abdikamalov, E.B., Schnetter, E., Stergioulas, N. and Zink, B., “Stability of general-relativistic accretion disks”, Phys. Rev. D, 83, 043007, (2011). [External LinkDOI], [External Link1011.3010].
183 Korobkin, O., Aksoylu, B., Holst, M., Pazos, E. and Tiglio, M., “Solving the Einstein constraint equations on multi-block triangulations using finite element methods”, Class. Quantum Grav., 26, 145007, (2009). [External LinkDOI], [External Link0801.1823].
184 Kreiss, H.-O., “Initial Boundary Value Problems for Hyperbolic Systems”, Commun. Pure Appl. Math., 23, 277–298, (1970). [External LinkDOI].
185 Kreiss, H.-O. and Lorenz, J., Initial-Boundary Value Problems and the Navier-Stokes Equations, Pure and Applied Mathematics, 136, (Academic Press, Boston, 1989). [External LinkGoogle Books].
186 Kreiss, H.-O. and Oliger, J., Methods for the approximate solution of time dependent problems, GARP Publications Series, 10, (World Meteorological Organization (WMO), International Council of Scientific Unions (ICSU), Geneva, 1973).
187 Kreiss, H.-O. and Ortiz, O.E., “Some Mathematical and Numerical Questions Connected with First and Second Order Time-Dependent Systems of Partial Differential Equations”, in Frauendiener, J. and Friedrich, H., eds., The Conformal Structure of Space-Time: Geometry, Analysis, Numerics, Proceedings of the international workshop, Tübingen, Germany, 2 – 4 April 2001, Lecture Notes in Physics, 604, pp. 359–370, (Springer, Berlin; New York, 2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0106085].
188 Kreiss, H.-O., Ortiz, O.E. and Petersson, N.A., “Initial-boundary value problems for second order systems of partial differential equations”, arXiv, e-print, (2010). [External LinkADS], [External LinkarXiv:1012.1065 [math.AP]].
189 Kreiss, H.-O., Reula, O., Sarbach, O. and Winicour, J., “Well-posed initial-boundary value problem for the harmonic Einstein equations using energy estimates”, Class. Quantum Grav., 24, 5973–5984, (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0707.4188 [gr-qc]].
190 Kreiss, H.-O., Reula, O., Sarbach, O. and Winicour, J., “Boundary conditions for coupled quasilinear wave equations with application to isolated systems”, Commun. Math. Phys., 289, 1099–1129, (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0807.3207 [gr-qc]].
191 Kreiss, H.-O. and Scherer, G, “Finite element and finite difference methods for hyperbolic partial differential equations”, in De Boor, C., ed., Mathematical Aspects of Finite Elements in Partial Differential Equations, Proceedings of a symposium conducted by the Mathematics Research Center, the University of Wisconsin–Madison, April 1 – 3, 1974, (Academica Press, New York, 1974).
192 Kreiss, H.-O. and Winicour, J., “Problems which are well posed in a generalized sense with applications to the Einstein equations”, Class. Quantum Grav., 23, S405–S420, (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0602051].
193 Kreiss, H.-O. and Winicour, J., “The well-posedness of the null-timelike boundary problem for quasilinear waves”, Class. Quantum Grav., 28, 145020, (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1010.1201 [gr-qc]].
194 Kristian, J. and Sachs, R.K., “Observations in cosmology”, Astrophys. J., 143, 379–399, (1966). [External LinkDOI], [External LinkADS].
195 Lehner, L., “A Dissipative Algorithm for Wave-like Equations in the Characteristic Formulation”, J. Comput. Phys., 149, 59–74, (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9811095].
196 Lehner, L., “Matching characteristic codes: exploiting two directions”, Int. J. Mod. Phys. D, 9(4), 459–473, (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9911033].
197 Lehner, L., Bishop, N.T., Gómez, R., Szilágyi, B. and Winicour, J., “Exact solutions for the intrinsic geometry of black hole coalescence”, Phys. Rev. D, 60, 044005, (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9809034].
198 Lehner, L., Gómez, R., Husa, S., Szilágyi, B., Bishop, N.T. and Winicour, J., “Bagels Form When Black Holes Collide”, institutional homepage, Pittsburgh Supercomputing Center. URL (accessed 30 July 2005):
External Linkhttp://www.psc.edu/research/graphics/gallery/winicour.html.
199 Lehner, L. and Moreschi, O.M., “Dealing with delicate issues in waveform calculations”, Phys. Rev. D, 76, 124040, (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0706.1319 [gr-qc]].
200 Lehner, L., Reula, O. and Tiglio, M., “Multi-block simulations in general relativity: high order discretizations, numerical stability, and applications”, Class. Quantum Grav., 22, 5283–5322, (2005). [External LinkDOI], [External Linkgr-qc/0507004].
201 Lindblom, L., “Optimal calibration accuracy for gravitational-wave detectors”, Phys. Rev. D, 80, 042005, (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0906.5153 [gr-qc]].
202 Lindblom, L., “Use and abuse of the model waveform accuracy standards”, Phys. Rev. D, 80, 064019, (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0907.0457 [gr-qc]].
203 Lindblom, L., Baker, J.G. and Owen, B.J., “Improved time-domain accuracy standards for model gravitational waveforms”, Phys. Rev. D, 82, 084020, (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1008.1803 [gr-qc]].
204 Lindblom, L., Owen, B.J. and Brown, D.A., “Model waveform accuracy standards for gravitational wave data analysis”, Phys. Rev. D, 78, 124020, (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0809.3844 [gr-qc]].
205 Lindman, E.L., “‘Free-space’ boundary conditions for the time dependent wave equation”, J. Comput. Phys., 18, 66–78, (1975). [External LinkDOI], [External LinkADS].
206 Linke, F., Font, J.A., Janka, H.-T., Müller, E. and Papadopoulos, P., “Spherical collapse of supermassive stars: Neutrino emission and gamma-ray bursts”, Astron. Astrophys., 376, 568–579, (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0103144].
207 Lousto, C.O. and Price, R.H., “Understanding initial data for black hole collisions”, Phys. Rev. D, 56, 6439–6457, (1997). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9705071].
208 Marsa, R.L. and Choptuik, M.W., “Black-hole-scalar-field interactions in spherical symmetry”, Phys. Rev. D, 54, 4929–4943, (1996). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9607034].
209 Matzner, R.A., Seidel, E., Shapiro, S.L., Smarr, L.L., Suen, W.-M., Teukolsky, S.A. and Winicour, J., “Geometry of a Black Hole Collision”, Science, 270, 941–947, (1995). [External LinkDOI], [External LinkADS].
210 May, M.M. and White, R.H., “Hydrodynamic Calculations of General-Relativistic Collapse”, Phys. Rev., 141, 1232–1241, (1966). [External LinkDOI], [External LinkADS].
211 Miller, J.C. and Motta, S., “Computations of spherical gravitational collapse using null slicing”, Class. Quantum Grav., 6, 185–193, (1989). [External LinkDOI], [External LinkADS].
212 Moncrief, V., “Gravitational perturbations of spherically symmetric systems. I. The exterior problem”, Ann. Phys. (N.Y.), 88, 323–342, (1974). [External LinkDOI], [External LinkADS].
213 Müller zum Hagen, H. and Seifert, H.-J., “On Characteristic Initial-Value and Mixed Problems”, Gen. Relativ. Gravit., 8, 259–301, (1977). [External LinkDOI], [External LinkADS].
214 Nagar, A. and Rezzolla, L., “Gauge-invariant non-spherical metric perturbations of Schwarzschild black-hole spacetimes”, Class. Quantum Grav., 22, R167–R192, (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0502064]. Corrigendum Class. Quantum Grav., 23, 4297, (2006), DOI:10.1088/0264-9381/23/12/C01.
215 Nayfeh, A.H., Perturbation Methods, (Wiley, New York, 1973). [External LinkGoogle Books].
216 Newman, E.T. and Penrose, R., “An Approach to Gravitational Radiation by a Method of Spin Coefficients”, J. Math. Phys., 3, 566–578, (1962). [External LinkDOI], [External LinkADS]. Errata: J. Math. Phys., 4, 998, (1963), DOI:10.1063/1.1704025.
217 Newman, E.T. and Penrose, R., “Note on the Bondi–Metzner–Sachs Group”, J. Math. Phys., 7, 863–870, (1966). [External LinkDOI], [External LinkADS].
218 Newman, E.T. and Penrose, R., “New Conservation Laws for Zero Rest-Mass Fields in Asymptotically Flat Space-Time”, Proc. R. Soc. London, Ser. A, 305, 175–204, (1968). [External LinkDOI], [External LinkADS].
219 Oren, Y. and Piran, T., “Collapse of charged scalar fields”, Phys. Rev. D, 68, 044013, (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0306078].
220 Ott, C.D. et al., “Dynamics and gravitational wave signature of collapsar formation”, Phys. Rev. Lett., 106, 161103, (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1012.1853 [astro-ph.HE]].
221 Papadopoulos, P., Algorithms for the gravitational characteristic initial value problem, Ph.D. Thesis, (University of Pittsburgh, Pittsburgh, 1994). [External LinkADS].
222 Papadopoulos, P., “Nonlinear harmonic generation in finite amplitude black hole oscillations”, Phys. Rev. D, 65, 084016, (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0104024].
223 Papadopoulos, P. and Font, J.A., “Relativistic hydrodynamics on spacelike and null surfaces: Formalism and computations of spherically symmetric spacetimes”, Phys. Rev. D, 61, 024015, (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9902018].
224 Papadopoulos, P. and Font, J.A., “Imprints of accretion on gravitational waves from black holes”, Phys. Rev. D, 63, 044016, (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0009024].
225 Pazos, E., Brizuela, D., Martín-García, J.M. and Tiglio, M., “Mode coupling of Schwarzschild perturbations: Ringdown frequencies”, Phys. Rev. D, 82, 104028, (2010). [External LinkDOI], [External Link1009.4665].
226 Pazos, E., Dorband, E.N., Nagar, A., Palenzuela, C., Schnetter, E. and Tiglio, M., “How far away is far enough for extracting numerical waveforms, and how much do they depend on the extraction method?”, Class. Quantum Grav., 24, S341–S368, (2007). [External LinkDOI], [External Linkgr-qc/0612149].
227 Penrose, R., “Asymptotic Properties of Fields and Space-Times”, Phys. Rev. Lett., 10, 66–68, (1963). [External LinkDOI], [External LinkADS].
228 Penrose, R., “Gravitational Collapse: The Role of General Relativity”, Riv. Nuovo Cimento, 1, 252–276, (1969). [External LinkDOI], [External LinkADS].
229 Phillips, N.A., “A map projection system suitable for large-scale numerical weather prediction”, in Syono, S., ed., 75th Anniversary Volume, J. Meteorol. Soc. Japan, pp. 262–267, (Meteorological Society of Japan, Tokyo, 1957).
230 Piran, T., “Numerical Codes for Cylindrical General Relativistic Systems”, J. Comput. Phys., 35, 254–283, (1980). [External LinkDOI], [External LinkADS].
231 Piran, T., Safier, P.N. and Katz, J., “Cylindrical gravitational waves with two degrees of freedom: An exact solution”, Phys. Rev. D, 34(2), 331–332, (1986). [External LinkDOI], [External LinkADS].
232 Piran, T., Safier, P.N. and Stark, R.F., “General numerical solution of cylindrical gravitational waves”, Phys. Rev. D, 32, 3101–3107, (1985). [External LinkDOI], [External LinkADS].
233 Poisson, E. and Israel, W., “Internal structure of black holes”, Phys. Rev. D, 41, 1796–1809, (1990). [External LinkDOI], [External LinkADS].
234 Pollney, D., Algebraic and numerical techniques in general relativity, Ph.D. Thesis, (University of Southampton, Southampton, 2000).
235 Pretorius, F., “Evolution of Binary Black-Hole Spacetimes”, Phys. Rev. Lett., 95, 121101, (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0507014].
236 Pretorius, F. and Israel, W., “Quasi-spherical light cones of the Kerr geometry”, Class. Quantum Grav., 15, 2289–2301, (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9803080].
237 Pretorius, F. and Lehner, L., “Adaptive mesh refinement for characteristic codes”, J. Comput. Phys., 198, 10–34, (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0302003].
238 Price, R.H., “Nonspherical Perturbations of Relativistic Gravitational Collapse. I. Scalar and Gravitational Perturbations”, Phys. Rev. D, 5, 2419–2438, (1972). [External LinkDOI], [External LinkADS].
239 Price, R.H. and Pullin, J., “Colliding black holes: The close limit”, Phys. Rev. Lett., 72, 3297–3300, (1994). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9402039].
240 Regge, T. and Wheeler, J.A., “Stability of a Schwarzschild Singularity”, Phys. Rev., 108, 1063–1069, (1957). [External LinkDOI], [External LinkADS].
241 Reisswig, C., Binary Black Hole Mergers and Novel Approaches to Gravitational Wave Extraction in Numerical Relativity, Ph.D. Thesis, (Universität Hannover, Hannover, 2010). Online version (accessed 7 August 2011):
External Linkhttp://www.nullinfinity.net/~reisswig.
242 Reisswig, C., Bishop, N.T., Lai, C.W., Thornburg, J. and Szilágyi, B., “Characteristic evolutions in numerical relativity using six angular patches”, Class. Quantum Grav., 24, S237–S339, (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0610019].
243 Reisswig, C., Bishop, N.T., Pollney, D. and Szilágyi, B., “Unambiguous determination of gravitational waveforms from binary black hole mergers”, Phys. Rev. Lett., 95, 221101, (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0907.2637 [gr-qc]].
244 Reisswig, C., Bishop, N.T., Pollney, D. and Szilágyi, B., “Characteristic extraction in numerical relativity: binary black hole merger waveforms at null infinity”, Class. Quantum Grav., 27, 075014, (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0912.1285 [gr-qc]].
245 Reisswig, C., Husa, S., Rezzolla, L., Dorband, E.N., Pollney, D. and Seiler, J., “Gravitational-wave detectability of equal-mass black-hole binaries with aligned spins”, Phys. Rev. D, 80, 124026, (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0907.0462 [gr-qc]].
246 Reisswig, C., Ott, C.D., Sperhake, U. and Schnetter, E., “Gravitational wave extraction in simulations of rotating stellar core collapse”, Phys. Rev. D, 83, 064008, (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1012.0595 [gr-qc]].
247 Reisswig, C. and Pollney, D, “Gravitational memory in binary black hole mergers”, Astrophys. J. Lett., 732, L13, (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1004.4209 [gr-qc]].
248 Renaut, R.A., “Absorbing boundary conditions, difference operators, and stability”, J. Comput. Phys., 102, 236–251, (1992). [External LinkDOI], [External LinkADS].
249 Rendall, A.D., “Reduction of the Characteristic Initial Value Problem to the Cauchy Problem and Its Applications to the Einstein Equations”, Proc. R. Soc. London, Ser. A, 427, 221–239, (1990). [External LinkDOI].
250 Reula, O. and Sarbach, O., “The initial-boundary value problem in general relativity”, Int. J. Mod. Phys. D, 20, 767–783, (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1009.0589 [gr-qc]].
251 Rezzolla, L., Abrahams, A.M., Matzner, R.A., Rupright, M.E. and Shapiro, S.L., “Cauchy-perturbative matching and outer boundary conditions: Computational studies”, Phys. Rev. D, 59, 064001, (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9807047].
252 Rinne, O., Lindblom, L. and Scheel, M.A., “Testing outer boundary treatments for the Einstein equations”, Class. Quantum Grav., 24, 4053–4078, (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0704.0782 [gr-qc]].
253 Ronchi, C., Iacono, R. and Paolucci, P.S., “The ‘Cubed Sphere’: A New Method for the Solution of Partial Differential Equations in Spherical Geometry”, J. Comput. Phys., 124, 93–114, (1996). [External LinkDOI].
254 Ruiz, M., Rinne, O. and Sarbach, O., “Outer boundary conditions for Einstein’s field equations in harmonic coordinates”, Class. Quantum Grav., 24, 6349–6377, (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0707.2797 [gr-qc]].
255 Rupright, M.E., Abrahams, A.M. and Rezzolla, L., “Cauchy-perturbative matching and outer boundary conditions: Methods and tests”, Phys. Rev. D, 58, 044005, (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9802011].
256 Ryaben’kii, V. and Tsynkov, S.V., “An application of the difference potentials method to solving external problems in CFD”, in Hafez, M. and Oshima, K., eds., Computational Fluid Dynamics Review 1998,  2, (World Scientific, Singapore; River Edge, 1998).
257 Sachs, R.K., “Asymptotic Symmetries in Gravitational Theory”, Phys. Rev., 128, 2851–2864, (1962). [External LinkDOI], [External LinkADS].
258 Sachs, R.K., “Gravitational Waves in General Relativity. VIII. Waves in Asymptotically Flat Space-Time”, Proc. R. Soc. London, Ser. A, 270, 103–126, (1962). [External LinkDOI], [External LinkADS].
259 Sachs, R.K., “On the Characteristic Initial Value Problem in Gravitational Theory”, J. Math. Phys., 3, 908–914, (1962). [External LinkDOI], [External LinkADS].
260 Sarbach, O., “Absorbing boundary conditions for Einstein’s field equations”, J. Phys.: Conf. Ser., 91, 012005, (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0708.4266 [gr-qc]].
261 Sarbach, O. and Tiglio, M., “Continuum and Discrete Initial-Boundary-Value Problems and Einstein’s Field Equations”, Living Rev. Relativity, 15, (2012). URL (accessed 01 January 2012):
http://www.livingreviews.org/.
262 Scheel, M.A., Shapiro, S.L. and Teukolsky, S.A., “Collapse to black holes in Brans–Dicke theory. I. Horizon boundary conditions for dynamical spacetimes”, Phys. Rev. D, 51(8), 4208–4235, (1995). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9411025].
263 Scheel, M.A., Shapiro, S.L. and Teukolsky, S.A., “Collapse to black holes in Brans–Dicke theory. II. Comparison with general relativity”, Phys. Rev. D, 51, 4236–4249, (1995). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9411026].
264 Schnetter, E., Diener, P., Dorband, E.N. and Tiglio, M., “A multi-block infrastructure for three-dimensional time-dependent numerical relativity”, Class. Quantum Grav., 23, S553–S578, (2006). [External LinkDOI], [External Linkgr-qc/0602104].
265 Seidel, E. and Suen, W.-M., “Dynamical evolution of boson stars: Perturbing the ground state”, Phys. Rev. D, 42, 384–403, (1990). [External LinkDOI], [External LinkADS].
266 Seiler, J., Szilágyi, B., Pollney, D. and Rezzolla, L., “Constraint-preserving boundary treatment for a harmonic formulation of the Einstein equations”, Class. Quantum Grav., 25, 175020, (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0802.3341 [gr-qc]].
267 Shapiro, S.L., Teukolsky, S.A. and Winicour, J., “Toroidal Black Holes and Topological Censorship”, Phys. Rev. D, 52, 6982–6987, (1995). [External LinkDOI], [External LinkADS].
268 Shibata, M. and Nakamura, T., “Evolution of three-dimensional gravitational waves: Harmonic slicing case”, Phys. Rev. D, 52, 5428–5444, (1995). [External LinkDOI], [External LinkADS].
269 Siebel, F., Simulation of axisymmetric flows in the characteristic formulation of general relativity, Ph.D. Thesis, (Technische Universität München, München, 2002). Online version (accessed 14 April 2009):
External Linkhttp://tumb1.biblio.tu-muenchen.de/publ/diss/ph/2002/siebel.html.
270 Siebel, F., Font, J.A., Müller, E. and Papadopoulos, P., “Simulating the dynamics of relativistic stars via a light-cone approach”, Phys. Rev. D, 65, 064038, (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0111093].
271 Siebel, F., Font, J.A., Müller, E. and Papadopoulos, P., “Axisymmetric core collapse simulations using characteristic numerical relativity”, Phys. Rev. D, 67, 124018, (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0301127].
272 Siebel, F., Font, J.A. and Papadopoulos, P., “Scalar field induced oscillations of relativistic stars and gravitational collapse”, Phys. Rev. D, 65, 024021, (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0108006].
273 Sjödin, K.R.P., Sperhake, U. and Vickers, J.A., “Dynamic cosmic strings. I”, Phys. Rev. D, 63, 024011, (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0002096].
274 Sod, G.A., Numerical Methods in Fluid Dynamics: Initial and Initial Boundary-Value Problems, (Cambridge University Press, Cambridge; New York, 1985).
275 Sorkin, E. and Piran, T., “Effects of pair creation on charged gravitational collapse”, Phys. Rev. D, 63, 084006, (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0009095].
276 Sorkin, R.D., “A Criterion for the Onset of Instability at a Turning Point”, Astrophys. J., 249, 254–257, (1981). [External LinkDOI], [External LinkADS].
277 Sperhake, U., Sjödin, K.R.P. and Vickers, J.A., “Dynamic cosmic strings. II. Numerical evolution of excited strings”, Phys. Rev. D, 63, 024012, (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0003114].
278 Stark, R.F. and Piran, T., “A general relativistic code for rotating axisymmetric configurations and gravitational radiation: Numerical methods and tests”, Comput. Phys. Rep., 5, 221–264, (1987). [External LinkDOI].
279 Stewart, J.M., “Numerical relativity”, in Bonnor, W.B., Islam, J.N. and MacCallum, M.A.H., eds., Classical General Relativity, Proceedings of the Conference on Classical (Non-Quantum) General Relativity, City University, London, 21 – 22 December 1983, pp. 231–262, (Cambridge University Press, Cambridge; New York, 1984). [External LinkADS].
280 Stewart, J.M., “The characteristic initial value problem in general relativity”, in Winkler, K.-H.A. and Norman, M.L., eds., Astrophysical Radiation Hydrodynamics, Proceedings of the NATO Advanced Research Workshop, Garching, Germany, August 2 – 13, 1982, NATO ASI Series C, 188, p. 531, (Reidel, Dordrecht; Boston, 1986). [External LinkADS].
281 Stewart, J.M., “Numerical Relativity III. The Bondi Mass Revisited”, Proc. R. Soc. London, Ser. A, 424, 211–222, (1989). [External LinkDOI], [External LinkADS].
282 Stewart, J.M., “The Cauchy problem and the initial boundary value problem in numerical relativity”, Class. Quantum Grav., 15, 2865–2889, (1998). [External LinkDOI], [External LinkADS].
283 Stewart, J.M. and Friedrich, H., “Numerical Relativity. I. The Characteristic Initial Value Problem”, Proc. R. Soc. London, Ser. A, 384, 427–454, (1982). [External LinkDOI], [External LinkADS].
284 Szilágyi, B., Cauchy-characteristic matching in general relativity, Ph.D. Thesis, (University of Pittsburgh, Pittsburgh, 2000). [External LinkADS], [External LinkarXiv:gr-qc/0006091].
285 Szilágyi, B., Gómez, R., Bishop, N.T. and Winicour, J., “Cauchy boundaries in linearized gravitational theory”, Phys. Rev. D, 62, 104006, (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9912030].
286 Szilágyi, B., Lindblom, L. and Scheel, M.A., “Simulations of binary black hole mergers using spectral methods”, Phys. Rev. D, 80, 124010, (2009). [External LinkDOI], [External Link0909.3557].
287 Szilágyi, B. and Winicour, J., “Well-posed initial-boundary evolution in general relativity”, Phys. Rev. D, 68, 041501, (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0205044].
288 Tamburino, L.A. and Winicour, J., “Gravitational Fields in Finite and Conformal Bondi Frames”, Phys. Rev., 150, 1039–1053, (1966). [External LinkDOI], [External LinkADS].
289 Temple, G., “New systems of normal co-ordinates for relativistic optics”, Proc. R. Soc. London, Ser. A, 168, 122–148, (1938). [External LinkADS].
290 Teukolsky, S.A., “Perturbations of a Rotating Black Hole. I. Fundamental Equations for Gravitational, Electromagnetic, and Neutrino-Field Perturbations”, Astrophys. J., 185, 635–647, (1973). [External LinkDOI], [External LinkADS].
291 Teukolsky, S.A., “Linearized quadrupole waves in general relativity and the motion of test particles”, Phys. Rev. D, 26, 745–750, (1982). [External LinkDOI], [External LinkADS].
292 “The Cactus Code”, project homepage, Max Planck Institute for Gravitational Physics. URL (accessed 7 August 2011):
External Linkhttp://www.cactuscode.org/.
293 Thompson, K.W., “Time dependent boundary conditions for hyperbolic systems”, J. Comput. Phys., 68, 1–24, (1987). [External LinkDOI], [External LinkADS].
294 Thornburg, J., “Black-hole excision with multiple grid patches”, Class. Quantum Grav., 21, 3665–3691, (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0404059].
295 Thornburg, J., “A fast apparent horizon finder for three-dimensional Cartesian grids in numerical relativity”, Class. Quantum Grav., 21, 743–766, (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0306056].
296 Ting, L. and Miksis, M.J., “Exact boundary conditions for scattering problems”, J. Acoust. Soc. Am., 80, 1825–1827, (1986). [External LinkDOI], [External LinkADS].
297 Trefethen, L.N. and Halpern, L., “Well-Posedness of One-Way Wave Equations and Absorbing Boundary Conditions”, Math. Comput., 47, 421–435, (1986). [External LinkDOI].
298 Tsynkov, S.V., Artificial Boundary Conditions Based on the Difference Potentials Method, NASA Technical Memorandum, 110265, (NASA Langley Research Center, Hampton, 1996). Online version (accessed 4 February 2009):
External Linkhttp://hdl.handle.net/2060/19960045440.
299 van der Walt, P.J. and Bishop, N.T., “Observational cosmology using characteristic numerical relativity”, Phys. Rev. D, 82, 084001, (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1007.3189 [gr-qc]].
300 Wald, R.M., General Relativity, (University of Chicago Press, Chicago, 1984). [External LinkGoogle Books].
301 Weber, J. and Wheeler, J.A., “Reality of the Cylindrical Gravitational Waves of Einstein and Rosen”, Rev. Mod. Phys., 29, 509–515, (1957). [External LinkDOI].
302 Winicour, J., “Newtonian gravity on the null cone”, J. Math. Phys., 24, 1193–1198, (1983). [External LinkDOI], [External LinkADS].
303 Winicour, J., “Null infinity from a quasi-Newtonian view”, J. Math. Phys., 25, 2506–2514, (1984). [External LinkDOI], [External LinkADS].
304 Winicour, J., “The quadrupole radiation formula”, Gen. Relativ. Gravit., 19, 281–287, (1987). [External LinkDOI], [External LinkADS].
305 Winicour, J., “The Characteristic Treatment of Black Holes”, Prog. Theor. Phys. Suppl., 136, 57–71, (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9911106].
306 Winicour, J., “Worldtube conservation laws for the null-timelike evolution problem”, Gen. Relativ. Gravit., 43, 3269–3288, (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1105.3493 [gr-qc]].
307 Xanthopoulos, B.C., “Cylindrical waves and cosmic strings of Petrov type D”, Phys. Rev. D, 34(12), 3608–3616, (1986). [External LinkDOI], [External LinkADS].
308 York Jr, J.W., “Kinematics and Dynamics of General Relativity”, in Smarr, L.L., ed., Sources of Gravitational Radiation, Proceedings of the Battelle Seattle Workshop, July 24 – August 4, 1978, pp. 83–126, (Cambridge University Press, Cambridge; New York, 1979). [External LinkADS].
309 Zerilli, F.J., “Gravitational field of a particle falling in a Schwarzschild geometry analyzed in tensor harmonics”, Phys. Rev. D, 2, 2141–2160, (1970). [External LinkDOI], [External LinkADS].
310 Zink, B., Schnetter, E. and Tiglio, M., “Multi-patch methods in general relativistic astrophysics: Hydrodynamical flows on fixed backgrounds”, Phys. Rev. D, 77, 103015, (2008). [External LinkDOI], [External Link0712.0353].
311 Zlochower, Y., Waveforms from colliding black holes, Ph.D. Thesis, (University of Pittsburgh, Pittsburgh, 2002). [External LinkADS].
312 Zlochower, Y., Gómez, R., Husa, S., Lehner, L. and Winicour, J., “Mode coupling in the nonlinear response of black holes”, Phys. Rev. D, 68, 084014, (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0306098].