eng
Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
Living Reviews in Relativity
1433-8351
2012-04-26
15
5
10.12942/lrr-2012-5
lrr-2012-5
article
Quantum Measurement Theory in Gravitational-Wave Detectors
Stefan L. Danilishin
1
Farid Ya. Khalili
2
School of Physics, University of Western Australia, 35 Stirling Hwy, Crawley 6009, Australia and Faculty of Physics, Moscow State University, Moscow 119991, Russia
Faculty of Physics, Moscow State University, Moscow 119991, Russia
The fast progress in improving the sensitivity of the gravitational-wave detectors, we all have witnessed in the recent years, has propelled the scientific community to the point at which quantum behavior of such immense measurement devices as kilometer-long interferometers starts to matter. The time when their sensitivity will be mainly limited by the quantum noise of light is around the corner, and finding ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of the Standard Quantum Limit and the methods of its surmounting.
http://www.livingreviews.org/lrr-2012-5
gravitational-wave detectors
quantum speed meter
quantum non-demolition measurement
back-action evasion
quantum noise
filter cavities
quantum measurement theory
optical rigidity
standard quantum limit
squeezed light