References

1 Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Beating the spin-down limit on gravitational wave emission from the Vela pulsar”, Astrophys. J., 737, 93, (2011). [External LinkDOI], [External LinkarXiv:1104.2712].
2 Abbott, B. et al. (LIGO Scientific Collaboration), “Analysis of LIGO data for gravitational waves from binary neutron stars”, Phys. Rev. D, 69, 122001, (2004). [External LinkDOI], [External Linkgr-qc/0308069].
3 Abbott, B. et al. (LIGO Scientific Collaboration), “First upper limits from LIGO on gravitational wave bursts”, Phys. Rev. D, 69, 102001, (2004). [External LinkDOI], [External Linkgr-qc/0312056].
4 Abbott, B. et al. (LIGO Scientific Collaboration), “Setting upper limits on the strength of periodic gravitational waves from PSR J1939+2134 using the first science data from the GEO 600 and LIGO detectors”, Phys. Rev. D, 69, 082004, (2004). [External LinkDOI], [External Linkgr-qc/0308050].
5 Adler, R.J., The Geometry of Random Fields, (Wiley, Chichester; New York, 1981).
6 Adler, R.J. and Taylor, J.E, Random Fields and Geometry, Monographs in Mathematics, (Springer, New York, 2007). [External LinkGoogle Books].
7 Ajith, P. and Bose, S., “Estimating the parameters of nonspinning binary black holes using ground-based gravitational-wave detectors: Statistical errors”, Phys. Rev. D, 79, 084032, (2009). [External LinkDOI].
8 Allen, B., “The Stochastic Gravity-Wave Background: Sources and Detection”, in Marck, J.-A. and Lasota, J.-P., eds., Relativistic Gravitation and Gravitational Radiation, Proceedings of the Les Houches School of Physics, held in Les Houches, Haute Savoie, 26 September – 6 October, 1995, Cambridge Contemporary Astrophysics, pp. 373–418, (Cambridge University Press, Cambridge, 1997). [External Linkastro-ph/9604033].
9 Allen, B., “χ2 time-frequency discriminator for gravitational wave detection”, Phys. Rev. D, 71, 062001, (2005). [External LinkDOI], [External Linkgr-qc/0405045].
10 Allen, B., Creighton, D.E., Flanagan, É.É. and Romano, J.D., “Robust statistics for deterministic and stochastic gravitational waves in non-Gaussian noise: Frequentist analyses”, Phys. Rev. D, 65, 122002, (2002). [External LinkDOI], [External Linkgr-qc/0105100].
11 Allen, B., Creighton, D.E., Flanagan, É.É. and Romano, J.D., “Robust statistics for deterministic and stochastic gravitational waves in non-Gaussian noise. II. Bayesian analyses”, Phys. Rev. D, 67, 122002, (2003). [External LinkDOI], [External Linkgr-qc/0205015].
12 Allen, B. et al., “Observational Limit on Gravitational Waves from Binary Neutron Stars in the Galaxy”, Phys. Rev. Lett., 83, 1498–1501, (1999). [External LinkDOI], [External Linkgr-qc/9903108].
13 Apostolatos, T.A., “Search templates for gravitational waves from precessing, inspiraling binaries”, Phys. Rev. D, 52, 605–620, (1995). [External LinkDOI].
14 Armstrong, J.W., “Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking”, Living Rev. Relativity, 9, lrr-2006-1, (2006). URL (accessed 30 June 2011):
http://www.livingreviews.org/lrr-2006-1.
15 Armstrong, J.W., Estabrook, F.B. and Tinto, M., “Time-Delay Interferometry for Space-Based Gravitational Wave Searches”, Astrophys. J., 527, 814–826, (1999). [External LinkDOI], [External LinkADS].
16 Arnaud, N. et al., “Coincidence and coherent data analysis methods for gravitational wave bursts in a network of interferometric detectors”, Phys. Rev. D, 68, 102001, (2003). [External LinkDOI], [External Linkgr-qc/0307100].
17 Arun, K.G., Iyer, B.R., Sathyaprakash, B.S. and Sundararajan, P.A., “Parameter estimation of inspiralling compact binaries using 3.5 post-Newtonian gravitational wave phasing: The nonspinning case”, Phys. Rev. D, 71, 084008, (2005). [External LinkDOI], [External Linkgr-qc/0411146]. Erratum: Phys. Rev. D, 72, 069903, (2005).
18 Astone, P., Borkowski, K.M., Jaranowski, P. and Królak, A., “Data analysis of gravitational-wave signals from spinning neutron stars. IV. An all-sky search”, Phys. Rev. D, 65, 042003, (2002). [External LinkDOI].
19 Astone, P., Borkowski, K.M., Jaranowski, P., Królak, A. and Pietka, M., “Data analysis of gravitational-wave signals from spinning neutron stars. V. A narrow-band all-sky search”, Phys. Rev. D, 82, 022005, (2010). [External LinkDOI].
20 Astone, P., D’Antonio, S., Frasca, S. and Palomba, C., “A method for detection of known sources of continuous gravitational wave signals in non-stationary data”, Class. Quantum Grav., 27, 194016, (2010). [External LinkDOI].
21 Astone, P., Lobo, A. and Schutz, B.F., “Coincidence experiments between interferometric and resonant bar detectors of gravitational waves”, Class. Quantum Grav., 11, 2093–2112, (1994). [External LinkDOI].
22 Astone, P. et al., “Long-term operation of the Rome ‘Explorer’ cryogenic gravitational wave detector”, Phys. Rev. D, 47, 362–375, (1993). [External LinkDOI].
23 Astone, P. et al., “All-sky upper limit for gravitational radiation from spinning neutron stars”, Class. Quantum Grav., 20, S665–S676, (2003). [External LinkDOI].
24 Astone, P. et al. (International Gravitational Event Collaboration), “Methods and results of the IGEC search for burst gravitational waves in the years 1997–2000”, Phys. Rev. D, 68, 022001, (2003). [External LinkDOI], [External Linkastro-ph/0302482].
25 Balasubramanian, R. and Dhurandhar, S.V., “Estimation of parameters of gravitational waves from coalescing binaries”, Phys. Rev. D, 57, 3408–3422, (1998). [External LinkDOI].
26 Balasubramanian, R., Sathyaprakash, B.S. and Dhurandhar, S.V., “Gravitational waves from coalescing binaries: Detection strategies and Monte Carlo estimation of parameters”, Phys. Rev. D, 53, 3033–3055, (1996). [External Linkgr-qc/9508011]. Erratum: Phys. Rev. D, 54, 1860, (1996).
27 Baskaran, D. and Grishchuk, L.P., “Components of the gravitational force in the field of a gravitational wave”, Class. Quantum Grav., 21, 4041–4061, (2004). [External LinkDOI].
28 Bayes, T., “An essay towards solving a problem in doctrine of chances”, Philos. Trans. R. Soc. London, 53, 293–315, (1763).
29 Berti, E., Buonanno, A. and Will, C.M., “Estimating spinning binary parameters and testing alternative theories of gravity with LISA”, Phys. Rev. D, 71, 084025, (2005). [External LinkDOI], [External Linkgr-qc/0411129].
30 Blanchet, L., “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries”, Living Rev. Relativity, 9, lrr-2006-4, (2006). [External Linkgr-qc/0202016]. URL (accessed 10 June 2007):
http://www.livingreviews.org/lrr-2006-4.
31 Bonazzola, S. and Gourgoulhon, E., “Gravitational waves from pulsars: emission by the magnetic-field-induced distortion”, Astron. Astrophys., 312, 675–690, (1996). [External LinkADS], [External Linkastro-ph/9602107].
32 Bose, S., Dayanga, T., Ghosh, S. and Talukder, D., “A blind hierarchical coherent search for gravitational-wave signals from coalescing compact binaries in a network of interferometric detectors”, Class. Quantum Grav., 28, 134009, (2011). [External LinkDOI], [External Link1104.2650].
33 Brady, P.R., Creighton, T., Cutler, C. and Schutz, B.F., “Searching for periodic sources with LIGO”, Phys. Rev. D, 57, 2101–2116, (1998). [External LinkDOI], [External Linkgr-qc/9702050].
34 Brooks, C., Introductory Econometrics for Finance, (Cambridge University Press, Cambridge; New York, 2002). [External LinkGoogle Books].
35 Buonanno, A., Chen, Y. and Vallisneri, M., “Detection template families for gravitational waves from the final stages of binary-black-hole inspirals: Nonspinning case”, Phys. Rev. D, 67, 024016, (2003). [External LinkDOI], [External Linkgr-qc/0205122].
36 Cokelaer, T., “Parameter estimation of inspiralling compact binaries in ground-based detectors: comparison between Monte Carlo simulations and the Fisher information matrix”, Class. Quantum Grav., 25, 184007, (2008). [External LinkDOI].
37 Conover, W.J., Practical Nonparametric Statistics, (Wiley, New York, 1998), 3rd edition.
38 Conway, J.H. and Sloane, N.J.A., Sphere Packings, Lattices and Groups, Grundlehren der mathematischen Wissenschaften, 290, (Springer, New York, 1999), 3rd edition. [External LinkGoogle Books].
39 Croce, R.P., Demma, T., Longo, M., Marano, S., Matta, V., Pierro, V. and Pinto, I.M., “Correlator bank detection of gravitational wave chirps – False-alarm probability, template density, and thresholds: Behind and beyond the minimal-match issue”, Phys. Rev. D, 70, 122001, (2004). [External LinkDOI], [External Linkgr-qc/0405023].
40 Cutler, C., “Angular resolution of the LISA gravitational wave detector”, Phys. Rev. D, 57, 7089–7102, (1998). [External LinkDOI], [External Linkgr-qc/9703068].
41 Cutler, C. and Flanagan, É.É., “Gravitational waves from merging compact binaries: How accurately can one extract the binary’s parameters from the inspiral wave form?”, Phys. Rev. D, 49, 2658–2697, (1994). [External LinkDOI], [External Linkgr-qc/9402014].
42 Cutler, C. and Schutz, B.F., “Generalized -statistic: Multiple detectors and multiple gravitational wave pulsars”, Phys. Rev. D, 72, 063006, (2005). [External LinkDOI], [External Linkgr-qc/0504011].
43 Cutler, C. et al., “The Last Three Minutes: Issues in Gravitational-Wave Measurements of Coalescing Compact Binaries”, Phys. Rev. Lett., 70, 2984–2987, (1993). [External LinkDOI], [External Linkastro-ph/9208005].
44 Davis, M.H.A., “A Review of Statistical Theory of Signal Detection”, in Schutz, B.F., ed., Gravitational Wave Data Analysis, Proceedings of the NATO Advanced Research Workshop, held at Dyffryn House, St. Nichols, Cardiff, Wales, 6 – 9 July 1987, NATO ASI Series C, 253, pp. 73–94, (Kluwer, Dordrecht; Boston, 1989).
45 Dhurandhar, S.V. and Sathyaprakash, B.S., “Choice of filters for the detection of gravitational waves from coalescing binaries. II. Detection in colored noise”, Phys. Rev. D, 49, 1707–1722, (1994). [External LinkDOI].
46 Dhurandhar, S.V. and Schutz, B.F., “Filtering coalescing binary signals: Issues concerning narrow banding, thresholds, and optimal sampling”, Phys. Rev. D, 50, 2390–2405, (1994). [External LinkDOI].
47 Estabrook, F.B. and Wahlquist, H.D., “Response of Doppler spacecraft tracking to gravitational radiation”, Gen. Relativ. Gravit., 6, 439–447, (1975). [External LinkDOI], [External LinkADS].
48 Finn, L.S., “Detection, measurement and gravitational radiation”, Phys. Rev. D, 46, 5236–5249, (1992). [External LinkDOI], [External Linkgr-qc/9209010].
49 Finn, L.S., “Aperture synthesis for gravitational-wave data analysis: Deterministic sources”, Phys. Rev. D, 63, 102001, (2001). [External LinkDOI], [External Linkgr-qc/0010033].
50 Finn, L.S. and Chernoff, D.F., “Observing binary inspiral in gravitational radiation: One interferometer”, Phys. Rev. D, 47, 2198–2219, (1993). [External LinkDOI], [External Linkgr-qc/9301003].
51 Fisz, M., Probability Theory and Mathematical Statistics, (Wiley, New York, 1967), 3rd edition.
52 Flanagan, É.É. and Hughes, S.A., “Measuring gravitational waves from binary black hole coalescences. II. The waves’ information and its extraction, with and without templates”, Phys. Rev. D, 57, 4566–4587, (1998). [External LinkDOI], [External Linkgr-qc/9710129].
53 Freise, A. and Strain, K.A., “Interferometer Techniques for Gravitational-Wave Detection”, Living Rev. Relativity, 13, lrr-2010-1, (2010). URL (accessed 30 June 2011):
http://www.livingreviews.org/lrr-2010-1.
54 Giampieri, G., “On the antenna pattern of an orbiting interferometer”, Mon. Not. R. Astron. Soc., 289, 185–195, (1997).
55 Grubbs, F.E., “Procedures for Detecting Outlying Observations in Samples”, Technometrics, 11, 1–21, (1969). [External LinkDOI].
56 Gürsel, Y. and Tinto, M., “Near optimal solution to the inverse problem for gravitational-wave bursts”, Phys. Rev. D, 40, 3884–3938, (1989).
57 Harry, I.W., Allen, B. and Sathyaprakash, B.S., “Stochastic template placement algorithm for gravitational wave data analysis”, Phys. Rev. D, 80, 104014, (2009). [External LinkDOI].
58 Helstrom, C.W., Statistical Theory of Signal Detection, International Series of Monographs in Electronics and Instrumentation, 9, (Pergamon Press, Oxford; New York, 1968), 2nd edition.
59 Hinich, M.J., “Testing for Gaussianity and linearity of a stationary time series”, J. Time Series Anal., 3, 169–176, (1982). [External LinkDOI].
60 Hughes, S.A., “Untangling the merger history of massive black holes with LISA”, Mon. Not. R. Astron. Soc., 331, 805–816, (2002). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0108483].
61 Hughes, S.A. and Menou, K., “Golden binary gravitational-wave sources: Robust probes of strong-field gravity”, Astrophys. J., 623, 689–699, (2005). [External LinkDOI], [External Linkastro-ph/0410148].
62 Jaranowski, P., Kokkotas, K.D., Królak, A. and Tsegas, G., “On the estimation of parameters of the gravitational-wave signal from a coalescing binary by a network of detectors”, Class. Quantum Grav., 13, 1279–1307, (1996). [External LinkDOI].
63 Jaranowski, P. and Królak, A., “Optimal solution to the inverse problem for the gravitational wave signal of a coalescing compact binary”, Phys. Rev. D, 49, 1723–1739, (1994). [External LinkDOI].
64 Jaranowski, P. and Królak, A., “Data analysis of gravitational-wave signals from spinning neutron stars. II. Accuracy of estimation of parameters”, Phys. Rev. D, 59, 063003, (1999). [External LinkDOI].
65 Jaranowski, P. and Królak, A., “Data analysis of gravitational-wave signals from spinning neutron stars. III. Detection statistics and computational requirements”, Phys. Rev. D, 61, 062001, (2000). [External LinkDOI].
66 Jaranowski, P. and Królak, A., Analysis of Gravitational-Wave Data, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology, 29, (Cambridge University Press, Cambridge; New York, 2009).
67 Jaranowski, P. and Królak, A., “Searching for gravitational waves from known pulsars using the and 𝒢 statistics”, Class. Quantum Grav., 27, 194015, (2010). [External LinkDOI].
68 Jaranowski, P., Królak, A. and Schutz, B.F., “Data analysis of gravitational-wave signals from spinning neutron stars: The signal and its detection”, Phys. Rev. D, 58, 063001, (1998). [External LinkDOI], [External Linkgr-qc/9804014].
69 Judge, G.G., Hill, R.C., Griffiths, W.E., Lutkepohl, H. and Lee, T.-C., The Theory and Practice of Econometrics, (Wiley, New York, 1980).
70 Kafka, P., “Optimal Detection of Signals through Linear Devices with Thermal Noise Sources and Application to the Munich-Frascati Weber-Type Gravitational Wave Detectors”, in De Sabbata, V. and Weber, J., eds., Topics in Theoretical and Experimental Gravitation Physics, Proceedings of the International School of Cosmology and Gravitation held in Erice, Trapani, Sicily, March 13 – 25, 1975, NATO ASI Series B, 27, p. 161, (Plenum Press, New York, 1977).
71 Kassam, S.A., Signal Detection in Non-Gaussian Noise, (Springer, New York, 1988).
72 Kendall, M. and Stuart, A., The Advanced Theory of Statistics. Vol. 2: Inference and Relationship, (C. Griffin, London, 1979).
73 Kokkotas, K.D., Królak, A. and Tsegas, G., “Statistical analysis of the estimators of the parameters of the gravitational-wave signal from a coalescing binary”, Class. Quantum Grav., 11, 1901–1918, (1994). [External LinkDOI].
74 Kotelnikov, V.A., The Theory of Optimum Noise Immunity, (McGraw-Hill, New York, 1959).
75 Królak, A., Kokkotas, K.D. and Schäfer, G., “Estimation of the post-Newtonian parameters in the gravitational-wave emission of a coalescing binary”, Phys. Rev. D, 52, 2089–2111, (1995). [External Linkgr-qc/9503013].
76 Królak, A., Lobo, J.A. and Meers, B.J., “Estimation of the parameters of the gravitational-wave signal of a coalescing binary system”, Phys. Rev. D, 48, 3451–3462, (1993).
77 Królak, A. and Schutz, B.F., “Coalescing binaries – Probe of the universe”, Gen. Relativ. Gravit., 19, 1163–1171, (1987). [External LinkDOI].
78 Królak, A., Tinto, M. and Vallisneri, M., “Optimal filtering of the LISA data”, Phys. Rev. D, 70, 022003, (2004). [External Linkgr-qc/0401108].
79 Lagarias, J.C., Reeds, J.A., Wright, M.H. and Wright, P.E., “Convergence properties of the Nelder–Mead simplex method in low dimensions”, SIAM J. Optimiz., 9, 112–147, (1998). [External LinkDOI].
80 Lehmann, E.L., Testing Statistical Hypotheses, (Wiley, New York, 1959).
81 Lehmann, E.L., Theory of Point Estimation, (Wiley, New York, 1983).
82 Lehmann, E.L. and Casella, G., Theory of Point Estimation, (Springer, New York, 1998), 2nd edition.
83 Lehmann, E.L. and Romano, J.P., Testing Statistical Hypotheses, (Springer, New York, 2005), 3rd edition.
84 Liptser, R.S. and Shiryaev, A.N., Statistics of Random Processes, 2 vols., Applications of Mathematics, (Springer, New York, 1977).
85 LISA Study Team, LISA: Pre-Phase A Report, Second Edition, MPQ 233, (Max-Planck-Institut für Quantenoptik, Garching, 1998). Online version (accessed 3 January 2012):
External Linkhttp://lisa.gsfc.nasa.gov/documentation.html.
86 Manca, G.M. and Vallisneri, M., “Cover art: Issues in the metric-guided and metric-less placement of random and stochastic template banks”, Phys. Rev. D, 81, 024004, (2010). [External LinkDOI].
87 McDonough, R.N. and Whalen, A.D., Detection of Signals in Noise, (Academic Press, San Diego, 1995), 2nd edition. [External LinkGoogle Books].
88 McNabb, J.W.C. et al., “Overview of the BlockNormal event trigger generator”, Class. Quantum Grav., 21, S1705–S1710, (2004). [External LinkDOI], [External Linkgr-qc/0404123].
89 Messenger, C., Prix, R. and Papa, M.A., “Random template banks and relaxed lattice coverings”, Phys. Rev. D, 79, 104017, (2009). [External LinkDOI].
90 Meyer, C., Matrix Analysis and Applied Linear Algebra, (SIAM, Philadelphia, 2000). [External LinkGoogle Books].
91 Misner, C.W, Thorne, K.S. and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, 1973).
92 Mohanty, S.D., “Hierarchical search strategy for the detection of gravitational waves from coalescing binaries: Extension to post-Newtonian waveforms”, Phys. Rev. D, 57, 630–658, (1998). [External LinkDOI], [External Linkgr-qc/9703081].
93 Mohanty, S.D., “A robust test for detecting non-stationarity in data from gravitational wave detectors”, Phys. Rev. D, 61, 122002, (2000). [External LinkDOI], [External Linkgr-qc/9910027].
94 Mohanty, S.D. and Dhurandhar, S.V., “Hierarchical search strategy for the detection of gravitational waves from coalescing binaries”, Phys. Rev. D, 54, 7108–7128, (1996). [External LinkDOI].
95 Mohanty, S.D., Márka, S., Rahkola, R., Mukherjee, S., Leonor, I., Frey, R., Cannizzo, J. and Camp, J., “Search algorithm for a gravitational wave signal in association with gamma ray burst GRB030329 using the LIGO detectors”, Class. Quantum Grav., 21, S1831–S1837, (2004). [External LinkDOI].
96 Mukhopadhyay, H., Sago, N., Tagoshi, H., Dhurandhar, S.V., Takahashi, H. and Kanda, N., “Detecting gravitational waves from inspiraling binaries with a network of detectors: Coherent versus coincident strategies”, Phys. Rev. D, 74, 083005, (2006). [External LinkDOI].
97 Mukhopadhyay, H., Tagoshi, H., Dhurandhar, S.V. and Kanda, N., “Detecting gravitational waves from inspiraling binaries with a network of geographically separated detectors: Coherent versus coincident strategies”, Phys. Rev. D, 80, 123019, (2009). [External LinkDOI].
98 Nicholson, D. and Vecchio, A., “Bayesian bounds on parameter estimation accuracy for compact coalescing binary gravitational wave signals”, Phys. Rev. D, 57, 4588–4599, (1998). [External LinkDOI], [External Linkgr-qc/9705064].
99 Nicholson, D. et al., “Results of the first coincident observations by two laser-interferometric gravitational wave detectors”, Phys. Lett. A, 218, 175–180, (1996). [External LinkDOI], [External Linkgr-qc/9605048].
100 Niebauer, T.M., Rüdiger, A., Schilling, R., Schnupp, L., Winkler, W. and Danzmann, K., “Pulsar search using data compression with the Garching gravitational wave detector”, Phys. Rev. D, 47, 3106–3123, (1993). [External LinkDOI].
101 O’Hagan, A. and Forster, J., Kendall’s Advanced Theory of Statistics. Vol. IIB: Bayesian Inference, (E. Arnold, London, 2004), 2nd edition.
102 Owen, B.J., “Search templates for gravitational waves from inspiraling binaries: Choice of template spacing”, Phys. Rev. D, 53, 6749–6761, (1996). [External LinkDOI], [External Linkgr-qc/9511032].
103 Pai, A., Dhurandhar, S. and Bose, S., “A data-analysis strategy for detecting gravitational-wave signals from inspiraling compact binaries with a network of laser-interferometric detectors”, Phys. Rev. D, 64, 042004, (2001). [External LinkDOI], [External Linkgr-qc/0009078].
104 Pisarski, A., Jaranowski, P. and Pietka, M., “Banks of templates for directed searches of gravitational waves from spinning neutron stars”, Phys. Rev. D, 83, 043001, (2011). [External LinkDOI], [External Link1010.2879].
105 Pitkin, M., Reid, S., Rowan, S. and Hough, J., “Gravitational Wave Detection by Interferometry (Ground and Space)”, Living Rev. Relativity, 14, lrr-2011-5, (2011). URL (accessed 18 July 2011):
http://www.livingreviews.org/lrr-2011-5.
106 Poisson, E. and Will, C.M., “Gravitational waves from inspiraling compact binaries: Parameter estimation using second-post-Newtonian wave forms”, Phys. Rev. D, 52, 848–855, (1995). [External LinkDOI], [External Linkgr-qc/9502040].
107 Poor, H.V., An Introduction to Signal Detection and Estimation, (Springer, New York, 1994), 2nd edition. [External LinkGoogle Books].
108 Prince, T.A., Tinto, M., Larson, S.L. and Armstrong, J.W., “LISA optimal sensitivity”, Phys. Rev. D, 66, 122002, (2002). [External LinkDOI], [External LinkADS].
109 Prix, P. and Krishnan, B., “Targeted search for continuous gravitational waves: Bayesian versus maximum-likelihood statistics”, Class. Quantum Grav., 26, 204013, (2009). [External LinkDOI].
110 Prix, R., “The search for continuous gravitational waves: Metric of the multi-detector -statistic”, Phys. Rev. D, 75, 023004, (2007). [External Linkgr-qc/0606088]. Erratum: Phys. Rev. D, 75, 069901(E), (2007).
111 Prix, R., “Template-based searches for gravitational waves: efficient lattice covering of flat parameter spaces”, Class. Quantum Grav., 24, S481–S490, (2007). [External LinkDOI].
112 Rajesh Nayak, K., Pai, A., Dhurandhar, S.V. and Vinet, J.-Y., “Improving the sensitivity of LISA”, Class. Quantum Grav., 20, 1217–1231, (2003).
113 Rakhmanov, M., “Response of test masses to gravitational waves in the local Lorentz gauge”, Phys. Rev. D, 71, 084003, (2005). [External LinkDOI].
114 Rakhmanov, M., “On the round-trip time for a photon propagating in the field of a plane gravitational wave”, Class. Quantum Grav., 26, 155010, (2009). [External LinkDOI].
115 Rakhmanov, M., Romano, J.D. and Whelan, J.T., “High-frequency corrections to the detector response and their effect on searches for gravitational waves”, Class. Quantum Grav., 25, 184017, (2008). [External LinkDOI], [External LinkarXiv:0808.3805].
116 Rife, D.C. and Boorstyn, R.R., “Single tone parameter estimation from discrete-time observations”, IEEE Trans. Inform. Theory, 20, 591–598, (1974). [External LinkDOI].
117 Robinson, C.A.K., Sathyaprakash, B.S. and Sengupta, A.S., “Geometric algorithm for efficient coincident detection of gravitational waves”, Phys. Rev. D, 78, 062002, (2008). [External LinkDOI].
118 Rogan, A. and Bose, S., “Optimal statistic for detecting gravitational wave signals from binary inspirals with LISA”, Class. Quantum Grav., 21, S1607–S1624, (2004). [External LinkDOI], [External Linkgr-qc/0407008].
119 Röver, C., “Random template placement and prior information”, J. Phys.: Conf. Ser., 228, 012008, (2010).
120 Rubbo, L.J., Cornish, N.J. and Poujade, O., “Forward modeling of space-borne gravitational wave detectors”, Phys. Rev. D, 69, 082003, (2004). [External LinkDOI], [External Linkgr-qc/0311069].
121 Sathyaprakash, B.S. and Dhurandhar, S.V., “Choice of filters for the detection of gravitational waves from coalescing binaries”, Phys. Rev. D, 44, 3819–3834, (1991). [External LinkDOI].
122 Schutz, B.F., “Determining the nature of the Hubble constant”, Nature, 323, 310–311, (1986). [External LinkDOI].
123 Schutz, B.F., ed., Gravitational Wave Data Analysis, Proceedings of the NATO Advanced Research Workshop held at Dyffryn House, St. Nichols, Cardiff, Wales, 6 – 9 July 1987, NATO ASI Series C, 253, (Kluwer, Dordrecht; Boston, 1989).
124 Schutz, B.F., “Data Processing, Analysis and Storage for Interferometric Antennas”, in Blair, D.G., ed., The Detection of Gravitational Waves, pp. 406–452, (Cambridge University Press, Cambridge; New York, 1991). [External LinkGoogle Books].
125 Schutz, B.F., “Networks of gravitational wave detectors and three figures of merit”, Class. Quantum Grav., 28, 125023, (2011). [External LinkDOI], [External LinkarXiv:1102.5421].
126 Schutz, B.F. and Tinto, M., “Antenna patterns of interferometric detectors of gravitational waves – I. Linearly polarized waves”, Mon. Not. R. Astron. Soc., 224, 131–154, (1987).
127 Sengupta, S.A., Dhurandhar, S.V. and Lazzarini, A., “Faster implementation of the hierarchical search algorithm for detection of gravitational waves from inspiraling compact binaries”, Phys. Rev. D, 67, 082004, (2003). [External LinkDOI].
128 Seto, N., “Effects of finite armlength of LISA on analysis of gravitational waves from massive-black-holes binaries”, Phys. Rev. D, 66, 122001, (2002). [External LinkDOI], [External Linkgr-qc/0210028].
129 Seto, N., “Gravitational wave astrometry for rapidly rotating neutron stars and estimation of their distances”, Phys. Rev. D, 71, 123002, (2005). [External LinkDOI], [External Linkastro-ph/0505545].
130 Stuart, A. and Ord, J.K., Kendall’s Advanced Theory of Statistics. Vol. I: Distribution Theory, (E. Arnold, London, 1994), 6th edition.
131 Stuart, A., Ord, J.K. and Arnold, S., Kendall’s Advanced Theory of Statistics. Vol. IIA: Classical Inference and the Linear Model, (E. Arnold, London, 1999), 6th edition.
132 Table of Q Functions, RAND Research Memorandum, M-339, (U.S. Air Force, Rand Corporation, Santa Monica, 1950).
133 Tagoshi, H. et al. (TAMA Collaboration), “First search for gravitational waves from inspiraling compact binaries using TAMA300 data”, Phys. Rev. D, 63, 062001, (2001). [External LinkDOI], [External Linkgr-qc/0012010].
134 Tanaka, T. and Tagoshi, H., “Use of new coordinates for the template space in hierarchical search for gravitational waves from inspiraling binaries”, Phys. Rev. D, 62, 082001, (2000). [External LinkDOI], [External Linkgr-qc/0001090].
135 Thorne, K.S., “Gravitational radiation”, in Hawking, S.W. and Israel, W., eds., Three Hundred Years of Gravitation, pp. 330–458, (Cambridge University Press, Cambridge; New York, 1987). [External LinkGoogle Books].
136 Tinto, M. and Armstrong, J.W., “Cancellation of laser noise in an unequal-arm interferometer detector of gravitational radiation”, Phys. Rev. D, 59, 102003, (1999). [External LinkDOI].
137 Tinto, M. and Dhurandhar, S.V., “Time-Delay Interferometry”, Living Rev. Relativity, 8, lrr-2005-4, (2005). URL (accessed 30 June 2011):
http://www.livingreviews.org/lrr-2005-4.
138 Vallisneri, M., “Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects”, Phys. Rev. D, 77, 042001, (2008). [External LinkDOI], [External Linkgr-qc/0703086].
139 Van Trees, H.L., Detection, Estimation and Modulation Theory. Part 1: Detection, Estimation, and Linear Modulation Theory, (Wiley, New York, 1968).
140 Vecchio, A., “LISA observations of rapidly spinning massive black hole binary systems”, Phys. Rev. D, 70, 042001, (2004). [External LinkDOI], [External Linkastro-ph/0304051].
141 Vinet, J.-Y., “On Special Optical Modes and Thermal Issues in Advanced Gravitational Wave Interferometric Detectors”, Living Rev. Relativity, 12, lrr-2009-5, (2009). URL (accessed 30 June 2011):
http://www.livingreviews.org/lrr-2009-5.
142 Vitale, S. and Zanolin, M., “Parameter estimation from gravitational waves generated by nonspinning binary black holes with laser interferometers: Beyond the Fisher information”, Phys. Rev. D, 82, 124065, (2010). [External LinkDOI].
143 Wainstein, L.A. and Zubakov, V.D., Extraction of Signals from Noise, (Prentice-Hall, Englewood Cliffs, 1962).
144 Weber, J., “Evidence for Discovery of Gravitational Radiation”, Phys. Rev. Lett., 22, 1320–1324, (1969). [External LinkDOI].
145 Wong, E., Introduction to Random Processes, (Springer, New York, 1983).
146 Wong, E. and Hajek, B., Stochastic Processes in Engineering Systems, (Springer, New York, 1985).
147 Woodward, P.M., Probability and Information Theory with Applications to Radar, (Pergamon Press, London, 1953).
148 Zanolin, M., Vitale, S. and Makris, N., “Application of asymptotic expansions for maximum likelihood estimators errors to gravitational waves from binary mergers: The single interferometer case”, Phys. Rev. D, 81, 124048, (2010). [External LinkDOI].
149 Zieliński, R., “Theory of parameter estimation”, in Królak, A., ed., Mathematics of Gravitation. Part II: Gravitational Wave Detection, Proceedings of the Workshop on Mathematical Aspects of Theories of Gravitation, held in Warsaw, February 29 – March 30, 1996, Banach Center Publications, 41, pp. 209–220, (Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland, 1997).