References

1 Abarbanel, S., Chertock, A.E. and Yefet, A., “Strict stability of high-order compact implicit finite-difference schemes: the role of boundary conditions for hyperbolic PDEs, II”, J. Comput. Phys., 160, 67–87, (2000). [External LinkDOI].
2 Abrahams, A.M., Anderson, A., Choquet-Bruhat, Y. and York Jr, J.W., “Einstein and Yang-Mills theories in hyperbolic form without gauge fixing”, Phys. Rev. Lett., 75, 3377–3381, (1995). [External LinkDOI], [External LinkarXiv:gr-qc/9506072 [gr-qc]].
3 Abrahams, A.M., Anderson, A., Choquet-Bruhat, Y. and York Jr, J.W., “Geometrical hyperbolic systems for general relativity and gauge theories”, Class. Quantum Grav., 14, A9–A22, (1997). [External LinkDOI].
4 Abrahams, A.M. et al. (Binary Black Hole Grand Challenge Alliance Collaboration), “Gravitational Wave Extraction and Outer Boundary Conditions by Perturbative Matching”, Phys. Rev. Lett., 80, 1812–1815, (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9709082].
5 Agranovich, M.S., “Theorem of matrices depending on parameters and its application to hyperbolic systems”, Funct. Anal. Appl., 6, 85–93, (1972). [External LinkDOI].
6 Alcubierre, M., “Appearance of coordinate shocks in hyperbolic formalisms of general relativity”, Phys. Rev. D, 55, 5981–5991, (1997). [External LinkDOI], [External LinkarXiv:gr-qc/9609015 [gr-qc]].
7 Alcubierre, M., “Hyperbolic slicings of space-time: Singularity avoidance and gauge shocks”, Class. Quantum Grav., 20, 607–624, (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0210050 [gr-qc]].
8 Alcubierre, M., “Are gauge shocks really shocks?”, Class. Quantum Grav., 22, 4071–4082, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0503030 [gr-qc]].
9 Alcubierre, M., Introduction to 3+1 Numerical Relativity, International Series of Monographs on Physics, 140, (Oxford University Press, Oxford; New York, 2008).
10 Alcubierre, M., Allen, G., Brügmann, B., Seidel, E. and Suen, W.-M., “Towards an understanding of the stability properties of the 3+1 evolution equations in general relativity”, Phys. Rev. D, 62, 124011, (2000). [External LinkDOI].
11 Alcubierre, M., Brügmann, B., Diener, P., Koppitz, M., Pollney, D., Seidel, E. and Takahashi, R., “Gauge conditions for long-term numerical black hole evolutions without excision”, Phys. Rev. D, 67, 084023, (2003). [External LinkDOI].
12 Alcubierre, M., Brügmann, B., Miller, M.A. and Suen, W.-M., “Conformal hyperbolic formulation of the Einstein equations”, Phys. Rev. D, 60, 064017, (1999). [External LinkDOI], [External LinkarXiv:gr-qc/9903030 [gr-qc]].
13 Alcubierre, M., Corichi, A., González, J.A., Núñez, D. and Salgado, M., “Hyperbolicity of the Kidder-Scheel-Teukolsky formulation of Einstein’s equations coupled to a modified Bona-Masso slicing condition”, Phys. Rev. D, 67, 104021, (2003). [External LinkDOI].
14 Alekseenko, A.M., “Well-posed initial-boundary value problem for a constrained evolution system and radiation-controlling constraint-preserving boundary conditions”, J. Hyperbol. Differ. Equations, 4, 587–612, (2007). [External LinkDOI].
15 Alekseenko, A.M., “Constraint-preserving boundary conditions for the linearized Baumgarte-Shapiro-Shibata-Nakamura Formulation”, Abstr. Appl. Anal., 2008, 742040, (2008). [External LinkDOI].
16 Alpert, B., Greengard, L. and Hagstrom, T., “Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation”, SIAM J. Numer. Anal., 37, 1138–1164, (2000). [External LinkDOI].
17 Alpert, B., Greengard, L. and Hagstrom, T., “Nonreflecting boundary conditions for the time-dependent wave equation”, J. Comput. Phys., 180, 270–296, (2002). [External LinkDOI].
18 Alvi, K., “First-order symmetrizable hyperbolic formulation of Einstein’s equations including lapse and shift as dynamical fields”, Class. Quantum Grav., 19, 5153–5162, (2002). [External LinkDOI].
19 Amorim, P., Bernardi, C. and LeFloch, P.G., “Computing Gowdy spacetimes via spectral evolution in future and past directions”, Class. Quantum Grav., 26, 025007, (2009). [External LinkDOI], [External LinkarXiv:0811.1266 [gr-qc]].
20 Anderson, A., Abrahams, A.M. and Lea, C., “Curvature based gauge invariant perturbation theory for gravity: A New paradigm”, Phys. Rev. D, 58, 064015, (1998). [External LinkDOI].
21 Anderson, A., Choquet-Bruhat, Y. and York Jr, J.W., “Einstein–Bianchi hyperbolic system for general relativity”, Topol. Methods Nonlinear Anal., 10, 353–373, (1997). [External LinkarXiv:gr-qc/9710041 [gr-qc]].
22 Anderson, A. and York Jr, J.W., “Fixing Einstein’s equations”, Phys. Rev. Lett., 82, 4384–4387, (1999). [External LinkDOI].
23 Anderson, M., Hirschmann, E.W., Lehner, L., Liebling, S.L., Motl, P.M., Neilsen, D., Palenzuela, C. and Tohline, J.E., “Magnetized Neutron-Star Mergers and Gravitational-Wave Signals”, Phys. Rev. Lett., 100, 191101, (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0801.4387 [gr-qc]].
24 Anderson, M., Hirschmann, E., Liebling, S.L. and Neilsen, D., “Relativistic MHD with adaptive mesh refinement”, Class. Quantum Grav., 23, 6503–6524, (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0605102 [gr-qc]].
25 Andersson, L. and Moncrief, V., “Elliptic-Hyperbolic Systems and the Einstein Equations”, Ann. Henri Poincare, 4, 1–34, (2003). [External LinkDOI].
26 Andersson, L. and Moncrief, V., “Future Complete Vacuum Spacetimes”, in Chruściel, P.T. and Friedrich, H., eds., The Einstein Equations and the Large Scale Behavior of Gravitational Fields: 50 Years of the Cauchy Problem in General Relativity, pp. 299–330, (Birkhäuser, Basel; Boston, 2004). [External LinkGoogle Books].
27 Andersson, L. and Moncrief, V., “Einstein spaces as attractors for the Einstein flow”, J. Differ. Geom., 98, 1–47, (2009). [External LinkarXiv:0908.0784 [gr-qc]].
28 Arnold, D.N., Brezzi, F., Cockburn, B. and Marini, Donatella, L., “Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems”, SIAM J. Numer. Anal., 39, 1749–1779, (2001). [External LinkDOI].
29 Arnold, D.N. and Tarfulea, N., “Boundary conditions for the Einstein-Christoffel formulation of Einstein’s equations”, in Graef, J. et al., ed., Sixth Mississippi State Conference on Differential Equations and Computational Simulations, Starkville, Mississippi, USA, May 13 – 14, 2005, Electron. J. Diff. Eqns., Conf., 15, pp. 11–27, (Texas State University, San Marcos, TX, 2007). [External Linkgr-qc/0611010]. URL (accessed 6 April 2011):
External Linkhttp://ejde.math.txstate.edu/.
30 Arnowitt, R., Deser, S. and Misner, C.W., “The dynamics of general relativity”, in Witten, L., ed., Gravitation: An Introduction to Current Research, pp. 227–265, (Wiley, New York; London, 1962). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0405109 [gr-qc]].
31 Aylott, B. et al., “Testing gravitational-wave searches with numerical relativity waveforms: Results from the first Numerical INJection Analysis (NINJA) project”, Class. Quantum Grav., 26, 165008, (2009). [External LinkDOI], [External LinkarXiv:0901.4399 [gr-qc]].
32 Babiuc, M.C., Bishop, N.T., Szilágyi, B. and Winicour, J., “Strategies for the characteristic extraction of gravitational waveforms”, Phys. Rev. D, 79, 084011, (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0808.0861 [gr-qc]].
33 Babiuc, M.C., Kreiss, H.-O. and Winicour, J., “Constraint-preserving Sommerfeld conditions for the harmonic Einstein equations”, Phys. Rev. D, 75, 044002, (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0612051 [gr-qc]].
34 Babiuc, M., Szilágyi, B., Hawke, I. and Zlochower, Y., “Gravitational wave extraction based on Cauchy-characteristic extraction and characteristic evolution”, Class. Quantum Grav., 22, 5089–5107, (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0501008 [gr-qc]].
35 Babiuc, M.C., Szilágyi, B. and Winicour, J., “Harmonic Initial-Boundary Evolution in General Relativity”, Phys. Rev. D, 73, 064017, (2006). [External LinkDOI].
36 Babiuc, M.C., Szilágyi, B. and Winicour, J., “Testing numerical evolution with the shifted gauge wave”, Class. Quantum Grav., 23, S319–S341, (2006). [External LinkDOI].
37 Babiuc, M.C., Szilágyi, B., Winicour, J. and Zlochower, Y., “Characteristic extraction tool for gravitational waveforms”, Phys. Rev. D, 84, 044057, (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1011.4223 [gr-qc]].
38 Baker, J.G., Centrella, J.M., Choi, D.-I., Koppitz, M. and van Meter, J.R., “Binary black hole merger dynamics and waveforms”, Phys. Rev. D, 73, 104002, (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0602026 [gr-qc]].
39 Baker, J.G. and van Meter, J.R., “Reducing reflections from mesh refinement interfaces in numerical relativity”, Phys. Rev. D, 72, 104010, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0505100 [gr-qc]].
40 Bardeen, J.M. and Buchman, L.T., “Numerical tests of evolution systems, gauge conditions, and boundary conditions for 1D colliding gravitational plane waves”, Phys. Rev. D, 65, 064037, (2002). [External LinkDOI].
41 Bardeen, J.M. and Press, W.H., “Radiation fields in the Schwarzschild background”, J. Math. Phys., 14, 7–19, (1973). [External LinkDOI].
42 Bardeen, J.M., Sarbach, O. and Buchman, L.T., “Tetrad formalism for numerical relativity on conformally compactified constant mean curvature hypersurfaces”, Phys. Rev. D, 83, 104045, (2011). [External LinkDOI], [External LinkarXiv:1101.5479 [gr-qc]].
43 Bartnik, R. and Norton, A.H., “Numerical Methods for the Einstein Equations in Null Quasi-Spherical Coordinates”, SIAM J. Sci. Comput., 22, 917–950, (2000). [External LinkDOI].
44 Baumgarte, T.W. and Shapiro, S.L., “Numerical integration of Einstein’s field equations”, Phys. Rev. D, 59, 024007, (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9810065 [gr-qc]].
45 Baumgarte, T.W. and Shapiro, S.L., Numerical Relativity: Solving Einstein’s Equations on the Computer, (Cambridge University Press, Cambridge; New York, 2010). [External LinkADS], [External LinkGoogle Books].
46 Bayliss, A. and Turkel, E., “Radiation boundary conditions for wave-like equations”, Commun. Pure Appl. Math., 33, 707–725, (1980). [External LinkDOI], [External LinkADS].
47 Beig, R., “Concepts of Hyperbolicity and Relativistic Continuum Mechanics”, in Frauendiener, J., Giulini, D.J.W. and Perlick, V., eds., Analytical and Numerical Approaches to Mathematical Relativity, 319th WE-Heraeus Seminar ‘Mathematical Relativity: New Ideas and Developments’, Bad Honnef, Germany, March 1 – 5, 2004, Lecture Notes in Physics, 692, pp. 101–116, (Springer, Berlin; New York, 2006). [External LinkDOI].
48 Berger, M.J. and Oliger, J., “Adaptive mesh refinement for hyperbolic partial differential equations”, J. Comput. Phys., 53, 484–512, (1984). [External LinkDOI].
49 Beyer, F., “Investigations of solutions of Einstein’s field equations close to λ-Taub–NUT”, Class. Quantum Grav., 25, 235005, (2008). [External LinkDOI], [External LinkarXiv:0804.4224 [gr-qc]].
50 Beyer, F., “A spectral solver for evolution problems with spatial S3-topology”, J. Comput. Phys., 228, 6496–6513, (2009). [External LinkDOI], [External LinkarXiv:0804.4222 [gr-qc]].
51 Beyer, H.R., Beyond Partial Differential Equations: On Linear and Quasi-Linear Abstract Hyperbolic Evolution Equations, Lecture Notes in Mathematics, 1898, (Springer, Berlin, 2007).
52 Beyer, H.R. and Sarbach, O., “Well-posedness of the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein’s field equations”, Phys. Rev. D, 70, 104004, (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0406003 [gr-qc]].
53 Bishop, N.T., Gómez, R., Isaacson, R.A., Lehner, L., Szilágyi, B. and Winicour, J., “Cauchy-characteristic matching”, in Bhawal, B. and Iyer, B.R., eds., Black Holes, Gravitational Radiation and the Universe: Essays in Honour of C.V. Vishveshwara, Fundamental Theories of Physics, pp. 383–408, (Kluwer, Dordrecht; Boston, 1999). [External LinkADS], [External LinkarXiv:gr-qc/9801070].
54 Bishop, N.T., Gómez, R., Lehner, L. and Winicour, J., “Cauchy-characteristic extraction in numerical relativity”, Phys. Rev. D, 54, 6153–6165, (1996). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9705033].
55 Bishop, N.T., Pollney, D. and Reisswig, C., “Initial data transients in binary black hole evolutions”, Class. Quantum Grav., 28, 155019, (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1101.5492 [gr-qc]].
56 Bona, C. and Bona-Casas, C., “Constraint-preserving boundary conditions in the 3+1 first-order approach”, Phys. Rev. D, 82, 064008, (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1003.3328 [gr-qc]].
57 Bona, C. and Bona-Casas, C., “Gowdy waves as a test-bed for constraint-preserving boundary conditions”, J. Phys.: Conf. Ser., 229, 012022, (2010). [External LinkDOI].
58 Bona, C., Bona-Casas, C. and Palenzuela, C., “Action principle for Numerical Relativity evolution systems”, Phys. Rev. D, 82, 124010, (2010). [External LinkDOI], [External LinkarXiv:1008.0747 [gr-qc]].
59 Bona, C., Ledvinka, T. and Palenzuela, C., “3+1 covariant suite of numerical relativity evolution systems”, Phys. Rev. D, 66, 084013, (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0208087 [gr-qc]].
60 Bona, C., Ledvinka, T., Palenzuela, C. and Žaček, M., “General covariant evolution formalism for numerical relativity”, Phys. Rev. D, 67, 104005, (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0302083 [gr-qc]].
61 Bona, C., Ledvinka, T., Palenzuela, C. and Zacek, M., “Constraint-preserving boundary conditions in the Z4 Numerical Relativity formalism”, Class. Quantum Grav., 22, 2615–2634, (2005). [External LinkDOI].
62 Bona, C., Massó, J., Seidel, E. and Stela, J., “New Formalism for Numerical Relativity”, Phys. Rev. Lett., 75, 600–603, (1995). [External LinkDOI].
63 Bona, C., Massó, J., Seidel, E. and Stela, J., “First order hyperbolic formalism for numerical relativity”, Phys. Rev. D, 56, 3405–3415, (1997). [External LinkDOI].
64 Bona, C. and Palenzuela, C., “Dynamical shift conditions for the Z4 and BSSN hyperbolic formalisms”, Phys. Rev. D, 69, 104003, (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0401019 [gr-qc]].
65 Bonazzola, S., Gourgoulhon, E., Grandclément, P. and Novak, J., “Constrained scheme for the Einstein equations based on the Dirac gauge and spherical coordinates”, Phys. Rev. D, 70, 104007, (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0307082 [gr-qc]].
66 Bonazzola, S. and Marck, J.-A., “Pseudo-spectral technique applied to numerical solutions for stellar collapse”, Astron. Astrophys., 164, 300–309, (1986). [External LinkADS].
67 Bonazzola, S. and Marck, J.-A., “Three-dimensional gas dynamics in a sphere”, J. Comput. Phys., 87, 201–230, (1990). [External LinkDOI], [External LinkADS].
68 Bonazzola, S. and Marck, J.-A., “A 1D exact treatment of shock waves within spectral methods in plane geometry”, J. Comput. Phys., 97, 535–552, (1991). [External LinkDOI], [External LinkADS].
69 Boyd, J.P., “A fast algorithm for Chebyshev, Fourier, and sinc interpolation onto an irregular grid”, J. Comput. Phys., 103, 243–257, (1992).
70 Boyd, J.P., Chebyshev and Fourier Spectral Methods, (Dover Publications, Mineola, NY, 2001), 2nd rev. edition. [External LinkGoogle Books].
71 Boyle, M., Brown, D.A., Kidder, L.E., Mroué, A.H., Pfeiffer, H.P., Scheel, M.A., Cook, G.B. and Teukolsky, S.A., “High-accuracy comparison of numerical relativity simulations with post-Newtonian expansions”, Phys. Rev. D, 76, 124038, (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0710.0158 [gr-qc]].
72 Boyle, M. and Mroué, A.H., “Extrapolating gravitational-wave data from numerical simulations”, Phys. Rev. D, 80, 124045, (2009). [External LinkDOI], [External LinkarXiv:0905.3177 [gr-qc]].
73 Brady, P.R., Creighton, J.D.E. and Thorne, K.S., “Computing the merger of black-hole binaries: The IBBH problem”, Phys. Rev. D, 58, 061501, (1998). [External LinkDOI].
74 Brodbeck, O., Frittelli, S., Hubner, P. and Reula, O.A., “Einstein’s equations with asymptotically stable constraint propagation”, J. Math. Phys., 40, 909–923, (1999). [External LinkDOI].
75 Brodbeck, O., Heusler, M. and Sarbach, O., “The generalization of the Regge-Wheeler equation for selfgravitating matter fields”, Phys. Rev. Lett., 84, 3033–3036, (2000). [External LinkDOI].
76 Brown, J.D., “The Midpoint rule as a variational-symplectic integrator. I. Hamiltonian systems”, Phys. Rev. D, 73, 024001, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0511018 [gr-qc]].
77 Brown, J.D., “Covariant formulations of BSSN and the standard gauge”, Phys. Rev. D, 79, 104029, (2009). [External LinkDOI].
78 Brown, J.D., “Strongly Hyperbolic Extensions of the ADM Hamiltonian”, in Henneaux, M. and Zanelli, J., eds., Quantum Mechanics of Fundamental Systems: The Quest for Beauty and Simplicity. Claudio Bunster Festschrift, pp. 71–90, (Springer, New York, 2009). [External LinkDOI], [External LinkarXiv:0803.0334 [gr-qc]], [External LinkGoogle Books].
79 Brown, J.D., “Action principle for the generalized harmonic formulation of general relativity”, Phys. Rev. D, 84, 084014, (2011). [External LinkDOI].
80 Brown, J.D., Diener, P., Sarbach, O., Schnetter, E. and Tiglio, M., “Turduckening black holes: an analytical and computational study”, Phys. Rev. D, 79, 044023, (2009). [External LinkDOI].
81 Brown, J.D., Sarbach, O., Schnetter, E., Tiglio, M., Diener, P., Hawke, I. and Pollney, D., “Excision without excision”, Phys. Rev. D, 76, 081503, (2007). [External LinkDOI].
82 Brown, J.D. et al., “Numerical simulations with a first-order BSSN formulation of Einstein’s field equations”, Phys. Rev. D, 85, 084004, (2012). [External LinkarXiv:1202.1038 [gr-qc]].
83 Brügmann, B., “A pseudospectral matrix method for time-dependent tensor fields on a spherical shell”, arXiv, e-print, (2011). [External LinkarXiv:1104.3408 [physics.comp-ph]].
84 Brügmann, B., González, J.A, Hannam, M., Husa, S., Sperhake, U. and Tichy, W., “Calibration of moving puncture simulations”, Phys. Rev. D, 77, 024027, (2008). [External LinkDOI].
85 Bruhat, Y., “Cauchy problem”, in Witten, L., ed., Gravitation: An Introduction to Current Research, pp. 130–168, (Wiley, New York; London, 1962).
86 Buchman, L.T. and Bardeen, J.M., “Hyperbolic tetrad formulation of the Einstein equations for numerical relativity”, Phys. Rev. D, 67, 084017, (2003). [External LinkDOI]. Erratum: Phys. Rev. D 72, 2005, 049903.
87 Buchman, L.T., Pfeiffer, H.P. and Bardeen, J.M., “Black hole initial data on hyperboloidal slices”, Phys. Rev. D, 80, 084024, (2009). [External LinkDOI], [External LinkarXiv:0907.3163 [gr-qc]].
88 Buchman, L.T. and Sarbach, O., “Towards absorbing outer boundaries in general relativity”, Class. Quantum Grav., 23, 6709–6744, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0608051 [gr-qc]].
89 Buchman, L.T. and Sarbach, O., “Improved outer boundary conditions for Einstein’s field equations”, Class. Quantum Grav., 24, S307–S326, (2007). [External LinkDOI], [External LinkADS].
90 Buonanno, A., Kidder, L.E., Mroué, A.H., Pfeiffer, H.P. and Taracchini, A., “Reducing orbital eccentricity of precessing black-hole binaries”, Phys. Rev. D, 83, 104034, (2010). [External LinkarXiv:1012.1549 [gr-qc]].
91 Buonanno, A., Pan, Y., Pfeiffer, H.P., Scheel, M.A., Buchman, L.T. and Kidder, L.E., “Effective-one-body waveforms calibrated to numerical relativity simulations: Coalescence of nonspinning, equal-mass black holes”, Phys. Rev. D, 79, 124028, (2009). [External LinkDOI], [External LinkarXiv:0902.0790 [gr-qc]].
92 Burke, W.L., “Gravitational Radiation Damping of Slowly Moving Systems Calculated Using Matched Asymptotic Expansions”, J. Math. Phys., 12, 401–418, (1971). [External LinkDOI], [External LinkADS].
93 Butcher, J.C., “On Runge-Kutta processes of high order”, J. Aust. Math. Soc., 5, 179–194, (1964). [External LinkDOI].
94 Butcher, J.C., “On the attainable order of Runge-Kutta methods”, Math. Comput., 19, 408–417, (1965). [External LinkDOI].
95 Butcher, J.C., “The non-existence of ten stage eighth order explicit Runge-Kutta methods”, BIT, 25, 521–540, (1985). [External LinkDOI].
96 Butcher, J.C., Numerical Methods for Ordinary Differential Equations, (Wiley, Chichester; Hoboken, NJ, 2003).
97 Cadonati, L. et al., “Status of NINJA: The Numerical INJection Analysis project”, Class. Quantum Grav., 26, 114008, (2009). [External LinkDOI], [External LinkarXiv:0905.4227 [gr-qc]].
98 Calabrese, G., Constraint preserving boundary conditions for the linearized Einstein equations, Ph.D. thesis, (Louisiana State University, Baton Rouge, 2003). Online version (accessed 6 April 2011):
External Linkhttp://etd.lsu.edu/docs/available/etd-1105103-100340.
99 Calabrese, G., “Exact boundary conditions in numerical relativity using multiple grids: scalar field tests”, Class. Quantum Grav., 23, 5439–5450, (2006). [External LinkDOI].
100 Calabrese, G., Gundlach, C. and Hilditch, D., “Asymptotically null slices in numerical relativity: mathematical analysis and spherical wave equation tests”, Class. Quantum Grav., 23, 4829–4845, (2006). [External LinkDOI].
101 Calabrese, G., Hinder, I. and Husa, S., “Numerical stability for finite difference approximations of Einstein’s equations”, J. Comput. Phys., 218, 607–634, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0503056 [gr-qc]].
102 Calabrese, G., Lehner, L., Neilsen, D., Pullin, J., Reula, O.A., Sarbach, O. and Tiglio, M., “Novel finite-differencing techniques for numerical relativity: application to black-hole excision”, Class. Quantum Grav., 20, L245–L252, (2003). [External LinkDOI], [External LinkarXiv:gr-qc/0302072 [gr-qc]].
103 Calabrese, G., Lehner, L., Reula, O.A., Sarbach, O. and Tiglio, M., “Summation by parts and dissipation for domains with excised regions”, Class. Quantum Grav., 21, 5735–5758, (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0308007 [gr-qc]].
104 Calabrese, G., Lehner, L. and Tiglio, M., “Constraint-preserving boundary conditions in numerical relativity”, Phys. Rev. D, 65, 104031, (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0111003 [gr-qc]].
105 Calabrese, G. and Neilsen, D., “Spherical excision for moving black holes and summation by parts for axisymmetric systems”, Phys. Rev. D, 69, 044020, (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0308008 [gr-qc]].
106 Calabrese, G., Pullin, J., Reula, O.A., Sarbach, O. and Tiglio, M., “Well posed constraint-preserving boundary conditions for the linearized Einstein equations”, Commun. Math. Phys., 240, 377–395, (2003). [External LinkDOI], [External LinkADS], [External Linkgr-qc/0209017].
107 Calabrese, G., Pullin, J., Sarbach, O. and Tiglio, M., “Convergence and stability in numerical relativity”, Phys. Rev. D, 66, 041501(R), (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0207018 [gr-qc]].
108 Calabrese, G. and Sarbach, O., “Detecting ill posed boundary conditions in general relativity”, J. Math. Phys., 44, 3888–3899, (2003). [External LinkDOI].
109 Campanelli, M., Lousto, C.O., Zlochower, Y. and Merritt, D., “Large merger recoils and spin flips from generic black-hole binaries”, Astrophys. J. Lett., 659, L5–L8, (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0701164 [gr-qc]].
110 Campiglia, M., Di Bartolo, C., Gambini, R. and Pullin, J., “Uniform discretizations: A new approach for the quantization of totally constrained systems”, Phys. Rev. D, 74, 124012, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0610023 [gr-qc]].
111 Canizares, P. and Sopuerta, C.F., “Efficient pseudospectral method for the computation of the self-force on a charged particle: Circular geodesics around a Schwarzschild black hole”, Phys. Rev. D, 79, 084020, (2009). [External LinkDOI], [External LinkarXiv:0903.0505 [gr-qc]].
112 Canizares, P. and Sopuerta, C.F., “Simulations of Extreme-Mass-Ratio Inspirals Using Pseudospectral Methods”, J. Phys.: Conf. Ser., 154, 012053, (2009). [External LinkDOI], [External LinkarXiv:0811.0294 [gr-qc]].
113 Canizares, P. and Sopuerta, C.F., “Tuning time-domain pseudospectral computations of the self-force on a charged scalar particle”, Class. Quantum Grav., 28, 134011, (2011). [External LinkarXiv:1101.2526 [gr-qc]].
114 Canizares, P., Sopuerta, C.F. and Jaramillo, J.L., “Pseudospectral collocation methods for the computation of the self-force on a charged particle: Generic orbits around a Schwarzschild black hole”, Phys. Rev. D, 82, 044023, (2010). [External LinkDOI], [External LinkarXiv:1006.3201 [gr-qc]].
115 Carpenter, M.H. and Gottlieb, D., “Spectral methods on arbitrary grids”, J. Comput. Phys., 129, 74–86, (1996). [External LinkDOI].
116 Carpenter, M.H., Gottlieb, D. and Abarbanel, S., “The stability of numerical boundary treatments for compact high-order finite-difference schemes”, J. Comput. Phys., 108, 272–295, (1993). [External LinkDOI].
117 Carpenter, M.H., Gottlieb, D. and Abarbanel, S., “Time-Stable Boundary Conditions for Finite-Difference Schemes Solving Hyperbolic Systems: Methodology and Application to High-Order Compact Schemes”, J. Comput. Phys., 111, 220–236, (1994). [External LinkDOI].
118 Carpenter, M.H., Nordström, J. and Gottlieb, D., “A stable and conservative interface treatment of arbitrary spatial accuracy”, J. Comput. Phys., 148, 341–365, (1999). [External LinkDOI].
119 Carpenter, M.H., Nordström, J. and Gottlieb, D., “Revisiting and Extending Interface Penalties for Multi-domain Summation-by-Parts Operators”, J. Sci. Comput., 45, 118–150, (2010). [External LinkDOI].
120 Cécere, M., Lehner, L. and Reula, O.A., “Constraint preserving boundary conditions for the Ideal Newtonian MHD equations”, Comput. Phys. Commun., 179, 545–554, (2008). [External LinkDOI].
121 Cécere, M., Parisi, F. and Reula, O.A., “Numerical treatment of interfaces for second-order wave equations”, arXiv, e-print, (2011). [External LinkarXiv:1112.3039 [physics.comp-ph]].
122 Centrella, J.M., Baker, J.G., Kelly, B.J. and van Meter, J.R., “Black-hole binaries, gravitational waves, and numerical relativity”, Rev. Mod. Phys., 82, 3069–3119, (2010). [External LinkDOI], [External LinkADS].
123 Chakraborty, D., Jung, J.-H. and Khanna, G., “A multi-domain hybrid method for head-on collision of black holes in particle limit”, Int. J. Mod. Phys. C, 22, 517–541, (2011). [External LinkDOI], [External LinkarXiv:1103.1551 [physics.comp-ph]].
124 Chawla, S., Anderson, M., Besselman, M., Lehner, L., Liebling, S.L., Motl, P.M. and Neilsen, D., “Mergers of Magnetized Neutron Stars with Spinning Black Holes: Disruption, Accretion, and Fallback”, Phys. Rev. Lett., 105, 111101, (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1006.2839 [gr-qc]].
125 Choptuik, M.W., “Universality and scaling in gravitational collapse of a massless scalar field”, Phys. Rev. Lett., 70, 9–12, (1993). [External LinkDOI], [External LinkADS].
126 Choquet-Bruhat, Y., General Relativity and the Einstein Equations, Oxford Mathematical Monographs, (Oxford University Press, Oxford; New York, 2009). [External LinkGoogle Books].
127 Choquet-Bruhat, Y. and Geroch, R., “Global aspects of the Cauchy problem in general relativity”, Commun. Math. Phys., 14, 329–335, (1969). [External LinkDOI].
128 Choquet-Bruhat, Y. and Ruggeri, T., “Hyperbolicity of the 3+1 System of Einstein Equations”, Commun. Math. Phys., 89, 269–275, (1983). [External LinkDOI].
129 Christodoulou, D. and Klainerman, S., The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical Series, 41, (Princeton University Press, Princeton, NJ, 1993).
130 Chu, T., Pfeiffer, H.P. and Cohen, M.I., “Horizon dynamics of distorted rotating black holes”, Phys. Rev. D, 83, 104018, (2011). [External LinkarXiv:1011.2601 [gr-qc]].
131 Chu, T., Pfeiffer, H.P. and Scheel, M.A., “High accuracy simulations of black hole binaries: Spins anti-aligned with the orbital angular momentum”, Phys. Rev. D, 80, 124051, (2009). [External LinkDOI], [External LinkarXiv:0909.1313 [gr-qc]].
132 Cohen, M.I., Pfeiffer, H.P. and Scheel, M.A., “Revisiting Event Horizon Finders”, Class. Quantum Grav., 26, 035005, (2009). [External LinkDOI], [External LinkarXiv:0809.2628 [gr-qc]].
133 Cook, G.B., “Initial Data for Numerical Relativity”, Living Rev. Relativity, 3, lrr-2000-5, (2000). [External LinkADS], [External LinkarXiv:gr-qc/0007085 [gr-qc]]. URL (accessed 6 April 2011):
http://www.livingreviews.org/lrr-2000-5.
134 de Donder, T., La Gravifique Einsteinienne, (Gunthier-Villars, Paris, 1921).
135 Deadman, E. and Stewart, J.M., “Linearized perturbations of the Kerr spacetime and outer boundary conditions in numerical relativity”, Class. Quantum Grav., 28, 015003, (2011). [External LinkDOI].
136 Dedner, A., Kemm, F., Kröner, D., Munz, C.-D., Schnitzer, T. and Wesenberg, M., “Hyperbolic divergence cleaning for the MHD equations”, J. Comput. Phys., 175, 645–673, (2002). [External LinkDOI].
137 Dettoria, L. and Yang, B., “On the Chebyshev penalty method for parabolic and hyperbolic equations”, Math. Model. Numer. Anal., 30, 907–920, (1996). Online version (accessed 6 April 2011):
External Linkhttp://www.numdam.org/item?id=M2AN_1996__30_7_907_0.
138 Deuflhard, P. and Hohmann, A., Numerical Analysis in Modern Scientific Computing: An Introduction, Texts in Applied Mathematics, 43, (Springer, New York, 2003), 2nd edition. [External LinkGoogle Books].
139 Di Bartolo, C., Gambini, R. and Pullin, J., “Consistent and mimetic discretizations in general relativity”, J. Math. Phys., 46, 032501, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0404052 [gr-qc]].
140 Diamessis, P.J., Domaradzki, J.A. and Hesthaven, J.S., “A spectral multidomain penalty method model for the simulation of high Reynolds number localized incompressible stratified turbulence”, J. Comput. Phys., 202, 298–322, (2005). [External LinkDOI].
141 Diener, P., Dorband, E.N., Schnetter, E. and Tiglio, M., “New, efficient, and accurate high order derivative and dissipation operators satisfying summation by parts, and applications in three-dimensional multi-block evolutions”, J. Sci. Comput., 32, 109–145, (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0512001].
142 Dimmelmeier, H., Novak, J., Font, J.A., Ibáñez, J.M. and Müller, E., “Combining spectral and shock-capturing methods: A new numerical approach for 3D relativistic core collapse simulations”, Phys. Rev. D, 71, 064023, (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0407174 [astro-ph]].
143 d’Inverno, R.A., Dubal, M.R. and Sarkies, E.A., “Cauchy-characteristic matching for a family of cylindrical vacuum solutions possessing both gravitational degrees of freedom”, Class. Quantum Grav., 17, 3157–3170, (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0002057 [gr-qc]].
144 Don, W.S. and Gottlieb, D., “The Chebyshev-Legendre Method: Implementing Legendre Methods on Chebyshev Points”, SIAM J. Numer. Anal., 31, 1519–1534, (1994). [External LinkDOI].
145 Dorband, E.N., Berti, E., Diener, P., Schnetter, E. and Tiglio, M., “Numerical study of the quasinormal mode excitation of Kerr black holes”, Phys. Rev. D, 74, 084028, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0608091 [gr-qc]].
146 Dormand, J.R. and Prince, P.J., “A family of embedded Runge-Kutta formulae”, J. Comput. Appl. Math., 6, 19–26, (1980). [External LinkDOI].
147 Douglas Jr, J. and Dupont, T., Interior penalty procedures for elliptic and parabolic Galerkin methods, 58, (Springer, Heidelberg, 1976).
148 Dubal, M.R., d’Inverno, R.A. and Vickers, J.A., “Combining Cauchy and characteristic codes. V. Cauchy-characteristic matching for a spherical space-time containing a perfect fluid”, Phys. Rev. D, 58, 044019, (1998). [External LinkDOI].
149 Duez, M.D., Foucart, F., Kidder, L.E., Ott, C.D. and Teukolsky, S.A., “Equation of state effects in black hole-neutron star mergers”, Class. Quantum Grav., 27, 114106, (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0912.3528 [astro-ph.HE]].
150 Duez, M.D., Foucart, F., Kidder, L.E., Pfeiffer, H.P., Scheel, M.A. and Teukolsky, S.A., “Evolving black hole-neutron star binaries in general relativity using pseudospectral and finite difference methods”, Phys. Rev. D, 78, 104015, (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0809.0002 [gr-qc]].
151 “Einstein Toolkit”, project homepage, Louisiana State University. URL (accessed 4 April 2011):
External Linkhttp://einsteintoolkit.org.
152 Engel, K.-J. and Nagel, R., One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194, (Springer, New York; Berlin, 2000). [External LinkGoogle Books].
153 Engquist, B. and Majda, A., “Absorbing boundary conditions for the numerical simulation of waves”, Math. Comput., 31, 629–651, (1977). [External LinkDOI], [External LinkADS].
154 Epperson, J.F., “On the Runge Example”, Am. Math. Mon., 94, 329–341, (1987). [External LinkDOI].
155 Estabrook, F.B., Robinson, R.S. and Wahlquist, H.D., “Hyperbolic equations for vacuum gravity using special orthonormal frames”, Class. Quantum Grav., 14, 1237–1247, (1997). [External LinkDOI].
156 Etienne, Z.B., Faber, J.A., Liu, Y.T., Shapiro, S.L. and Baumgarte, T.W., “Filling the holes: Evolving excised binary black hole initial data with puncture techniques”, Phys. Rev. D, 76, 101503, (2007). [External LinkDOI].
157 Etienne, Z.B., Liu, Y.T. and Shapiro, S.L., “Relativistic magnetohydrodynamics in dynamical spacetimes: A new adaptive mesh refinement implementation”, Phys. Rev. D, 82, 084031, (2010). [External LinkDOI], [External LinkarXiv:1007.2848 [astro-ph.HE]].
158 Evans, C.R., “An approach for calculating axisymmetric gravitational collapse”, in Centrella, J.M., ed., Dynamical Spacetimes and Numerical Relativity, Proceedings of the Workshop held at Drexel University, October 7 – 11, 1985, pp. 3–39, (Cambridge University Press, Cambridge; New York, 1986). [External LinkGoogle Books].
159 Evans, C.R. and Hawley, J.F., “Simulation of magnetohydrodynamic flows: a constrained transport method”, Astrophys. J., 332, 659–677, (1988). [External LinkDOI].
160 Evans, E., Iyer, S., Schnetter, E., Suen, W.-M., Tao, J., Wolfmeyer, R. and Zhang, H.-M., “Computational relativistic astrophysics with adaptive mesh refinement: Testbeds”, Phys. Rev. D, 71, 081301, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0501066 [gr-qc]].
161 Evans, L.C., Partial Differential Equations, Graduate Studies in Mathematics, 19, (American Mathematical Society, Providence, RI, 2010), 2nd edition. [External LinkGoogle Books].
162 Field, S.E., Hesthaven, J.S. and Lau, S.R., “Discontinuous Galerkin method for computing gravitational waveforms from extreme mass ratio binaries”, Class. Quantum Grav., 26, 165010, (2009). [External LinkDOI], [External LinkarXiv:0902.1287 [gr-qc]].
163 Field, S.E., Hesthaven, J.S., Lau, S.R. and Mroué, A.H., “Discontinuous Galerkin method for the spherically reduced BSSN system with second-order operators”, Phys. Rev. D, 82, 104051, (2010). [External LinkDOI], [External LinkarXiv:1008.1820 [gr-qc]].
164 Fischer, A. and Marsden, J., “The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic system, I”, Commun. Math. Phys., 28, 1–38, (1972). [External LinkDOI].
165 Font, J.A., “Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity”, Living Rev. Relativity, 11, lrr-2008-7, (2008). [External LinkADS]. URL (accessed 6 April 2011):
http://www.livingreviews.org/lrr-2008-7.
166 Fornberg, B., “Calculation of Weights in Finite Difference Formulas”, SIAM Rev., 40, 685–691, (1998). [External LinkDOI].
167 Fornberg, B., A Practical Guide to Pseudospectral Methods, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 1998). [External LinkGoogle Books].
168 Foucart, F., Duez, M.D., Kidder, L.E. and Teukolsky, S.A., “Black hole-neutron star mergers: effects of the orientation of the black hole spin”, Phys. Rev. D, 83, 024005, (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1007.4203 [astro-ph.HE]].
169 Fourès-Bruhat, Y., “Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires”, Acta Math., 88, 141–225, (1952). [External LinkDOI].
170 Frauendiener, J., “Numerical treatment of the hyperboloidal initial value problem for the vacuum Einstein equations. II. The Evolution equations”, Phys. Rev. D, 58, 064003, (1998). [External LinkarXiv:gr-qc/9712052 [gr-qc]].
171 Frauendiener, J., “Discretizations of axisymmetric systems”, Phys. Rev. D, 66, 104027, (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0207092 [gr-qc]].
172 Frauendiener, J., “Conformal Infinity”, Living Rev. Relativity, 7, lrr-2004-1, (2004). URL (accessed 6 April 2011):
http://www.livingreviews.org/lrr-2004-1.
173 Frauendiener, J., “Discrete differential forms in general relativity”, Class. Quantum Grav., 23, S369–S385, (2006). [External LinkDOI].
174 Frauendiener, J., “The applicability of constrained symplectic integrators in general relativity”, J. Phys. A: Math. Theor., 41, 382005, (2008). [External LinkDOI], [External LinkarXiv:0805.4465 [gr-qc]].
175 Frauendiener, J. and Hein, M., “Numerical evolution of axisymmetric, isolated systems in general relativity”, Phys. Rev. D, 66, 124004, (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0207094 [gr-qc]].
176 Friedrich, H., “On The Regular And Asymptotic Characteristic Initial Value Problem For Einstein’s Vacuum Field Equations”, Proc. R. Soc. London, Ser. A, 375, 169–184, (1981). [External LinkADS].
177 Friedrich, H., “Cauchy problems for the conformal vacuum field equations in general relativity”, Commun. Math. Phys., 91, 445–472, (1983). [External LinkDOI], [External LinkADS].
178 Friedrich, H., “On the hyperbolicity of Einstein’s and other gauge field equations”, Commun. Math. Phys., 100, 525–543, (1985). [External LinkDOI], [External LinkADS].
179 Friedrich, H., “On purely radiative space-times”, Commun. Math. Phys., 103, 35–65, (1986). [External LinkDOI].
180 Friedrich, H., “On the existence of n-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure”, Commun. Math. Phys., 107, 587–609, (1986). [External LinkDOI].
181 Friedrich, H., “Einstein equations and conformal structure: Existence of anti-de-Sitter-type space-times”, J. Geom. Phys., 17, 125–184, (1995). [External LinkDOI].
182 Friedrich, H., “Hyperbolic reductions for Einstein’s equations”, Class. Quantum Grav., 13, 1451–1469, (1996). [External LinkDOI], [External LinkADS].
183 Friedrich, H., “Conformal Einstein Evolution”, in Friedrich, H. and Frauendiener, J., eds., The Conformal Structure of Space-Time: Geometry, Analysis, Numerics, Lecture Notes in Physics, 604, pp. 1–50, (Springer, Berlin; New York, 2002). [External LinkarXiv:gr-qc/0209018 [gr-qc]], [External LinkGoogle Books].
184 Friedrich, H., “Is general relativity ‘essentially understood’?”, Ann. Phys. (Berlin), 15, 84–108, (2005). [External LinkDOI].
185 Friedrich, H., “On the nonlinearity of the subsidiary systems”, Class. Quantum Grav., 22, L77–L82, (2005). [External LinkDOI].
186 Friedrich, H., “Initial boundary value problems for Einstein’s field equations and geometric uniqueness”, Gen. Relativ. Gravit., 41, 1947–1966, (2009). [External LinkDOI].
187 Friedrich, H. and Nagy, G., “The initial boundary value problem for Einstein’s vacuum field equations”, Commun. Math. Phys., 201, 619–655, (1999). [External LinkDOI], [External LinkADS].
188 Friedrich, H. and Rendall, A.D., “The Cauchy Problem for the Einstein Equations”, in Schmidt, B.G., ed., Einstein’s Field Equations and Their Physical Implications: Selected Essays in Honour of Jürgen Ehlers, Lecture Notes in Physics, 540, pp. 127–223, (Springer, Berlin; New York, 2000). [External LinkarXiv:gr-qc/0002074], [External LinkGoogle Books].
189 Friedrichs, K.O., “Symmetric Positive Linear Differential Equations”, Commun. Pure Appl. Math., 11, 333–418, (1958). [External LinkDOI].
190 Frittelli, S., “Note on the propagation of the constraints in standard 3+1 general relativity”, Phys. Rev. D, 55, 5992–5996, (1997). [External LinkDOI].
191 Frittelli, S. and Gómez, R., “Boundary conditions for hyperbolic formulations of the Einstein equations”, Class. Quantum Grav., 20, 2379–2392, (2003). [External LinkDOI].
192 Frittelli, S. and Gómez, R., “Einstein boundary conditions for the 3+1 Einstein equations”, Phys. Rev. D, 68, 044014, (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0302071].
193 Frittelli, S. and Gómez, R., “Einstein boundary conditions for the Einstein equations in the conformal-traceless decomposition”, Phys. Rev. D, 70, 064008, (2004). [External LinkDOI].
194 Frittelli, S. and Gómez, R., “Einstein boundary conditions in relation to constraint propagation for the initial-boundary value problem of the Einstein equations”, Phys. Rev. D, 69, 124020, (2004). [External LinkDOI].
195 Frittelli, S. and Reula, O.A., “First-order symmetric-hyperbolic Einstein equations with arbitrary fixed gauge”, Phys. Rev. Lett., 76, 4667–4670, (1996). [External LinkDOI].
196 Frittelli, S. and Reula, O.A., “Well-posed forms of the 3+1 conformally-decomposed Einstein equations”, J. Math. Phys., 40, 5143–5156, (1999). [External LinkDOI].
197 Funaro, D., Polynomial Approximation of Differential Equations, (Springer, Heidelberg, 1992).
198 Funaro, D. and Gottlieb, D., “A New Method of Imposing Boundary Conditions in Pseudospectral Approximations of Hyperbolic Equations”, Math. Comput., 51, 599–613, (1988). [External LinkDOI].
199 Funaro, D. and Gottlieb, D., “Convergence Results for Pseudospectral Approximations of Hyperbolic Systems by a Penalty-Type Boundary Treatment”, Math. Comput., 57, 585–596, (1991). [External LinkDOI].
200 Gambini, R., Ponce, M. and Pullin, J., “Consistent discretizations: the Gowdy spacetimes”, Phys. Rev. D, 72, 024031, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0505043 [gr-qc]].
201 Gambini, R. and Pullin, J., “Consistent discretizations as a road to Quantum Gravity”, in Oriti, D., ed., Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter, pp. 378–392, (Cambridge University Press, Cambridge; New York, 2009). [External LinkarXiv:gr-qc/0512065 [gr-qc]].
202 Garfinkle, D., “Harmonic coordinate method for simulating generic singularities”, Phys. Rev. D, 65, 044029, (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0110013 [gr-qc]].
203 Garfinkle, D. and Gundlach, C., “Symmetry-seeking spacetime coordinates”, Class. Quantum Grav., 16, 4111–4123, (1999). [External LinkDOI], [External LinkarXiv:gr-qc/9908016 [gr-qc]].
204 Garfinkle, D., Gundlach, C., Isenberg, J. and Ó Murchadha, N., “Existence, uniqueness and other properties of the BCT (minimal strain lapse and shift) gauge”, Class. Quantum Grav., 17, 3899–3904, (2000). [External LinkDOI].
205 Geroch, R., “Partial Differential Equations of Physics”, in Hall, G.S. and Pulham, J.R., eds., General Relativity, Proceedings of the Forty Sixth Scottish Universities Summer School in Physics, Aberdeen, July 1995, p. 19, (SUSSP; IOP, Edinburgh; Bristol, 1996). [External LinkarXiv:gr-qc/9602055].
206 Givoli, D., “Non-reflecting boundary conditions”, J. Comput. Phys., 94, 1–29, (1991). [External LinkDOI], [External LinkADS].
207 Givoli, D., “High-order nonreflecting boundary conditions without high-order derivatives”, J. Comput. Phys., 170, 849–870, (2001). [External LinkDOI].
208 Givoli, D. and Neta, B., “High-order non-reflecting boundary scheme for time-dependent waves”, J. Comput. Phys., 186, 24–46, (2003). [External LinkDOI].
209 Gottlieb, D., “The Stability of Pseudospectral-Chebyshev Methods”, Math. Comput., 36, 107–118, (1981). [External LinkDOI].
210 Gottlieb, D., Lustman, L. and Tadmor, E., “Convergence of spectral methods of hyperbolic initial-boundary value systems”, SIAM J. Numer. Anal., 24, 532–537, (1987). [External LinkDOI].
211 Gottlieb, D., Lustman, L. and Tadmor, E., “Stability analysis of spectral methods for hyperbolic initial-boundary value systems”, SIAM J. Numer. Anal., 24, 241–256, (1987). [External LinkDOI].
212 Gottlieb, D. and Tadmor, E., “The CFL Condition For Spectral Approximations To Hyperbolic Initial-Boundary Value Problems”, Math. Comput., 56, 565–588, (1991). [External LinkDOI].
213 Gourgoulhon, E., “1D numerical relativity applied to neutron star collapse”, Class. Quantum Grav., 9, S117–S125, (1992). [External LinkDOI], [External LinkADS].
214 Gourgoulhon, E., 3+1 Formalism in General Relativity: Bases of Numerical Relativity, Lecture Notes in Physics, 846, (Springer, Berlin; New York, 2012). [External LinkDOI], [External LinkarXiv:gr-qc/0703035 [gr-qc]].
215 Grandclément, P. and Novak, J., “Spectral Methods for Numerical Relativity”, Living Rev. Relativity, 12, lrr-2009-1, (2009). [External LinkarXiv:0706.2286 [gr-qc]]. URL (accessed 6 April 2011):
http://www.livingreviews.org/lrr-2009-1.
216 Gregory, R. and Laflamme, R., “Black strings and p-branes are unstable”, Phys. Rev. Lett., 70, 2837–2840, (1993). [External LinkDOI], [External LinkarXiv:hep-th/9301052 [hep-th]].
217 Gregory, R. and Laflamme, R., “The instability of charged black strings and p-branes”, Nucl. Phys. B, 428, 399–434, (1994). [External LinkDOI], [External LinkarXiv:hep-th/9404071 [hep-th]].
218 Guès, O., “Problème mixte hyperbolique quasi-linéaire charactéristique”, Commun. Part. Diff. Eq., 15, 595–645, (1990).
219 Gundlach, C. and Martín-García, J.M., “Symmetric hyperbolic form of systems of second-order evolution equations subject to constraints”, Phys. Rev. D, 70, 044031, (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0402079].
220 Gundlach, C. and Martín-García, J.M., “Symmetric hyperbolicity and consistent boundary conditions for second-order Einstein equations”, Phys. Rev. D, 70, 044032, (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0403019].
221 Gundlach, C. and Martín-García, J.M., “Hyperbolicity of second-order in space systems of evolution equations”, Class. Quantum Grav., 23, S387–S404, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0506037].
222 Gundlach, C. and Martín-García, J.M., “Well-posedness of formulations of the Einstein equations with dynamical lapse and shift conditions”, Phys. Rev. D, 74, 024016, (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0604035 [gr-qc]].
223 Gundlach, C. and Martín-García, J.M., “Critical Phenomena in Gravitational Collapse”, Living Rev. Relativity, 10, lrr-2007-5, (2007). [External LinkarXiv:0711.4620 [gr-qc]]. URL (accessed 6 April 2011):
http://www.livingreviews.org/lrr-2007-5.
224 Gundlach, C., Martín-García, J.M., Calabrese, G. and Hinder, I., “Constraint damping in the Z4 formulation and harmonic gauge”, Class. Quantum Grav., 22, 3767–3774, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0504114 [gr-qc]].
225 Gundlach, C., Martín-García, J.M. and Garfinkle, D., “Summation by parts methods for the spherical harmonic decomposition of the wave equation in arbitrary dimensions”, arXiv, e-print, (2010). [External LinkarXiv:1010.2427 [math.NA]].
226 Gustafsson, B., “On the implementation of boundary conditions for the method of lines”, BIT, 38, 293–314, (1998). [External LinkDOI].
227 Gustafsson, B., High Order Difference Methods for Time Dependent PDE, Springer Series in Computational Mathematics, 38, (Springer, Berlin; New York, 2008). [External LinkDOI], [External LinkGoogle Books].
228 Gustafsson, B., Kreiss, H.-O. and Oliger, J., Time Dependent Problems and Difference Methods, Pure and Applied Mathematics, (Wiley, New York, 1995). [External LinkGoogle Books].
229 Gustafsson, B., Kreiss, H.-O. and Sundström, A., “Stability Theory of Difference Approximations for Mixed Initial Boundary Value Problems. II”, Math. Comput., 26, 649–686, (1972). [External LinkDOI].
230 Hairer, E., Nørsett, S.P. and Wanner, G., Solving Ordinary Differential Equations I: Nonstiff Problems, Springer Series in Computational Mathematics, 8, (Springer, Berlin, 1993), 2nd edition. [External LinkDOI], [External LinkGoogle Books].
231 Hairer, E. and Wanner, G., Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer Series in Computational Mathematics, 14, (Springer, Berlin, 1996), 2nd edition. [External LinkDOI], [External LinkGoogle Books].
232 Hawking, S.W. and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, 1973). [External LinkGoogle Books].
233 Hennig, J. and Ansorg, M., “A Fully Pseudospectral Scheme for Solving Singular Hyperbolic Equations on Conformally Compactified Space-Times”, J. Hyperbol. Differ. Equations, 6, 161, (2009). [External LinkDOI], [External LinkarXiv:0801.1455 [gr-qc]].
234 Hern, S.D., “Coordinate singularities in harmonically sliced cosmologies”, Phys. Rev. D, 62, 044003, (2000). [External LinkDOI].
235 Hesthaven, J.S., “A Stable Penalty Method for the Compressible Navier–Stokes Equations: II. One-Dimensional Domain Decomposition Schemes”, SIAM J. Sci. Comput., 18, 658–685, (1997). [External LinkDOI].
236 Hesthaven, J.S., “Spectral penalty methods”, Appl. Numer. Math., 33, 23–41, (2000). [External LinkDOI].
237 Hesthaven, J.S., Gottlieb, S. and Gottlieb, D., Spectral Methods for Time-Dependent Problems, Cambridge Monographs on Applied and Computational Mathematics, (Cambridge University Press, Cambridge; New York, 2007). [External LinkGoogle Books].
238 Hesthaven, J.S. and Warburton, T., Nodal Discontinuous Galerkin Methods: Algorithms, Analysis and Applications, Texts in Applied Mathematics, 54, (Springer, New York, 2008). [External LinkDOI].
239 Hicken, J.E. and Zingg, D.W., “Superconvergent Functional Estimates from Summation-By-Parts Finite-Difference Discretizations”, SIAM J. Sci. Comput., 33, 893–922, (2011). [External LinkDOI].
240 Higdon, R.L., “Absorbing Boundary Conditions for Difference Approximations to the Multi-Dimensional Wave Equation”, Math. Comput., 47, 437–459, (1986). [External LinkDOI].
241 Higdon, R.L., “Initial-Boundary Value Problems for Linear Hyperbolic Systems”, SIAM Rev., 28, 177–217, (1986). [External LinkDOI].
242 Hildebrand, F.B., Introduction to Numerical Analysis, (Dover, New York, 1987), 2nd edition. [External LinkGoogle Books].
243 Hilditch, D. and Richter, R., “Hyperbolic formulations of General Relativity with Hamiltonian structure”, arXiv, e-print, (2010). [External LinkarXiv:1002.4119 [gr-qc]].
244 Holst, M., Lindblom, L., Owen, R., Pfeiffer, H.P., Scheel, M.A. and Kidder, L.E., “Optimal Constraint Projection for Hyperbolic Evolution Systems”, Phys. Rev. D, 70, 084017, (2004). [External LinkDOI], [External LinkADS].
245 Hübner, P., “A scheme to numerically evolve data for the conformal Einstein equation”, Class. Quantum Grav., 16, 2823–2843, (1999). [External LinkarXiv:gr-qc/9903088 [gr-qc]].
246 Hughes, T.J.R., Kato, T. and Marsden, J.E., “Well-posed Quasi-Linear Second-order Hyperbolic Systems with Applications to Nonlinear Elastodynamics and General Relativity”, Arch. Ration. Mech. Anal., 63, 273–294, (1977). [External LinkDOI].
247 Husa, S., Schneemann, C., Vogel, T. and Zenginoğlu, A., “Hyperboloidal data and evolution”, in Mornas, L. and Diaz Alonso, J., eds., A Century of Relativity Physics: XXVIII Spanish Relativity Meeting (ERE 2005), Oviedo, Asturias, Spain, 6 – 10 September 2005, AIP Conference Proceedings, 841, pp. 306–313, (American Institute of Physics, Melville, NY, 2006). [External LinkDOI].
248 Iriondo, M.S., Leguizamón, E.O. and Reula, O.A., “Einstein’s equations in Ashtekar’s variables constitute a symmetric hyperbolic system”, Phys. Rev. Lett., 79, 4732–4735, (1997). [External LinkDOI].
249 Iriondo, M.S. and Reula, O.A., “On free evolution of selfgravitating, spherically symmetric waves”, Phys. Rev. D, 65, 044024, (2002). [External LinkDOI].
250 John, F., Nonlinear Wave Equations, Formation of Singularities, University Lecture Series, 2, (American Mathematical Society, Providence, RI, 1990). [External LinkGoogle Books].
251 Kato, T., “The Cauchy problem for quasi-linear symmetric hyperbolic systems”, Arch. Ration. Mech. Anal., 58, 181–205, (1975). [External LinkDOI].
252 Kato, T., Perturbation Theory for Linear Operators, (Springer, Berlin; New York, 1995). [External LinkGoogle Books].
253 Kidder, L.E., Lindblom, L., Scheel, M.A., Buchman, L.T. and Pfeiffer, H.P., “Boundary conditions for the Einstein evolution system”, Phys. Rev. D, 71, 064020, (2005). [External LinkDOI], [External LinkADS].
254 Kidder, L.E., Scheel, M.A. and Teukolsky, S.A., “Extending the lifetime of 3-D black hole computations with a new hyperbolic system of evolution equations”, Phys. Rev. D, 64, 064017, (2001). [External LinkDOI], [External LinkADS].
255 Kidder, L.E., Scheel, M.A., Teukolsky, S.A., Carlson, E.D. and Cook, G.B., “Black hole evolution by spectral methods”, Phys. Rev. D, 62, 084032, (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0005056 [gr-qc]].
256 Korobkin, O., Abdikamalov, E.B., Schnetter, E., Stergioulas, N. and Zink, B., “Stability of general-relativistic accretion disks”, Phys. Rev. D, 83, 043007, (2010). [External LinkDOI], [External LinkarXiv:1011.3010 [astro-ph.HE]].
257 Kreiss, H.-O., “Über Matrizen die beschränkte Halbgruppen erzeugen”, Math. Scand., 7, 71–80, (1959).
258 Kreiss, H.-O., “Initial Boundary Value Problems for Hyperbolic Systems”, Commun. Pure Appl. Math., 23, 277–298, (1970). [External LinkDOI].
259 Kreiss, H.-O. and Lorenz, J., Initial-Boundary Value Problems and the Navier-Stokes Equations, Pure and Applied Mathematics, 136, (Academic Press, San Diego, 1989). [External LinkGoogle Books].
260 Kreiss, H.-O. and Oliger, J., “Comparison of accurate methods for the integration of hyperbolic equations”, Tellus, 24, 199–215, (1972). [External LinkDOI].
261 Kreiss, H.-O. and Ortiz, O.E., “Some Mathematical and Numerical Questions Connected with First and Second Order Time-Dependent Systems of Partial Differential Equations”, in Frauendiener, J. and Friedrich, H., eds., The Conformal Structure of Space-Time: Geometry, Analysis, Numerics, Proceedings of the international workshop, Tübingen, Germany, 2 – 4 April 2001, Lecture Notes in Physics, 604, pp. 359–370, (Springer, Berlin; New York, 2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0106085].
262 Kreiss, H.-O., Ortiz, O.E. and Petersson, N.A., “Initial-boundary value problems for second order systems of partial differential equations”, arXiv, e-print, (2010). [External LinkADS], [External LinkarXiv:1012.1065 [math.AP]].
263 Kreiss, H.-O., Reula, O.A., Sarbach, O. and Winicour, J., “Well-posed initial-boundary value problem for the harmonic Einstein equations using energy estimates”, Class. Quantum Grav., 24, 5973–5984, (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0707.4188 [gr-qc]].
264 Kreiss, H.-O., Reula, O.A., Sarbach, O. and Winicour, J., “Boundary conditions for coupled quasilinear wave equations with applications to isolated systems”, Commun. Math. Phys., 289, 1099–1129, (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0807.3207 [gr-qc]].
265 Kreiss, H.-O. and Scherer, G., “Finite element and finite difference methods for hyperbolic partial differential equations”, in De Boor, C., ed., Mathematical Aspects of Finite Elements in Partial Differential Equations, Proceedings of a symposium conducted by the Mathematics Research Center, the University of Wisconsin–Madison, April 1 – 3, 1974, (Academica Press, New York, 1974).
266 Kreiss, H.-O. and Scherer, G., On the existence of energy estimates for difference approximations for hyperbolic systems, (Dept. of Scientific Computing, Uppsala University, Uppsala, 1977).
267 Kreiss, H.-O. and Winicour, J., “Problems which are well-posed in a generalized sense with applications to the Einstein equations”, Class. Quantum Grav., 23, S405–S420, (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0602051].
268 Kreiss, H.-O. and Wu, L., “On the stability definition of difference approximations for the initial boundary value problem”, Appl. Numer. Math., 12, 213–227, (1993). [External LinkDOI].
269 Lanczos, K., “Ein vereinfachendes Koordinatensystem für die Einsteinschen Gravitationsgleichungen”, Phys. Z., 23, 537–539, (1922).
270 Lau, S.R., “Rapid evaluation of radiation boundary kernels for time-domain wave propagation on black holes: implementation and numerical tests”, Class. Quantum Grav., 21, 4147–4192, (2004). [External LinkDOI].
271 Lau, S.R., “Rapid evaluation of radiation boundary kernels for time-domain wave propagation on blackholes: theory and numerical methods”, J. Comput. Phys., 199, 376–422, (2004). [External LinkDOI].
272 Lau, S.R., “Analytic structure of radiation boundary kernels for blackhole perturbations”, J. Math. Phys., 46, 102503, (2005). [External LinkDOI].
273 Lau, S.R., Lovelace, G. and Pfeiffer, H.P., “Implicit-explicit (IMEX) evolution of single black holes”, Phys. Rev. D, 84, 084023, (2011). [External LinkDOI], [External LinkarXiv:1105.3922 [gr-qc]].
274 Lau, S.R., Pfeiffer, H.P. and Hesthaven, J.S., “IMEX evolution of scalar fields on curved backgrounds”, Commun. Comput. Phys., 6, 1063–1094, (2008). [External LinkarXiv:0808.2597 [gr-qc]].
275 Lax, P.D. and Phillips, R.S., “Local Boundary Conditions for Dissipative Symmetric Linear Differential Operators”, Commun. Pure Appl. Math., 13, 427–455, (1960). [External LinkDOI].
276 Lax, P.D. and Richtmyer, R.D., “Survey of the stability of linear finite difference equations”, Commun. Pure Appl. Math., 9, 267–293, (1956). [External LinkDOI].
277 Lehner, L., Liebling, S.L. and Reula, O.A., “AMR, stability and higher accuracy”, Class. Quantum Grav., 23, S421–S446, (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0510111 [gr-qc]].
278 Lehner, L., Neilsen, D., Reula, O.A. and Tiglio, M., “The Discrete energy method in numerical relativity: Towards long-term stability”, Class. Quantum Grav., 21, 5819–5848, (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0406116 [gr-qc]].
279 Lehner, L. and Pretorius, F., “Black Strings, Low Viscosity Fluids, and Violation of Cosmic Censorship”, Phys. Rev. Lett., 105, 101102, (2010). [External LinkDOI], [External LinkarXiv:1006.5960].
280 Lehner, L. and Pretorius, F., “Final state of Gregory–Laflamme instability”, in Horowitz, G.T., ed., Black Holes in Higher Dimensions, pp. 44–68, (Cambridge University Press, Cambridge; New York, 2012). [External LinkarXiv:1106.5184 [gr-qc]].
281 Lehner, L., Reula, O.A. and Tiglio, M., “Multi-block simulations in general relativity: high order discretizations, numerical stability, and applications”, Class. Quantum Grav., 22, 5283–5322, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0507004].
282 Levy, D. and Tadmor, E., “From the semidiscrete to fully discrete: Stability of Runge-Kutta schemes by the energy method”, SIAM Rev., 40, 40–73, (1998). [External LinkDOI].
283 Lindblad, H. and Rodnianski, I., “Global existence for the Einstein vacuum equations in wave coordinates”, Commun. Math. Phys., 256, 43–110, (2005). [External LinkDOI].
284 Lindblad, H. and Rodnianski, I., “The global stability of the Minkowski space-time in harmonic gauge”, Ann. Math. (2), 171, 1401–1477, (2010). [External LinkDOI], [External LinkarXiv:math/0411109].
285 Lindblom, L. and Scheel, M.A., “Dynamical gauge conditions for the Einstein evolution equations”, Phys. Rev. D, 67, 124005, (2003). [External LinkDOI].
286 Lindblom, L., Scheel, M.A., Kidder, L.E., Owen, R. and Rinne, O., “A new generalized harmonic evolution system”, Class. Quantum Grav., 23, S447–S462, (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0512093 [gr-qc]].
287 Lindblom, L., Scheel, M.A., Kidder, L.E., Pfeiffer, H.P., Shoemaker, D. and Teukolsky, S.A., “Controlling the growth of constraints in hyperbolic evolution systems”, Phys. Rev. D, 69, 124025, (2004). [External LinkDOI], [External LinkADS].
288 Lovelace, G., “Reducing spurious gravitational radiation in binary-black-hole simulations by using conformally curved initial data”, Class. Quantum Grav., 26, 114002, (2009). [External LinkDOI], [External LinkarXiv:0812.3132 [gr-qc]].
289 Lovelace, G., Scheel, M.A. and Szilágyi, B., “Simulating merging binary black holes with nearly extremal spins”, Phys. Rev. D, 83, 024010, (2011). [External LinkDOI], [External LinkarXiv:1010.2777 [gr-qc]].
290 Lovelace, G. et al., “Momentum flow in black-hole binaries. II. Numerical simulations of equal-mass, head-on mergers with antiparallel spins”, Phys. Rev. D, 82, 064031, (2010). [External LinkDOI], [External LinkarXiv:0907.0869 [gr-qc]].
291 Ma, H., “Chebyshev–Legendre Spectral Viscosity Method for Nonlinear Conservation Laws”, SIAM J. Numer. Anal., 35, 869–892, (1998). [External LinkDOI].
292 Ma, H., “Chebyshev–Legendre Super Spectral Viscosity Method for Nonlinear Conservation Laws”, SIAM J. Numer. Anal., 35, 893–908, (1998). [External LinkDOI].
293 Majda, A. and Osher, S., “Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary”, Commun. Pure Appl. Math., 28, 607–675, (1975). [External LinkDOI].
294 Martel, K. and Poisson, E., “Gravitational perturbations of the Schwarzschild spacetime: A Practical covariant and gauge-invariant formalism”, Phys. Rev. D, 71, 104003, (2005). [External LinkDOI].
295 Martí, J.M. and Müller, E., “Numerical Hydrodynamics in Special Relativity”, Living Rev. Relativity, 6, lrr-2003-7, (2003). URL (accessed 6 April 2011):
http://www.livingreviews.org/lrr-2003-7.
296 Mattsson, K., “Boundary Procedures for Summation-by-Parts Operators”, J. Sci. Comput., 18, 133–153, (2003). [External LinkDOI].
297 Mattsson, K. and Carpenter, M.H., “Stable and Accurate Interpolation Operators for High-Order Multiblock Finite Difference Methods”, SIAM J. Sci. Comput., 32, 2298, (2010). [External LinkDOI].
298 Mattsson, K., Ham, F. and Iaccarino, G., “Stable and accurate wave-propagation in discontinuous media”, J. Comput. Phys., 227, 8753–8767, (2008). [External LinkDOI].
299 Mattsson, K., Ham, F. and Iaccarino, G., “Stable Boundary Treatment for the Wave Equation on Second-Order Form”, J. Sci. Comput., 41, 366–383, (2009). [External LinkDOI].
300 Mattsson, K. and Nordström, J., “Summation by parts operators for finite difference approximations of second derivatives”, J. Comput. Phys., 199, 503–540, (2004). [External LinkDOI].
301 Mattsson, K. and Nordström, J., “High order finite difference methods for wave propagation in discontinuous media”, J. Comput. Phys., 220, 249–269, (2006). [External LinkDOI].
302 Mattsson, K. and Parisi, F., “Stable and accurate second-order formulation of the shifted wave equation”, Commun. Comput. Phys., 7, 103–137, (2010). [External LinkDOI].
303 Mattsson, K., Svärd, M. and Nordström, J., “Stable and Accurate Artificial Dissipation”, J. Sci. Comput., 21, 57–79, (2004). [External LinkDOI].
304 Meier, D.L., “Constrained transport algorithms for numerical relativity. I. Development of a finite-difference scheme”, Astrophys. J., 595, 980–991, (2003). [External LinkDOI], [External LinkarXiv:astro-ph/0312052 [astro-ph]].
305 Moncrief, V. and Rinne, O., “Regularity of the Einstein Equations at Future Null Infinity”, Class. Quantum Grav., 26, 125010, (2009). [External LinkDOI].
306 Mroué, A.H., Pfeiffer, H.P., Kidder, L.E. and Teukolsky, S.A., “Measuring orbital eccentricity and periastron advance in quasi-circular black hole simulations”, Phys. Rev. D, 82, 124016, (2010). [External LinkDOI], [External LinkarXiv:1004.4697 [gr-qc]].
307 Nagar, A. and Rezzolla, L., “Gauge-invariant non-spherical metric perturbations of Schwarzschild black-hole spacetimes”, Class. Quantum Grav., 22, R167–R192, (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0502064].
308 Nagy, G., Ortiz, O.E. and Reula, O.A., “Strongly hyperbolic second order Einstein’s evolution equations”, Phys. Rev. D, 70, 044012, (2004). [External LinkDOI].
309 Nagy, G. and Sarbach, O., “A minimization problem for the lapse and the initial-boundary value problem for Einstein’s field equations”, Class. Quantum Grav., 23, S477–S504, (2006). [External LinkDOI].
310 Neilsen, D., Lehner, L., Sarbach, O. and Tiglio, M., “Recent Analytical and Numerical Techniques Applied to the Einstein Equations”, in Frauendiener, J., Giulini, D.J.W. and Perlick, V., eds., Analytical and Numerical Approaches to Mathematical Relativity, 319th WE-Heraeus Seminar ‘Mathematical Relativity: New Ideas and Developments’, Bad Honnef, Germany, March 1 – 5, 2004, Lecture Notes in Physics, 692, pp. 223–249, (Springer, Berlin; New York, 2006). [External LinkDOI], [External LinkarXiv:gr-qc/0412062 [gr-qc]].
311 Nordström, J. and Carpenter, M.H., “Boundary and interface conditions for high-order finite-difference methods applied to the Euler and Navier–Stokes equations”, J. Comput. Phys., 148, 621–645, (1999). [External LinkDOI].
312 Nordström, J. and Carpenter, M.H., “High-order finite difference methods, multidimensional linear problems, and curvilinear coordinates”, J. Comput. Phys., 173, 149–174, (2001). [External LinkDOI].
313 Novak, J., “Spherical neutron star collapse in tensor-scalar theory of gravity”, Phys. Rev. D, 57, 4789–4801, (1998). [External LinkDOI], [External LinkarXiv:gr-qc/9707041 [gr-qc]].
314 Novak, J. and Bonazzola, S., “Absorbing boundary conditions for simulation of gravitational waves with spectral methods in spherical coordinates”, J. Comput. Phys., 197, 186–196, (2004). [External LinkDOI], [External LinkADS].
315 Núñez, D. and Sarbach, O., “Boundary conditions for the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein’s field equations”, Phys. Rev. D, 81, 044011, (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0910.5763 [gr-qc]].
316 Ohme, F., Hannam, M., Husa, S. and Ó Murchadha, N., “Stationary hyperboloidal slicings with evolved gauge conditions”, Class. Quantum Grav., 26, 175014, (2009). [External LinkDOI], [External LinkarXiv:0905.0450 [gr-qc]].
317 Olsson, P., “Summation by parts, projections, and stability. I”, Math. Comput., 64, 1035–1065, (1995). [External LinkDOI].
318 Olsson, P., “Summation by parts, projections, and stability. II”, Math. Comput., 64, 1473–1493, (1995). [External LinkDOI].
319 Olsson, P., “Supplement to summation by parts, projections, and stability. I”, Math. Comput., 64, S23–S26, (1995).
320 Palenzuela, C., Anderson, M., Lehner, L., Liebling, S.L. and Neilsen, D., “Binary Black Holes’ Effects on Electromagnetic Fields”, Phys. Rev. Lett., 103, 081101, (2009). [External LinkDOI].
321 Palenzuela, C., Lehner, L. and Liebling, S.L., “Dual Jets from Binary Black Holes”, Science, 329, 927, (2010). [External LinkDOI], [External LinkarXiv:1005.1067 [astro-ph.HE]].
322 Palenzuela, C., Lehner, L., Reula, O.A. and Rezzolla, L., “Beyond ideal MHD: towards a more realistic modeling of relativistic astrophysical plasmas”, Mon. Not. R. Astron. Soc., 394, 1727–1740, (2009). [External LinkDOI], [External LinkarXiv:0810.1838 [astro-ph]].
323 Palenzuela, C., Olabarrieta, I., Lehner, L. and Liebling, S.L., “Head-on collisions of boson stars”, Phys. Rev. D, 75, 064005, (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0612067 [gr-qc]].
324 Pazos, E., Dorband, E.N., Nagar, A., Palenzuela, C., Schnetter, E. and Tiglio, M., “How far away is far enough for extracting numerical waveforms, and how much do they depend on the extraction method?”, Class. Quantum Grav., 24, S341–S368, (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0612149 [gr-qc]].
325 Pazos, E., Tiglio, M., Duez, M.D., Kidder, L.E. and Teukolsky, S.A., “Orbiting binary black hole evolutions with a multipatch high order finite-difference approach”, Phys. Rev. D, 80, 024027, (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0904.0493 [gr-qc]].
326 Pazos, E., Tiglio, M., Duez, M.D., Kidder, L.E. and Teukolsky, S.A., “Orbiting binary black hole evolutions with a multipatch high order finite-difference approach”, Phys. Rev. D, 80, 024027, (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0904.0493 [gr-qc]].
327 Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, (Springer, New York, 1983). [External LinkGoogle Books].
328 Penrose, R., “Zero Rest-Mass Fields Including Gravitation: Asymptotic Behaviour”, Proc. R. Soc. London, Ser. A, 284, 159–203, (1965). [External LinkDOI], [External LinkADS].
329 Pfeiffer, H.P., Brown, D.A., Kidder, L.E., Lindblom, L., Lovelace, G. and Scheel, M.A., “Reducing orbital eccentricity in binary black hole simulations”, Class. Quantum Grav., 24, S59–S82, (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0702106 [gr-qc]].
330 Pollney, D. and Reisswig, C., “Gravitational memory in binary black hole mergers”, Astrophys. J. Lett., 732, L13, (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1004.4209 [gr-qc]].
331 Pollney, D., Reisswig, C., Dorband, E.N., Schnetter, E. and Diener, P., “The asymptotic falloff of local waveform measurements in numerical relativity”, Phys. Rev. D, 80, 121502, (2009). [External LinkDOI], [External LinkarXiv:0910.3656 [gr-qc]].
332 Pollney, D., Reisswig, C., Dorband, E.N., Schnetter, E. and Diener, P., “Asymptotic falloff of local waveform measurements in numerical relativity”, Phys. Rev. D, 80, 121502(R), (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0910.3656 [gr-qc]].
333 Pollney, D., Reisswig, C., Schnetter, E., Dorband, E.N. and Diener, P., “High accuracy binary black hole simulations with an extended wave zone”, Phys. Rev. D, 83, 044045, (2011). [External LinkDOI], [External LinkarXiv:0910.3803 [gr-qc]].
334 Pollney, D., Reisswig, C., Schnetter, E., Dorband, E.N. and Diener, P., “High accuracy binary black hole simulations with an extended wave zone”, Phys. Rev. D, 83, 044045, (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:0910.3803 [gr-qc]].
335 Pretorius, F., “Evolution of Binary Black-Hole Spacetimes”, Phys. Rev. Lett., 95, 121101, (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0507014 [gr-qc]].
336 Pretorius, F., “Simulation of binary black hole spacetimes with a harmonic evolution scheme”, Class. Quantum Grav., 23, S529–S552, (2006). [External LinkDOI].
337 Pretorius, F., “Binary Black Hole Coalescence”, in Colpi, M., Casella, P., Gorini, V., Moschella, U. and Possenti, A., eds., Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, Astrophysics and Space Science Library, 359, pp. 305–369, (Springer, Berlin; New York, 2009). [External LinkarXiv:0710.1338], [External LinkGoogle Books].
338 Pretorius, F. and Choptuik, M.W., “Adaptive mesh refinement for coupled elliptic-hyperbolic systems”, J. Comput. Phys., 218, 246–274, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0508110 [gr-qc]].
339 Radice, D. and Rezzolla, L., “Discontinuous Galerkin methods for general-relativistic hydrodynamics: Formulation and application to spherically symmetric spacetimes”, Phys. Rev. D, 84, 024010, (2011). [External LinkarXiv:1103.2426 [gr-qc]].
340 Ralston, J.V., “Note on a paper of Kreiss”, Commun. Pure Appl. Math., 24, 759–762, (1971). [External LinkDOI].
341 Rauch, J., “L2 is continuable initial condition for Kreiss’ mixed problem”, Commun. Pure Appl. Math., 25, 265–285, (1972). [External LinkDOI].
342 Rauch, J., “General theory of hyperbolic and mixed problems”, in Spencer, D.C., ed., Partial Differential Equations, University of California Berkeley, August 9 – 27, 1971, Proceedings of Symposia in Pura Mathemathics, XXIII, pp. 161–166, (American Mathematical Society, Providence, RI, 1973). [External LinkGoogle Books].
343 Rauch, J., “Symmetric positive systems with boundary characteristics of constant multiplicity”, Trans. Amer. Math. Soc., 291, 167–187, (1985). [External LinkDOI].
344 Rauch, J. and Massey III, F.J., “Differentiability of solutions to hyperbolic initial-boundary value problems”, Trans. Amer. Math. Soc., 189, 303–318, (1974).
345 Reed, M. and Simon, B., Methods of Modern Mathematical Physics, Vol. I: Functional Analysis, (Academic Press, San Diego, 1980).
346 Reed, M. and Simon, B., Methods of Modern Mathematical Physics, Vol. II: Fourier Analysis, Self-Adjointness, (Academic Press, San Diego, 1980).
347 Regge, T. and Wheeler, J.A., “Stability of a Schwarzschild Singularity”, Phys. Rev., 108, 1063–1069, (1957). [External LinkDOI], [External LinkADS].
348 Reimann, B., Alcubierre, M., González, J.A. and Núñez, D., “Constraint and gauge shocks in one-dimensional numerical relativity”, Phys. Rev. D, 71, 064021, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0411094 [gr-qc]].
349 Reisswig, C., Bishop, N.T., Pollney, D. and Szilágyi, B., “Unambiguous determination of gravitational waveforms from binary black hole mergers”, Phys. Rev. Lett., 103, 221101, (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0907.2637 [gr-qc]].
350 Reisswig, C., Bishop, N.T., Pollney, D. and Szilágyi, B., “Characteristic extraction in numerical relativity: binary black hole merger waveforms at null infinity”, Class. Quantum Grav., 27, 075014, (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0912.1285 [gr-qc]].
351 Rendall, A.D., “Theorems on Existence and Global Dynamics for the Einstein Equations”, Living Rev. Relativity, 8, lrr-2005-6, (2005). URL (accessed 6 April 2011):
http://www.livingreviews.org/lrr-2005-6.
352 Reula, O.A., “Hyperbolic Methods for Einstein’s Equations”, Living Rev. Relativity, 1, lrr-1998-3, (1998). URL (accessed 6 April 2011):
http://www.livingreviews.org/lrr-1998-3.
353 Reula, O.A., “Strongly hyperbolic systems in General Relativity”, J. Hyperbol. Differ. Equations, 1, 251–269, (2004). [External LinkDOI].
354 Reula, O.A. and Sarbach, O., “A model problem for the initial-boundary value formulation of Einstein’s field equations”, J. Hyperbol. Differ. Equations, 2, 397–435, (2005). [External LinkDOI].
355 Reula, O.A. and Sarbach, O., “The initial-boundary value problem in general relativity”, Int. J. Mod. Phys. D, 20, 767–783, (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1009.0589 [gr-qc]].
356 Rezzolla, L., Abrahams, A.M., Matzner, R.A., Rupright, M.E. and Shapiro, S.L., “Cauchy-perturbative matching and outer boundary conditions: Computational studies”, Phys. Rev. D, 59, 064001, (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9807047].
357 Richter, R., “Strongly hyperbolic Hamiltonian systems in numerical relativity: Formulation and symplectic integration”, Class. Quantum Grav., 26, 145017, (2009). [External LinkDOI], [External LinkarXiv:0902.1109 [gr-qc]].
358 Richter, R. and Frauendiener, J., “Discrete differential forms for cosmological space-times”, SIAM J. Sci. Comput., 32, 1140–1158, (2010). [External LinkDOI], [External LinkarXiv:0805.2858 [gr-qc]].
359 Richter, R., Frauendiener, J. and Vogel, M., “Application of Discrete Differential Forms to Spherically Symmetric Systems in General Relativity”, Class. Quantum Grav., 24, 433–453, (2007). [External LinkDOI], [External LinkarXiv:gr-qc/0608041 [gr-qc]].
360 Richter, R. and Lubich, C., “Free and constrained symplectic integrators for numerical general relativity”, Class. Quantum Grav., 25, 225018, (2008). [External LinkDOI], [External LinkarXiv:0807.0734 [gr-qc]].
361 Richtmyer, R.D. and Morton, K.W., Difference Methods for Initial-Value Problems, Interscience Tracts in Pure and Applied Mathematics, 4, (Wiley-Interscience, New York, 1967), 2nd edition.
362 Rinne, O., Axisymmetric numerical relativity, Ph.D. thesis, (University of Cambridge, Cambridge, 2005). [External LinkarXiv:gr-qc/0601064].
363 Rinne, O., “Stable radiation-controlling boundary conditions for the generalized harmonic Einstein equations”, Class. Quantum Grav., 23, 6275–6300, (2006). [External LinkDOI], [External LinkADS].
364 Rinne, O., “An axisymmetric evolution code for the Einstein equations on hyperboloidal slices”, Class. Quantum Grav., 27, 035014, (2010). [External LinkDOI], [External LinkarXiv:0910.0139 [gr-qc]].
365 Rinne, O., Buchman, L.T., Scheel, M.A. and Pfeiffer, H.P., “Implementation of higher-order absorbing boundary conditions for the Einstein equations”, Class. Quantum Grav., 26, 075009, (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0811.3593 [gr-qc]].
366 Rinne, O., Lindblom, L. and Scheel, M.A., “Testing outer boundary treatments for the Einstein equations”, Class. Quantum Grav., 24, 4053–4078, (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0704.0782 [gr-qc]].
367 Rinne, O. and Stewart, J.M., “A strongly hyperbolic and regular reduction of Einstein’s equations for axisymmetric spacetimes”, Class. Quantum Grav., 22, 1143–1166, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0502037 [gr-qc]].
368 Ruiz, M., Hilditch, D. and Bernuzzi, S., “Constraint preserving boundary conditions for the Z4c formulation of general relativity”, Phys. Rev. D, 83, 024025, (2011). [External LinkDOI].
369 Ruiz, M., Rinne, O. and Sarbach, O., “Outer boundary conditions for Einstein’s field equations in harmonic coordinates”, Class. Quantum Grav., 24, 6349–6377, (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0707.2797 [gr-qc]].
370 Rupright, M.E., Abrahams, A.M. and Rezzolla, L., “Cauchy-perturbative matching and outer boundary conditions: Methods and tests”, Phys. Rev. D, 58, 044005, (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9802011].
371 Santamaría, L. et al., “Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries”, Phys. Rev. D, 82, 064016, (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1005.3306].
372 Sarbach, O., “Absorbing boundary conditions for Einstein’s field equations”, in Alcubierre, M., García Compeán, H.H. and Ureña López, L.A., eds., VII Mexican School on Gravitation and Mathematical Physics, Playa del Carmen, Quintana Roo, Mexico, 26 November – 1 December 2006, J. Phys.: Conf. Ser., 91, 012005, (Institute of Physics Publishing, Bristol, Philadelphia, 2007). [External LinkDOI], [External LinkADS].
373 Sarbach, O., Calabrese, G., Pullin, J. and Tiglio, M., “Hyperbolicity of the Baumgarte-Shapiro-Shibata-Nakamura system of Einstein evolution equations”, Phys. Rev. D, 66, 064002, (2002). [External LinkDOI].
374 Sarbach, O., Heusler, M. and Brodbeck, O., “Self-adjoint wave equations for dynamical perturbations of self-gravitating fields”, Phys. Rev. D, 63, 104015, (2001). [External LinkDOI].
375 Sarbach, O. and Lehner, L., “No naked singularities in homogeneous, spherically symmetric bubble space-times?”, Phys. Rev. D, 69, 021901, (2004). [External LinkDOI].
376 Sarbach, O. and Tiglio, M., “Gauge invariant perturbations of Schwarzschild black holes in horizon penetrating coordinates”, Phys. Rev. D, 64, 084016, (2001). [External LinkDOI].
377 Sarbach, O. and Tiglio, M., “Exploiting gauge and constraint freedom in hyperbolic formulations of Einstein’s equations”, Phys. Rev. D, 66, 064023, (2002). [External LinkDOI].
378 Sarbach, O. and Tiglio, M., “Boundary conditions for Einstein’s field equations: Mathematical and numerical analysis”, J. Hyperbol. Differ. Equations, 2, 839–883, (2005). [External LinkDOI].
379 Sarbach, O. and Winstanley, E., “On the linear stability of solitons and hairy black holes with a negative cosmological constant: The odd-parity sector”, Class. Quantum Grav., 18, 2125–2146, (2001). [External LinkDOI].
380 Schanze, T., “Approximation of the Crank-Nicholson method by the iterated dynamic-theta method”, Comput. Phys. Commun., 165, 15–17, (2005). [External LinkDOI].
381 Scheel, M.A., Boyle, M., Chu, T., Kidder, L.E., Matthews, K.D. and Pfeiffer, H.P., “High-accuracy waveforms for binary black hole inspiral, merger, and ringdown”, Phys. Rev. D, 79, 024003, (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0810.1767 [gr-qc]].
382 Scheel, M.A., Erickcek, A.L., Burko, L.M., Kidder, L.E., Pfeiffer, H.P. and Teukolsky, S.A., “3D simulations of linearized scalar fields in Kerr spacetime”, Phys. Rev. D, 69, 104006, (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0305027 [gr-qc]].
383 Scheel, M.A., Kidder, L.E., Lindblom, L., Pfeiffer, H.P. and Teukolsky, S.A., “Toward stable 3D numerical evolutions of black-hole spacetimes”, Phys. Rev. D, 66, 124005, (2002). [External LinkDOI], [External LinkADS].
384 Scheel, M.A., Pfeiffer, H.P., Lindblom, L., Kidder, L.E., Rinne, O. and Teukolsky, S.A., “Solving Einstein’s equations with dual coordinate frames”, Phys. Rev. D, 74, 104006, (2006). [External LinkDOI], [External LinkADS].
385 Schnetter, E., Diener, P., Dorband, E.N. and Tiglio, M., “A multi-block infrastructure for three-dimensional time-dependent numerical relativity”, Class. Quantum Grav., 23, S553–S578, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0602104 [gr-qc]].
386 Schnetter, E., Hawley, S.H. and Hawke, I., “Evolutions in 3-D numerical relativity using fixed mesh refinement”, Class. Quantum Grav., 21, 1465–1488, (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0310042].