References

1 Agishtein, M.E., and Migdal, A.A., “Critical behavior of dynamically triangulated quantum gravity in four dimensions”, Nucl. Phys., 385, 395–412, (1992). [External Linkhep-lat/9204004].
2 Agishtein, M.E., and Migdal, A.A., “Simulations of four-dimensional simplicial quantum gravity as dynamical triangulation”, Mod. Phys. Lett. A, 7, 1039–1061, (1992).
3 Ambjørn, J., “Quantum gravity represented as dynamical triangulations”, Class. Quantum Grav., 12, 2079–2134, (1995).
4 Ambjørn, J., “Recent progress in the theory of random surfaces and simplicial quantum gravity”, Nucl. Phys. B (Proc. Suppl.), 42, 3–16, (1995). [External Linkhep-lat/9412006].
5 Ambjørn, J., “Quantization of geometry”, in David, F., Ginsparg, P., and Zinn-Justin, J., eds., Fluctuating Geometries in Statistical Mechanics and Field Theory, Proceedings of the Les Houches Summer School, Session LXII, 2 August – 9 September 1994, pp. 77–193, (Elsevier, Amsterdam; New York, 1996). [External Linkhep-th/9411179].
6 Ambjørn, J., Burda, Z., Jurkiewicz, J., and Kristjansen, C.F., “Quantum gravity represented as dynamical triangulations”, Acta Phys. Pol. B, 23, 991–1030, (1992).
7 Ambjørn, J., Burda, Z., Jurkiewicz, J., and Kristjansen, C.F., “Four-dimensional dynamically triangulated gravity coupled to matter”, Phys. Rev. D, 48, 3695–3703, (1993). [External Linkhep-th/9303042].
8 Ambjørn, J., Carfora, M., and Marzuoli, A., The Geometry of Dynamical Triangulations, Lecture Notes in Physics, vol. m50, (Springer, Berlin; New York, 1997). [External Linkhep-th/9612069].
9 Ambjørn, J., Durhuus, B., and Jonsson, T., Quantum geometry, (Cambridge University Press, Cambridge, 1997).
10 Ambjørn, J., Jain, S., Jurkiewicz, J., and Kristjansen, C.F., “Observing 4-d baby universes in quantum gravity”, Phys. Lett. B, 305, 208–213, (1993). [External Linkhep-th/9303041].
11 Ambjørn, J., and Jurkiewicz, J., “Four-dimensional simplicial quantum gravity”, Phys. Lett. B, 278, 42–50, (1992).
12 Ambjørn, J., and Jurkiewicz, J., “On the exponential bound in four-dimensional simplicial gravity”, Phys. Lett. B, 335, 355–358, (1994). [External Linkhep-lat/9405010].
13 Ambjørn, J., and Jurkiewicz, J., “Computational ergodicity of S4”, Phys. Lett. B, 345, 435–440, (1995). [External Linkhep-lat/9411008].
14 Ambjørn, J., and Jurkiewicz, J., “Scaling in four dimensional quantum gravity”, Nucl. Phys. B, 451, 643–676, (1995). [External Linkhep-th/9503006].
15 Ambjørn, J., Jurkiewicz, J., Bilke, S., Burda, Z., and Petersson, B., “Z(2) gauge matter coupled to 4-d simplicial quantum gravity”, Mod. Phys. Lett. A, 9, 2527–2542, (1994).
16 Ambjørn, J., Jurkiewicz, J., and Kristjansen, C.F., “Quantum gravity, dynamical triangulation and higher derivative regularization”, Nucl. Phys. B, 393, 601–632, (1993). [External Linkhep-th/9208032].
17 Ambjørn, J., Jurkiewicz, J., and Watabiki, Y., “Dynamical triangulations, a gateway to quantum gravity?”, J. Math. Phys., 36, 6299–6339, (1995). [External Linkhep-th/9503108].
18 Ambjørn, J., Nielsen, J.L., Rolf, J., and Savvidy, G.K., “Spikes in quantum Regge calculus”, Class. Quantum Grav., 14, 3225–3241, (1997). [External Linkgr-qc/9704079].
19 Ambjørn, J., Savvidy, G.K., and Savvidy, K.G., “Alternative actions for quantum gravity and the intrinsic rigidity of the space-time”, Nucl. Phys. B, 486, 390–412, (1997). [External Linkhep-th/9606140].
20 Antoniadis, I., Mazur, P.O., and Mottola, E., “Scaling behavior of quantum four-geometries”, Phys. Lett. B, 323, 284–291, (1994). [External Linkhep-th/9301002].
21 Antoniadis, I., Mazur, P.O., and Mottola, E., “Criticality and scaling in 4d quantum gravity”, Phys. Lett. B, 394, 49–56, (1997). [External Linkhep-th/9611145].
22 Ashtekar, A., “New Variables for Classical and Quantum Gravity”, Phys. Rev. Lett., 57, 2244–2247, (1986).
23 Ashtekar, A., “New Hamiltonian Formulation of General Relativity”, Phys. Rev. D, 36(6), 1587–1602, (1987).
24 Bander, M., “Functional measure for lattice gravity”, Phys. Rev. Lett., 57, 1825–1827, (1986).
25 Barbero G, J.F., “Real Ashtekar Variables for Lorentzian Signature Space-Times”, Phys. Rev. D, 51(10), 5507–5510, (1995). [External Linkgr-qc/9410014].
26 Bartocci, C., Bruzzo, U., Carfora, M., and Marzuoli, A., “Entropy of random coverings and 4D quantum gravity”, J. Geom. Phys., 18, 247–294, (1996). [External Linkhep-th/9412097].
27 Beirl, W., Berg, B.A., Krishnan, B., Markum, H., and Riedler, J., “Static quark potentials in quantum gravity”, Phys. Lett. B, 348, 355–359, (1995). [External Linkhep-lat/9502006].
28 Beirl, W., Berg, B.A., Krishnan, B., Markum, H., and Riedler, J., “SU(2) potentials in quantum gravity”, Nucl. Phys. B (Proc. Suppl.), 42, 707–709, (1995). [External Linkhep-lat/9412037].
29 Beirl, W., Gerstenmayer, E., and Markum, H., “Exploration of simplicial quantum gravity in four dimensions”, Nucl. Phys. B (Proc. Suppl.), 26, 575–577, (1992).
30 Beirl, W., Gerstenmayer, E., and Markum, H., “Influence of the measure on simplicial quantum gravity in four-dimensions”, Phys. Rev. Lett., 69, 713–716, (1992). [External Linkhep-lat/9204010].
31 Beirl, W., Gerstenmayer, E., Markum, H., and Riedler, J., “Gravitational action versus entropy on simplicial lattices in four-dimensions”, Nucl. Phys. B (Proc. Suppl.), 30, 764–767, (1993). [External Linkhep-lat/9211044].
32 Beirl, W., Gerstenmayer, E., Markum, H., and Riedler, J., “The well defined phase of simplicial quantum gravity in four-dimensions”, Phys. Rev. D, 49, 5231–5239, (1994). [External Linkhep-lat/9402002].
33 Beirl, W., Hauke, A., Homolka, P., Krishnan, B., Kröger, H., Markum, H., and Riedler, J., “The phase structure of pure Regge gravity”, Nucl. Phys. B (Proc. Suppl.), 47, 625–628, (1996). [External Linkhep-lat/9510021].
34 Beirl, W., Hauke, A., Homolka, P., Markum, H., and Riedler, J., “Correlation functions in lattice formulations of quantum gravity”, Nucl. Phys. B (Proc. Suppl.), 53, 735–738, (1997). [External Linkhep-lat/9608055].
35 Beirl, W., Markum, H., and Riedler, J., “On the measure of simplicial quantum gravity in four-dimensions”, in Carr, J., and Perrottet, M., eds., High Energy Physics (HEP 93), Proceedings of the International Europhysics Conference, Marseille, France, 22 – 28 July 1993, pp. 214–216, (Editions Frontières, Gif-sur-Yvette, France, 1994). [External Linkhep-lat/9309008].
36 Beirl, W., Markum, H., and Riedler, J., “Regge gravity on general triangulations”, Phys. Lett. B, 341, 12–18, (1994). [External Linkhep-lat/9407020].
37 Beirl, W., Markum, H., and Riedler, J., “Two point functions of four-dimensional simplicial quantum gravity”, Nucl. Phys. B (Proc. Suppl.), 34, 736–738, (1994). [External Linkhep-lat/9312053].
38 Berg, B.A., “Exploratory numerical study of discrete quantum gravity”, Phys. Rev. Lett., 55, 904–907, (1985).
39 Berg, B.A., “Entropy versus energy on a fluctuating four-dimensional Regge skeleton”, Phys. Lett. B, 176, 39–44, (1986).
40 Berg, B.A., “Quantum gravity motivated computer simulations”, in Mitter, H., and Widder, F., eds., Particle Physics and Astrophysics: Current Viewpoints, Proceedings of the XXVII Internationale Universitätswochen für Kernphysik, Schladming, Austria, February 1988, pp. 223–259, (Springer, Berlin; New York, 1989).
41 Berg, B.A., Beirl, W., Krishnan, B., Markum, H., and Riedler, J., “Phase diagram of Regge quantum gravity coupled to SU(2) gauge theory”, Phys. Rev. D, 54, 7421–7425, (1996). [External Linkhep-lat/9605036].
42 Berg, B.A., and Krishnan, B., “Asymptotic freedom and Regge-Einstein quantum gravity”, Nucl. Phys. B (Proc. Suppl.), 30, 768–770, (1993).
43 Berg, B.A., and Krishnan, B., “Phase structure of SU(2) lattice gauge theory with quantum gravity”, Phys. Lett. B, 318, 59–62, (1993). [External Linkhep-lat/9306006].
44 Berg, B.A., Krishnan, B., and Katoot, M., “Asymptotic freedom and Euclidean quantum gravity”, Nucl. Phys. B, 404, 359–384, (1993). [External Linkhep-lat/9209001].
45 Bialas, P., “Correlations in fluctuating geometries”, Nucl. Phys. B (Proc. Suppl.), 53, 739–742, (1997). [External Linkhep-lat/9608029].
46 Bialas, P., and Burda, Z., “Collapse of 4-d random geometries”, Phys. Lett. B, 416, 281–285, (1998). [External Linkhep-lat/9707028].
47 Bialas, P., Burda, Z., and Johnston, D.A., “Balls in boxes and quantum gravity”, Nucl. Phys. B (Proc. Suppl.), 63, 763–765, (1998). [External Linkhep-lat/9709056].
48 Bialas, P., Burda, Z., Krzywicki, A., and Petersson, B., “Focusing on the fixed point of 4-d simplicial gravity”, Nucl. Phys. B, 472, 293–308, (1996). [External Linkhep-lat/9601024].
49 Bialas, P., Burda, Z., Petersson, B., and Tabaczek, J., “Appearance of mother universe and singular vertices in random geometries”, Nucl. Phys. B, 495, 463–476, (1997). [External Linkhep-lat/9608030].
50 Bilke, S., Burda, Z., and Jurkiewicz, J., “Simplicial quantum gravity on a computer”, Comput. Phys. Commun., 85, 278–292, (1995). [External Linkhep-lat/9403017].
51 Bilke, S., Burda, Z., Krzywicki, A., and Petersson, B., “Phase transition and topology in 4-d simplicial gravity”, Nucl. Phys. B (Proc. Suppl.), 53, 743–745, (1997). [External Linkhep-lat/9608027].
52 Bilke, S., Burda, Z., Krzywicki, A., Petersson, B., Tabaczek, J., and Thorleifsson, G., “4-d simplicial quantum gravity interacting with gauge matter fields”, Phys. Lett. B, 418, 266–272, (1998). [External Linkhep-lat/9710077].
53 Bilke, S., Burda, Z., and Petersson, B., “Topology in 4-d simplicial quantum gravity”, Phys. Lett. B, 395, 4–9, (1997). [External Linkhep-lat/9611020].
54 Bowick, M., “Random surfaces and lattice gravity”, Nucl. Phys. B (Proc. Suppl.), 63, 77–88, (1998). [External Linkhep-lat/9710005].
55 Brewin, L., “The Riemann and extrinsic curvature tensors in the Regge calculus”, Class. Quantum Grav., 5, 1193–1203, (1988).
56 Brügmann, B., “Measure of four-dimensional simplicial quantum gravity”, Nucl. Phys. B (Proc. Suppl.), 30, 760–763, (1993).
57 Brügmann, B., “Nonuniform measure in four-dimensional simplicial quantum gravity”, Phys. Rev. D, 47, 3330–3338, (1993). [External Linkhep-lat/9210001].
58 Brügmann, B., and Marinari, E., “4D simplicial quantum gravity with a nontrivial measure”, Phys. Rev. Lett., 70, 1908–1911, (1993). [External Linkhep-lat/9210002].
59 Brügmann, B., and Marinari, E., “Monte Carlo simulations of 4d simplicial quantum gravity”, J. Math. Phys., 36, 6340–6352, (1995). [External Linkhep-lat/9504004].
60 Brügmann, B., and Marinari, E., “More on the exponential bound of four-dimensional simplicial quantum gravity”, Phys. Lett. B, 349, 35–41, (1995). [External Linkhep-th/9411060].
61 Burda, Z., Kownacki, J.P., and Krzywicki, A., “Towards a nonperturbative renormalization of Euclidean quantum gravity”, Phys. Lett. B, 356, 466–471, (1995). [External Linkhep-th/9505104].
62 Caracciolo, S., Menotti, P., and Pelissetto, A., “Lattice supergravity and graviton-gravitino doubling”, Nucl. Phys. B, 296, 868–876, (1988).
63 Caracciolo, S., and Pelissetto, A., “Analysis of the critical behavior or the de Sitter quantum gravity on a hypercubic lattice”, Phys. Lett. B, 193, 237–240, (1987).
64 Caracciolo, S., and Pelissetto, A., “Nonperturbative lattice gravity”, Nucl. Phys. B (Proc. Suppl.), 4, 78–82, (1987).
65 Caracciolo, S., and Pelissetto, A., “A numerical investigation about quantum measure in lattice gravity”, Phys. Lett. B, 207, 468–470, (1988).
66 Caracciolo, S., and Pelissetto, A., “Phases and topological structures of de Sitter lattice gravity”, Nucl. Phys. B, 299, 693–718, (1988).
67 Caracciolo, S., and Pelissetto, A., “From lattice gauge theory towards gravity”, in Damgaard, P.H., Hüffel, H., and Rosenblum, A., eds., Probabilistic Methods in Quantum Field Theory and Quantum Gravity, Proceedings of the NATO Advanced Research Workshop, held August 21 – 27, 1989, in Cargèse, France, NATO ASI Series B, vol. 224, pp. 37–54, (Plenum Press, New York, 1990).
68 Carfora, M., and Marzuoli, A., “Entropy estimates for simplicial quantum gravity”, J. Geom. Phys., 16, 99–119, (1995).
69 Caselle, M., D’Adda, A., and Magnea, L., “Doubling of all matter fields coupled with gravity on a lattice”, Phys. Lett. B, 192, 411–414, (1987).
70 Caselle, M., D’Adda, A., and Magnea, L., “Lattice gravity and supergravity as spontaneously broken gauge theories of the (super)Poincaré group”, Phys. Lett. B, 192, 406–410, (1987).
71 Caselle, M., D’Adda, A., and Magnea, L., “Regge Calculus as a local theory of the Poincaré group”, Phys. Lett. B, 232, 457–461, (1989).
72 Catterall, S.M., “Simulations of dynamically triangulated gravity”, Comput. Phys. Commun., 87, 409–415, (1995). [External Linkhep-lat/9405026].
73 Catterall, S.M., “Lattice quantum gravity: review and recent developments”, Nucl. Phys. B (Proc. Suppl.), 47, 59–70, (1996). [External Linkhep-lat/9510008].
74 Catterall, S.M., Kogut, J.B., and Renken, R.L., “Is there an exponential bound in four-dimensional simplicial gravity?”, Phys. Rev. Lett., 72, 4062–4065, (1994). [External Linkhep-lat/9403019].
75 Catterall, S.M., Kogut, J.B., and Renken, R.L., “Phase structure of four-dimensional simplicial quantum gravity”, Phys. Lett. B, 328, 277–283, (1994). [External Linkhep-lat/9401026].
76 Catterall, S.M., Kogut, J.B., and Renken, R.L., “Simulations of four-dimensional simplicial quantum gravity”, Nucl. Phys. B (Proc. Suppl.), 34, 733–735, (1994).
77 Catterall, S.M., Kogut, J.B., and Renken, R.L., “Singular structure in 4-d simplicial gravity”, Phys. Lett. B, 416, 274–280, (1998). [External Linkhep-lat/9709007].
78 Catterall, S.M., Kogut, J.B., Renken, R.L., and Thorleifsson, G., “Baby universes in 4-d dynamical triangulation”, Phys. Lett. B, 366, 72–76, (1996). [External Linkhep-lat/9509004].
79 Catterall, S.M., Thorleifsson, G., Kogut, J.B., and Renken, R.L., “Singular vertices and the triangulation space of the d sphere”, Nucl. Phys. B, 468, 263–276, (1996). [External Linkhep-lat/9512012].
80 Catterall, S.M., Thorleifsson, G., Kogut, J.B., and Renken, R.L., “Simplicial gravity in dimension greater than two”, Nucl. Phys. B (Proc. Suppl.), 53, 756–759, (1997). [External Linkhep-lat/9608042].
81 Cheeger, J., Müller, W., and Schrader, R., “Lattice gravity or Riemannian structure on piecewise linear spaces”, in Breitenlohner, P., and Dürr, H.P., eds., Unified Theories of Elementary Particles: Critical Assessment and Prospects, Proceedings of the Heisenberg Symposium, held in Munich, July 16 — 21, 1981, Lecture Notes in Physics, vol. 160, pp. 176–188, (Springer, Berlin; New York, 1982).
82 Cheeger, J., Müller, W., and Schrader, R., “On the curvature of piecewise flat spaces”, Commun. Math. Phys., 92, 405–454, (1984).
83 Corichi, A., and Zapata, J.A., “On diffeomorphism invariance for lattice theories”, Nucl. Phys. B, 493, 475–490, (1997). [External Linkgr-qc/9611034].
84 Das, A., Kaku, M., and Townsend, P.K., “Lattice formulation of general relativity”, Phys. Lett. B, 81, 11–14, (1979).
85 David, F., “Simplicial quantum gravity and random lattices”, in Julia, B., and Zinn-Justin, J., eds., Gravitation and Quantizations, Proceedings of the Les Houches Summer School, Session LVII, 5 July – 1 August 1992, pp. 679–750, (Elsevier, Amsterdam, New York, 1995). [External Linkhep-th/9303127].
86 de Bakker, B.V., “Absence of barriers in dynamical triangulation”, Phys. Lett. B, 348, 35–38, (1995). [External Linkhep-lat/9411070].
87 de Bakker, B.V., “Further evidence that the transition of 4-d dynamical triangulation is first order”, Phys. Lett. B, 389, 238–242, (1996). [External Linkhep-lat/9603024].
88 de Bakker, B.V., and Smit, J., “Euclidean gravity attracts”, Nucl. Phys. B (Proc. Suppl.), 34, 739–741, (1994). [External Linkhep-lat/9311064].
89 de Bakker, B.V., and Smit, J., “Volume dependence of the phase boundary in 4-d dynamical riangulation”, Phys. Lett. B, 334, 304–308, (1994). [External Linkhep-lat/9405013].
90 de Bakker, B.V., and Smit, J., “Curvature and scaling in 4-d dynamical triangulation”, Nucl. Phys. B, 439, 239–258, (1995). [External Linkhep-lat/9407014].
91 de Bakker, B.V., and Smit, J., “Two point functions in 4-d dynamical triangulation”, Nucl. Phys. B, 454, 343–356, (1995). [External Linkhep-lat/9503004].
92 de Bakker, B.V., and Smit, J., “Correlations and binding in 4-d dynamical triangulation”, Nucl. Phys. B (Proc. Suppl.), 47, 613–616, (1996). [External Linkhep-lat/9510041].
93 de Bakker, B.V., and Smit, J., “Gravitational binding in 4D dynamical triangulation”, Nucl. Phys. B, 484, 476–492, (1997). [External Linkhep-lat/9604023].
94 De Pietri, R., and Rovelli, C., “Geometry Eigenvalues and the Scalar Product from Recoupling Theory in Loop Quantum Gravity”, Phys. Rev. D, 54(4), 2664–2690, (1996). [External Linkgr-qc/9602023].
95 Egawa, H.S., Hotta, T., Izubuchi, T., Tsuda, N., and Yukawa, T., “Scaling behaviour in 4-d simplicial quantum gravity”, Prog. Theor. Phys., 97, 539–552, (1997). [External Linkhep-lat/9611028].
96 Egawa, H.S., Hotta, T., Izubuchi, T., Tsuda, N., and Yukawa, T., “Scaling structures in four-dimensional simplicial gravity”, Nucl. Phys. B (Proc. Suppl.), 53, 760–762, (1997). [External Linkhep-lat/9608149].
97 Egawa, H.S., Tsuda, N., and Yukawa, T., “Common structures in 2-d, 3-d and 4-d simplicial quantum gravity”, Nucl. Phys. B (Proc. Suppl.), 63, 736–738, (1998). [External Linkhep-lat/9709099].
98 Egawa, H.S., Tsuda, N., and Yukawa, T., “Common structures in simplicial quantum gravity”, Phys. Lett. B, 459, 97–104, (1998). [External Linkhep-lat/9802010].
99 Ezawa, K., “Multi-plaquette solutions for discretized Ashtekar gravity”, Mod. Phys. Lett. A, 11, 2921–2932, (1996).
100 Ezawa, K., “Nonperturbative solutions for canonical quantum gravity: An overview”, Phys. Rep., 286, 271–348, (1997). [External Linkgr-qc/9601050].
101 Feinberg, G., Friedberg, R., Lee, T.D., and Ren, H.C., “Lattice gravity near the continuum limit”, Nucl. Phys. B, 245, 343–368, (1984).
102 Fort, H., Gambini, R., and Griego, J., “Lattice knot theory and quantum gravity in the loop representation”, Phys. Rev. D, 56, 2127–2143, (1997). [External Linkgr-qc/9608033].
103 Friedberg, R., and Lee, T.D., “Derivation of Regge’s action from Einstein’s theory of general relativity”, Nucl. Phys. B, 242, 145–166, (1984).
104 Fröhlich, J., “Regge calculus and discretized gravitational functional integrals”, in Non-Perturbative Quantum Field Theory: Mathematical Aspects and Applications. Selected Papers of Jürg Fröhlich, Advanced Series in Mathematical Physics, vol. 15, pp. 523–545, (World Scientific, Singapore; River Edge, 1992).
105 Gross, M., and Varsted, S., “Elementary moves and ergodicity in d-dimensional simplicial quantum gravity”, Nucl. Phys. B, 378, 367–380, (1992).
106 Hamber, H.W., “Simplicial quantum gravity”, in Osterwalder, K., and Stora, R., eds., Critical Phenomena, Random Systems, Gauge Theories, Proceedings of the Les Houches Summer School, Session XLIII, 1 August – 7 September 1984), pp. 375–439, (Elsevier, Amsterdam; New York, 1986).
107 Hamber, H.W., “Simplicial quantum gravity from two-dimensions to four-dimensions”, in Damgaard, P.H., Hüffel, H., and Rosenblum, A., eds., Probabilistic Methods in Quantum Field Theory and Quantum Gravity, Proceedings of the NATO Advanced Research Workshop, held August 21 – 27, 1989, in Cargèse, France, NATO ASI Series B, vol. 224, pp. 77–87, (Plenum Press, New York, 1990).
108 Hamber, H.W., “Critical behavior in simplicial quantum gravity”, Nucl. Phys. B (Proc. Suppl.), 20, 728–732, (1991).
109 Hamber, H.W., “Simulations of discrete quantized gravity”, Int. J. Supercomput. Appl., 5, 84–97, (1991).
110 Hamber, H.W., “Fluctuations and correlations in simplicial quantum gravity”, Nucl. Phys. B (Proc. Suppl.), 26, 581–583, (1992).
111 Hamber, H.W., “Phases of 4-d simplicial quantum gravity”, Phys. Rev. D, 45, 507–512, (1992).
112 Hamber, H.W., “Phases of simplicial quantum gravity”, Nucl. Phys. B (Proc. Suppl.), 25, 150–175, (1992).
113 Hamber, H.W., “Phases of simplicial quantum gravity in four dimensions: estimates for the critical exponents”, Nucl. Phys. B, 400, 347–389, (1993).
114 Hamber, H.W., “Smooth and rough phases of quantized gravity”, Nucl. Phys. B (Proc. Suppl.), 30, 751–755, (1993).
115 Hamber, H.W., “Invariant correlations in simplicial gravity”, Phys. Rev. D, 50, 3932–3941, (1994). [External Linkhep-th/9311024].
116 Hamber, H.W., “Scalar fields coupled to four-dimensional lattice gravity”, in Carr, J., and Perrottet, M., eds., High Energy Physics (HEP 93), Proceedings of the International Europhysics Conference, Marseille, France, 22 – 28 July 1993, pp. 211–213, (Editions Frontières, Gif-sur-Yvette, France, 1994). [External Linkhep-th/9310152].
117 Hamber, H.W., and Williams, R.M., “Higher derivative quantum gravity on a simplicial lattice”, Nucl. Phys. B, 248, 392–415, (1984).
118 Hamber, H.W., and Williams, R.M., “Nonperturbative simplicial quantum gravity”, Phys. Lett. B, 157, 368–374, (1985).
119 Hamber, H.W., and Williams, R.M., “Simplicial quantum gravity with higher derivative terms: formalism and numerical results in four-dimensions”, Nucl. Phys. B, 269, 712–734, (1986).
120 Hamber, H.W., and Williams, R.M., “Simplicial gravity coupled to scalar matter”, Nucl. Phys. B, 415, 463–496, (1994). [External Linkhep-th/9308099].
121 Hamber, H.W., and Williams, R.M., “Newtonian potential in quantum Regge gravity”, Nucl. Phys. B, 435, 361–398, (1995). [External Linkhep-th/9406163].
122 Hamber, H.W., and Williams, R.M., “Gauge invariance in simplicial gravity”, Nucl. Phys. B, 487, 345–408, (1997). [External Linkhep-th/9607153].
123 Hamber, H.W., and Williams, R.M., “On the measure in simplicial gravity”, Phys. Rev. D, 59, 064014, 1–8, (1997).
124 Hartle, J.B., “Simplicial minisuperspace. I. General discussion”, J. Math. Phys., 26, 804–814, (1985).
125 Hartle, J.B., “Numerical quantum gravity”, in Sato, H., and Nakamura, T., eds., Gravitational Collapse and General Relativity, Proceedings of Yamada Conference XIV, Kyoto International Conference Hall, Japan, 7 – 11 April 1986, pp. 329–338, (World Scientific, Singapore, 1986).
126 Hartle, J.B., “Simplicial minisuperspace. II. Some classical solutions on simple triangulations”, J. Math. Phys., 27, 287–295, (1986).
127 Hartle, J.B., “Simplicial minisuperspace. III. Integration contours in a five-simplex model”, J. Math. Phys., 30, 452–460, (1989).
128 Hartle, J.B., and Sorkin, R.D., “Boundary terms in the action for the Regge calculus”, Gen. Relativ. Gravit., 13, 541–549, (1981).
129 Hotta, T., Izubuchi, T., and Nishimura, J., “Singular vertices in the strong coupling phase of four-dimensional simplicial gravity”, Prog. Theor. Phys., 94, 263–270, (1995). [External Linkhep-lat/9709073].
130 Hotta, T., Izubuchi, T., and Nishimura, J., “Singular vertices in the strong coupling phase of four-dimensional simplicial gravity”, Nucl. Phys. B (Proc. Suppl.), 47, 609–612, (1996). [External Linkhep-lat/9511023].
131 Immirzi, G., “Quantizing Regge Calculus”, Class. Quantum Grav., 13, 2385–2394, (1996). [External Linkgr-qc/9512040].
132 Immirzi, G., “Quantum gravity and Regge calculus”, Nucl. Phys. B (Proc. Suppl.), 57, 65–72, (1997). [External Linkgr-qc/9701052].
133 Isham, C.J., “Quantum gravity”, in MacCallum, M.A.H., ed., General Relativity and Gravitation, Proceedings of the 11th International Conference on General Relativity and Gravitation, Stockholm, July 6 – 12, 1986, pp. 99–127, (Cambridge University Press, Cambridge, New York, 1987).
134 Jevicki, A., and Ninomiya, M., “Functional formulation of Regge gravity”, Phys. Rev. D, 33, 1634–1637, (1986).
135 Johnston, D.A., “Gravity and random surfaces on the lattice: a review”, Nucl. Phys. B (Proc. Suppl.), 53, 43–55, (1997). [External Linkhep-lat/9607021].
136 Jurkiewicz, J., “Simplicial gravity and random surfaces”, Nucl. Phys. B (Proc. Suppl.), 30, 108–121, (1993).
137 Kaku, M., “Lattices, gravity and supergravity”, in Hawking, S.W., and Roček, M., eds., Superspace and Supergravity, Proceedings of the Nuffield workshop, Cambridge, June 16 – July 12, 1980, pp. 503–515, (Cambridge University Press, Cambridge; New York, 1981).
138 Kaku, M., “Strong-coupling approach to the quantization of conformal gravity”, Phys. Rev. D, 27, 2819–2834, (1983).
139 Kaku, M., “Generally covariant lattices, the random calculus, and the strong coupling approach to the renormalization of gravity”, in Batalin, I.A., Isham, C.J., and Vilkovisky, G.A., eds., Quantum Field Theory and Quantum Statistics. Essays in Honour of the Sixtieth Birthday of E.S. Fradkin, Vol. 2: Models of Field Theory, pp. 141–163, (A. Hilger, Bristol, 1987).
140 Kawamoto, N., and Nielsen, H.B., “Lattice gauge gravity with fermions”, Phys. Rev. D, 43, 1150–1156, (1991).
141 Khatsymovsky, V., “On the quantization of Regge links”, Phys. Lett. B, 323, 292–295, (1994).
142 Kondo, K., “Euclidean quantum gravity on a flat lattice”, Prog. Theor. Phys., 72, 841–852, (1984).
143 Kristjansen, C.F., “Higher derivative regularization in 4-d quantum gravity”, Nucl. Phys. B (Proc. Suppl.), 30, 756–759, (1993).
144 Krzywicki, A., “Perspectives in lattice gravity”, Acta Phys. Pol. B, 27, 827–838, (1996). [External Linkhep-lat/9512023].
145 Leutwyler, H., “Gravitational field: equivalence of Feynman quantization and canonical quantization”, Phys. Rev., 134, 1155–1182, (1964).
146 Loll, R., “Non-perturbative solutions for lattice quantum gravity”, Nucl. Phys. B, 444, 619–639, (1995). [External Linkgr-qc/9502006].
147 Loll, R., “The volume operator in discretized quantum gravity”, Phys. Rev. Lett., 75, 3048–3051, (1995). [External Linkgr-qc/9506014].
148 Loll, R., “A real alternative to quantum gravity in loop space”, Phys. Rev. D, 54, 5381–5384, (1996). [External Linkgr-qc/9602041].
149 Loll, R., “Spectrum of the volume operator in quantum gravity”, Nucl. Phys. B, 460(1), 143–154, (1996). [External Linkgr-qc/9511030].
150 Loll, R., “Further results on geometric operators in quantum gravity”, Class. Quantum Grav., 14, 1725–1741, (1997). [External Linkgr-qc/9612068].
151 Loll, R., “Imposing det E > 0 in discrete quantum gravity”, Phys. Lett. B, 399, 227–232, (1997). [External Linkgr-qc/9703033].
152 Loll, R., “Latticing quantum gravity”, Nucl. Phys. B (Proc. Suppl.), 57, 255–258, (1997). [External Linkgr-qc/9701007].
153 Loll, R., “Quantizing canonical gravity in the real domain”, in Dremin, I.M., and Semikhatov, A.M., eds., Second International A. D. Sakharov Conference on Physics, Proceedings of the conference held in Moscow, Russia 20 – 24 May 1996, pp. 280–283, (World Scientific, Singapore; River Edge, 1997). [External Linkgr-qc/9701031].
154 Loll, R., “Simplifying the Spectral Analysis of the Volume Operator”, Nucl. Phys. B, 500, 405–420, (1997). [External Linkgr-qc/9706038].
155 Loll, R., “Still on the way to quantizing gravity”, in Bassan, M. et al., ed., Proceedings of the 12th Italian Conference on General Relativity and Gravitational Physics, Rome, Italy, September 23–27, 1996, pp. 193–206, (World Scientific, Singapore; River Edge, 1997). [External Linkgr-qc/9701032].
156 Loll, R., “On the diffeomorphism commutators of lattice quantum gravity”, Class. Quantum Grav., 15, 799–809, (1998). [External Linkgr-qc/9708025].
157 MacDowell, S.W., and Mansouri, R., “Unified geometric theory of gravity and supergravity”, Phys. Rev. Lett., 38, 739–742, (1977).
158 Mäkelä, J., “Phase space coordinates and the Hamiltonian constraint of Regge calculus”, Phys. Rev. D, 49, 2882–2896, (1994).
159 Mannion, C.L.T., and Taylor, J.G., “General relativity on a flat lattice”, Phys. Lett. B, 100, 261–266, (1981).
160 Menotti, P., “Nonperturbative quantum gravity”, Nucl. Phys. B (Proc. Suppl.), 17, 29–38, (1990).
161 Menotti, P., “The role of diffeomorphisms in the integration over a finite dimensional space of geometries”, Nucl. Phys. B (Proc. Suppl.), 63, 760–762, (1998). [External Linkhep-lat/9709101].
162 Menotti, P., and Peirano, P.P., “Diffeomorphism invariant measure for finite dimensional geometries”, Nucl. Phys. B, 488, 719–734, (1997). [External Linkhep-th/9607071].
163 Menotti, P., and Peirano, P.P., “Functional integration for Regge gravity”, Nucl. Phys. B (Proc. Suppl.), 57, 82–90, (1997). [External Linkgr-qc/9702020].
164 Menotti, P., and Peirano, P.P., “Functional integration on Regge geometries”, Nucl. Phys. B (Proc. Suppl.), 53, 780–782, (1997). [External Linkhep-lat/9607073].
165 Menotti, P., and Pelissetto, A., “Reflection positivity and graviton doubling in Euclidean lattice gravity”, Ann. Phys. (N.Y.), 170(2), 287–309, (1986).
166 Menotti, P., and Pelissetto, A., “Gauge invariance and functional integration measure in lattice gravity”, Nucl. Phys. B, 288, 813–831, (1987).
167 Menotti, P., and Pelissetto, A., “Poincaré, de Sitter, and conformal gravity on the lattice”, Phys. Rev. D, 35, 1194–1204, (1987).
168 Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, 1973).
169 Myers, E., “Unbounded action and ‘density of states”’, Class. Quantum Grav., 9, 405–411, (1992).
170 Nabutovsky, A., and Ben-Av, R., “Noncomputability arising in dynamical triangulation model of four-dimensional quantum gravity”, Commun. Math. Phys., 157, 93–98, (1993).
171 Pachner, U., “Konstruktionsmethoden und das kombinatorische Homöomorphieproblem für Triangulationen kompakter semilinearer Mannigfaltigkeiten”, Abh. Math. Sem. Univ. Hamburg, 57, 69–85, (1986).
172 Pachner, U., “P.L. homeomorphic manifolds are equivalent by elementary shellings”, Europ. J. Combinatorics, 12, 129–145, (1991).
173 Rebbi, C., ed., Lattice gauge theories and Monte Carlo simulations, (World Scientific, Singapore, 1983).
174 Regge, T., “General Relativity without Coordinates”, Nuovo Cimento A, 19, 558–571, (1961).
175 Reisenberger, M.P., “A lattice worldsheet sum for 4-d Euclidean general relativity”, arXiv e-print, (1997). [External Linkgr-qc/9711052].
176 Ren, H.-C., “Matter fields in lattice gravity”, Nucl. Phys. B, 301, 661–684, (1988).
177 Renken, R.L., “The renormalization group and dynamical triangulations”, Nucl. Phys. B (Proc. Suppl.), 53, 783–785, (1997). [External Linkhep-lat/9610037].
178 Renken, R.L., “A renormalization group for dynamical triangulations in arbitrary dimensions”, Nucl. Phys. B, 485, 503–516, (1997). [External Linkhep-lat/9607074].
179 Renteln, P., “Some results of SU(2) spinorial lattice gravity”, Class. Quantum Grav., 7, 493–502, (1990).
180 Renteln, P., and Smolin, L., “A lattice approach to spinorial quantum gravity”, Class. Quantum Grav., 6, 275–294, (1989).
181 Roček, M., and Williams, R.M., “Quantum Regge calculus”, Phys. Lett. B, 104, 31–37, (1981).
182 Roček, M., and Williams, R.M., “Introduction to quantum Regge calculus”, in Isham, C., and Duff, M., eds., Quantum Structure of Space and Time, Proceedings of the Nuffield Workshop, Imperial College, London, 3 – 21 August, 1981, pp. 105–116, (Cambridge University Press, Cambridge; New York, 1982).
183 Roček, M., and Williams, R.M., “The quantization of Regge calculus”, Z. Phys. C, 21, 371–381, (1984).
184 Römer, H., and Zähringer, M., “Functional integration and the diffeomorphism group in Euclidean lattice quantum gravity”, Class. Quantum Grav., 3, 897–910, (1986).
185 Smit, J., “Remarks on the quantum gravity interpretation of 4D dynamical triangulation”, Nucl. Phys. B (Proc. Suppl.), 53, 786–788, (1997). [External Linkhep-lat/9608082].
186 Smolin, L., “Quantum gravity on a lattice”, Nucl. Phys. B, 148, 333–372, (1979).
187 Sorkin, R.D., “Time evolution problem in Regge calculus”, Phys. Rev. D, 12, 385–396, (1975).
188 Thiemann, T., “Closed formula for the matrix elements of the volume operator in canonical quantum gravity”, J. Math. Phys., 39, 3347–3371, (1998). [External Linkgr-qc/9606091].
189 Tomboulis, E.T., “Unitarity in higher-derivative quantum gravity”, Phys. Rev. Lett., 52, 1173–1176, (1984).
190 Tuckey, P.A., and Williams, R.M., “Regge calculus: a brief review and bibliography”, Class. Quantum Grav., 9, 1409–1422, (1992).
191 Varsted, S., “Three- and four-dimensional simplicial quantum gravity”, Nucl. Phys. B (Proc. Suppl.), 26, 578–580, (1992).
192 Varsted, S., “Four-dimensional quantum gravity by dynamical triangulations”, Nucl. Phys. B, 412, 406–414, (1994).
193 Weingarten, D., “Euclidean quantum gravity on a lattice”, Nucl. Phys. B, 210, 229–245, (1982).
194 West, P.C., “A geometric gravity Lagrangian”, Phys. Lett. B, 76, 569–570, (1978).
195 Wheater, J.F., “Random surfaces and lattice quantum gravity”, Nucl. Phys. B (Proc. Suppl.), 34, 15–28, (1994).
196 Williams, R.M., “Quantum Regge calculus in the Lorentzian domain and its Hamiltonian formulation”, Class. Quantum Grav., 3, 853–869, (1986).
197 Williams, R.M., “Discrete quantum gravity: the Regge calculus approach”, Int. J. Mod. Phys. B, 6, 2097–2108, (1992).
198 Williams, R.M., “Simplicial quantum gravity in four dimensions and invariants of discretized manifolds”, J. Math. Phys., 36, 6276–6287, (1995).
199 Williams, R.M., “Recent progress in Regge calculus”, Nucl. Phys. B (Proc. Suppl.), 57, 73–81, (1997). [External Linkgr-qc/9702006].