References

1 Aichelburg, P.C., and Bizoń, P., “Magnetically Charged Black Holes and their Stability”, Phys. Rev. D, 48, 607–615, (1993). [External Linkgr-qc/9212009].
2 Baade, W., and Zwicky, F., “Cosmic Rays from Super-Novae”, Proc. Natl. Acad. Sci. USA, 20, 254–263, (1934).
3 Bardeen, J.M., Carter, B., and Hawking, S.W., “The four laws of black hole mechanics”, Commun. Math. Phys., 31, 161–170, (1973). Related online version (cited on 23 May 2005):
External Linkhttp://projecteuclid.org/euclid.cmp/1103858973.
4 Bartnik, R., and McKinnon, J., “Particlelike Solutions of the Einstein–Yang–Mills Equations”, Phys. Rev. Lett., 61, 141–144, (1988).
5 Behnke, H., and Sommer, F., Theorie der Analytischen Funktionen einer Komplexen Veränderlichen, Die Grundlehren der mathematischen Wissenschaften, vol. 77, (Springer, Berlin; New York, 1976), 3rd edition. Studienausgabe.
6 Beig, R., and Chruściel, P.T., “The Isometry Groups of Asymptotically Flat, Asymptotically Empty Space-Times with Time-like ADM Four Momentum”, Commun. Math. Phys., 188, 585–597, (1997). [External Linkgr-qc/9610034].
7 Bekenstein, J.D., “Exact Solutions of Einstein-Conformal Scalar Equations”, Ann. Phys. (N.Y.), 82, 535–547, (1974).
8 Bekenstein, J.D., “Black Holes with Scalar Charge”, Ann. Phys. (N.Y.), 91, 75–82, (1975).
9 Bizoń, P., “Colored black holes”, Phys. Rev. Lett., 64, 2844–2847, (1990).
10 Boothby, W.M., An Introduction to Differentiable Manifolds and Riemannian Geometry, Pure and Applied Mathematics, vol. 63, (Academic Press, New York, 1975).
11 Boschung, P., Brodbeck, O., Moser, F., Straumann, N., and Volkov, M.S., “Instability of Gravitating Sphalerons”, Phys. Rev. D, 50, 3842–3846, (1994). [External Linkgr-qc/9402045].
12 Breitenlohner, P., Forgács, P., and Maison, D., “Gravitating monopole solutions”, Nucl. Phys. B, 383, 357–376, (1992).
13 Breitenlohner, P., Forgács, P., and Maison, D., “On Static Spherically Symmetric Solutions of the Einstein–Yang–Mills Equations”, Commun. Math. Phys., 163, 141–172, (1994).
14 Breitenlohner, P., Forgács, P., and Maison, D., “Gravitating monopole solutions II”, Nucl. Phys. B, 442, 126–156, (1995). [External Linkgr-qc/9412039].
15 Breitenlohner, P., Maison, D., and Gibbons, G.W., “Four-Dimensional Black Holes from Kaluza–Klein Theories”, Commun. Math. Phys., 120, 295–334, (1988).
16 Brill, D.R., “Electromagnetic Fields in Homogeneous, Non-static Universe”, Phys. Rev. B, 133, 845–848, (1964).
17 Brodbeck, O., Gravitierende Eichsolitonen und Schwarze Löcher mit Yang–Mills-Haar für beliebige Eichgruppen, Ph.D. Thesis, (University of Zurich, Zurich, 1995).
18 Brodbeck, O., “On Symmetric Gauge Fields for Arbitrary Gauge and Symmetry Groups”, Helv. Phys. Acta, 69, 321–324, (1996). [External Linkgr-qc/9610024].
19 Brodbeck, O., and Heusler, M., “Stationary perturbations and infinitesimal rotations of static Einstein–Yang–Mills configurations with bosonic matter”, Phys. Rev. D, 56, 6278–6283, (1997). [External Linkgr-qc/9706064].
20 Brodbeck, O., Heusler, M., Lavrelashvili, G., Straumann, N., and Volkov, M.S., “Stability Analysis of New Solutions of the EYM System with Cosmological Constant”, Phys. Rev. D, 54, 7338–7352, (1996). [External Linkhep-th/9605166].
21 Brodbeck, O., Heusler, M., and Straumann, N., “Pulsation of Spherically Symmetric Systems in General Relativity”, Phys. Rev. D, 53, 754–761, (1996). [External Linkgr-qc/9506027].
22 Brodbeck, O., Heusler, M., Straumann, N., and Volkov, M., “Rotating solitons and non-rotating non-static black holes”, Phys. Rev. Lett., 79, 4310–4313, (1997). [External Linkgr-qc/9707057].
23 Brodbeck, O., and Straumann, N., “A Generalized Birkhoff Theorem for the Einstein–Yang–Mills System”, J. Math. Phys., 34, 2423–2424, (1993).
24 Brodbeck, O., and Straumann, N., “Instability of Einstein–Yang–Mills Solitons for Arbitrary Gauge Groups”, Phys. Lett. B, 324, 309–314, (1994). [External Linkgr-qc/9401019].
25 Bunting, G.L., Proof of the Uniqueness Conjecture for Black Holes, Ph.D. Thesis, (University of New England, Armidale, Australia, 1983).
26 Bunting, G.L., and Masood-ul Alam, A.K.M., “Nonexistence of multiple black holes is asymptotically Euclidean static vacuum space-times”, Gen. Relativ. Gravit., 19, 147–154, (1987).
27 Carter, B., “Killing Horizons and Orthogonally Transitive Groups in Space-Time”, J. Math. Phys., 10, 70–81, (1969).
28 Carter, B., “The Commutation Property of a Stationary, Axisymmetric System”, Commun. Math. Phys., 17, 233–238, (1970). [External LinkDOI].
29 Carter, B., “Axisymmetric Black Hole has only Two Degrees of Freedom”, Phys. Rev. Lett., 26, 331–332, (1971).
30 Carter, B., “Black Hole Equilibrium States”, in DeWitt, C., and DeWitt, B.S., eds., Black Holes, Based on lectures given at the 23rd session of the Summer School of Les Houches, 1972, pp. 57–214, (Gordon and Breach, New York, 1973).
31 Carter, B., “The General Theory of the Mechanical, Electromagnetic and Thermodynamic Properties of Black Holes”, in Hawking, S.W., and Israel, W., eds., General Relativity: An Einstein Centenary Survey, pp. 294–369, (Cambridge University Press, Cambridge; New York, 1979).
32 Carter, B., “Bunting Identity and Mazur Identity for Non-Linear Elliptic Systems Including the Black Hole Equilibrium Problem”, Commun. Math. Phys., 99, 563–591, (1985).
33 Carter, B., “Mathematical Foundations of the Theory of Relativistic Stellar and Black Hole Configurations”, in Carter, B., and Hartle, J.B., eds., Gravitation in Astrophysics: Cargèse 1986, Proceedings of a NATO Advanced Study Institute on Gravitation in Astrophysics, held July 15 – 31, 1986 in Cargèse, France, NATO ASI Series B, pp. 63–122, (Plenum Press, New York, 1987).
34 Chandrasekhar, S., “Highly Collapsed Configurations of Stellar Mass”, Mon. Not. R. Astron. Soc., 91, 456–466, (1931).
35 Chandrasekhar, S., “The Maximum Mass of Ideal White Dwarfs”, Astrophys. J., 74, 81–82, (1931).
36 Chandrasekhar, S., “How one may Explore the Physical Content of the General Theory of Relativity”, in Caldi, D.G., and Mostow, G.D., eds., Proceedings of the Gibbs Symposium, Yale University, May 15 – 17, 1989, pp. 227–251, (AMS, Providence, 1989).
37 Chandrasekhar, S., The Mathematical Theory of Black Holes and of Colliding Plane Waves, Selected Papers, vol. 6, (University of Chicago Press, Chicago; London, 1991).
38 Chruściel, P.T., “ ‘No-Hair’ Theorems: Folklore, Conjectures, Results”, in Beem, J.K., and Duggal, K.L., eds., Differential Geometry and Mathematical Physics, AMS-CMS Special Session on Geometric Methods in Mathematical Physics, August 15 – 19, 1993, Vancouver, British Columbia, Canada, Contemporary Mathematics, vol. 170, pp. 23–49, (AMS, Providence, 1994). [External Linkgr-qc/9402032].
39 Chruściel, P.T., “Uniqueness of Stationary, Electro-Vacuum Black Holes Revisited”, Helv. Phys. Acta, 69, 529–552, (1996). [External Linkgr-qc/9610010].
40 Chruściel, P.T., “On Rigidity of Analytic Black Holes”, Commun. Math. Phys., 189, 1–7, (1997). [External Linkgr-qc/9610011].
41 Chruściel, P.T., and Galloway, G.J., “Horizons Non-Differentiable on a Dense Set”, Commun. Math. Phys., 193, 449–470, (1998). [External Linkgr-qc/9611032].
42 Chruściel, P.T., and Nadirashvili, N.S., “All Electrovac Majumdar–Papapetrou Space-times with Non-Singular Black Holes”, Class. Quantum Grav., 12, L17–L23, (1995). [External Linkgr-qc/9412044].
43 Chruściel, P.T., and Wald, R.M., “Maximal Hypersurfaces in Stationary Asymptotically Flat Spacetimes”, Commun. Math. Phys., 163, 561–604, (1994). [External Linkgr-qc/9304009].
44 Chruściel, P.T., and Wald, R.M., “On the Topology of Stationary Black Holes”, Class. Quantum Grav., 11, L147–L152, (1994). [External Linkgr-qc/9410004].
45 Clément, G., and Gal’tsov, D.V., “Stationary BPS Solutions to Dilaton-Axion Gravity”, Phys. Rev. D, 54, 6136–6152, (1996). [External Linkhep-th/9607043].
46 Coleman, S., “The Uses of Instantons”, in Zichichi, A., ed., The Whys of Subnuclear Physics, Proceedings of the 1977 International School of Subnuclear Physics, held in Erice, Trapani, Sicily, July 23 – August 10, 1977, The Subnuclear Series, vol. 15, (Plenum Press, New York, 1979).
47 de Felice, F., and Clarke, C.J.S., Relativity on Curved Manifolds, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 1990).
48 Deser, S., “Absence of Static Solutions in Source-Free Yang–Mills Theory”, Phys. Lett. B, 64, 463–465, (1976).
49 Deser, S., “Absence of Static Einstein–Yang–Mills Excitations in Three Dimensions”, Class. Quantum Grav., 1, L1–L4, (1984).
50 Droz, S., Heusler, M., and Straumann, N., “New Black Hole Solutions with Hair”, Phys. Lett. B, 268, 371–376, (1991).
51 Eichenherr, H., and Forger, M., “More about Non-Linear Sigma-Models on Symmetric Spaces”, Nucl. Phys. B, 164, 528–535, (1980).
52 Ernst, F.J., “New Formulation of the Axially Symmetric Gravitational Field Problem”, Phys. Rev., 167, 1175–1178, (1968).
53 Ernst, F.J., “New Formulation of the Axially Symmetric Gravitational Field Problem II”, Phys. Rev., 168, 1415–1417, (1968).
54 Forgács, P., and Manton, N.S., “Space-Time Symmetries in Gauge Theories”, Commun. Math. Phys., 72, 15–35, (1980).
55 Friedman, J.L., Schleich, K., and Witt, D.M., “Topological Censorship”, Phys. Rev. Lett., 71, 1486–1489, (1993). [External LinkDOI], [External LinkADS].
56 Galloway, G.J., “On the Topology of Black Holes”, Commun. Math. Phys., 151, 53–66, (1993).
57 Galloway, G.J., “On the topology of the domain of outer communication”, Class. Quantum Grav., 12, L99–L101, (1995).
58 Galloway, G.J., “A ‘Finite Infinity’ Version of the FSW Topological Censorship”, Class. Quantum Grav., 13, 1471–1478, (1996).
59 Galloway, G.J., and Woolgar, E., “The Cosmic Censor forbids Naked Topology”, Class. Quantum Grav., 14, L1–L7, (1997). [External Linkgr-qc/9609007].
60 Gal’tsov, D.V., “Integrable Systems in String Gravity”, Phys. Rev. Lett., 74, 2863–2866, (1995). [External Linkhep-th/9410217].
61 Gal’tsov, D.V., “Geroch–Kinnersley–Chitre Group for Dilaton-Axion Gravity”, in Bordag, M., ed., Quantum Field Theory under the Influence of External Conditions, Proceedings of the International Workshop, Leipzig, Germany, 18 – 22 September 1995, Teubner-Texte zur Physik, vol. 30, (Teubner, Stuttgart and Leipzig, 1996). [External Linkhep-th/9606041].
62 Gal’tsov, D.V., “Square of General Relativity”, arXiv e-print, (1996). [External Linkgr-qc/9608021].
63 Gal’tsov, D.V., and Kechkin, O.V., “Ehlers–Harrison-Type Transformations in Dilaton-Axion Gravity”, Phys. Rev. D, 50, 7394–7399, (1994). [External Linkhep-th/9407155].
64 Gal’tsov, D.V., and Kechkin, O.V., “Matrix Dilaton-Axion for the Heterotic String in three Dimensions”, Phys. Lett. B, 361, 52–58, (1995). [External Linkhep-th/9507164].
65 Gal’tsov, D.V., and Kechkin, O.V., “U-Duality and Simplectic Formulation of Dilaton-Axion Gravity”, Phys. Rev. D, 54, 1656–1666, (1996). [External Linkhep-th/9507005].
66 Gal’tsov, D.V., and Letelier, P.S., “Ehlers–Harrison Transformations and Black Holed in Dilaton-Axion Gravity with Multiple Vector Fields”, Phys. Rev. D, 55, 3580–3592, (1997). [External Linkgr-qc/9612007].
67 Gal’tsov, D.V., and Letelier, P.S., “Interpolating Black Holes in Dilaton-Axion Gravity”, Class. Quantum Grav., 14, L9–L14, (1997). [External Linkgr-qc/9608023].
68 Gal’tsov, D.V., and Sharakin, S.A., “Matrix Ernst Potentials for EMDA with Multiple Vector Fields”, Phys. Lett. B, 399, 250–257, (1997). [External Linkhep-th/9702039].
69 Garfinkle, D., Horowitz, G.T., and Strominger, A., “Charged black holes in string theory”, Phys. Rev. D, 43, 3140–3143, (1991). Erratum Phys. Rev. D 45 (1991) 3888.
70 Geroch, R., “A Method for Generating Solutions of Einstein’s Equations”, J. Math. Phys., 12, 918–924, (1971). [External LinkDOI].
71 Geroch, R., “A Method for Generating New Solutions of Einstein’s Equation. II”, J. Math. Phys., 13, 394–404, (1972).
72 Gibbons, G.W., “Anti-gravitating Black Hole Solutions with Scalar Hair in N = 4 Supergravity”, Nucl. Phys. B, 207, 337–349, (1982).
73 Gibbons, G.W., “Self-Gravitating Magnetic Monopoles, Global Monopoles and Black Holes”, in Barroso, J.D., Henriques, A.B., Lago, M.T.V.T., and Longair, M.S., eds., The Physical Universe: The Interface Between Cosmology, Astrophysics and Particle Physics, Proceedings of the XII Autumn School of Physics, Lisbon, 1 – 5 October 1990, vol. 383, pp. 110–133, (Springer, Berlin; New York, 1990). Lecture Notes in Physics.
74 Gibbons, G.W., and Hull, C.M., “A Bogomol’nyi Bound for General Relativity and Solitons in N = 2 Supergravity”, Phys. Lett., 109, 190–194, (1992).
75 Gibbons, G.W., Kallosh, R.E., and Kol, B., “Moduli, Scalar Charges, and the First Law of Black Hole Thermodynamics”, Phys. Rev. Lett., 77, 4992–4995, (1996). [External Linkhep-th/9607108].
76 Gibbons, G.W., and Maeda, K., “Black holes and membranes in higher-dimensional theories with dilaton fields”, Nucl. Phys. B, 298, 741–775, (1988).
77 Greene, B.R., Mathur, S.D., and O’Neill, C.M., “Eluding the No-Hair Conjecture: Black Holes in Spontaneously Broken Gauge Theories”, Phys. Rev. D, 47, 2242–2259, (1993). [External Linkhep-th/9211007].
78 Hájíček, P., “General Theory of Vacuum Ergospheres”, Phys. Rev. D, 7, 2311–2316, (1973).
79 Hájíček, P., “Stationary Electrovac Space-times with Bifurcate Horizon”, J. Math. Phys., 16, 518–527, (1975).
80 Harnad, J., Vinet, L., and Shnider, S., “Group Actions on Principal Bundles and Invariance Conditions for Gauge Fields”, J. Math. Phys., 21, 2719–2740, (1980).
81 Hartle, J.B., and Hawking, S.W., “Solutions of the Einstein–Maxwell equations with many black holes”, Commun. Math. Phys., 26, 87–101, (1972).
82 Hawking, S.W., “Black holes in general relativity”, Commun. Math. Phys., 25, 152–166, (1972).
83 Hawking, S.W., “Particle creation by black holes”, Commun. Math. Phys., 43, 199–220, (1975).
84 Hawking, S.W., and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, 1973).
85 Heusler, M., “Staticity and Uniqueness of Multiple Black Hole Solutions of Sigma Models”, Class. Quantum Grav., 10, 791–799, (1993).
86 Heusler, M., “The Uniqueness Theorem for Rotating Black Hole Solutions of Self-gravitating Harmonic Mappings”, Class. Quantum Grav., 12, 2021–2036, (1995). [External Linkgr-qc/9503053].
87 Heusler, M., Black Hole Uniqueness Theorems, (Cambridge University Press, Cambridge; New York, 1996).
88 Heusler, M., “No-Hair Theorems and Black Holes with Hair”, Helv. Phys. Acta, 69, 501–528, (1996). [External Linkgr-qc/9610019].
89 Heusler, M., “Mass Formulae for a Class of Non-rotating Black Holes”, Phys. Rev. D, 56, 961–973, (1997). [External Linkgr-qc/9703015].
90 Heusler, M., “On the Uniqueness of the Papapetrou-Majumdar metric”, Class. Quantum Grav., 14, L129–L134, (1997). [External Linkgr-qc/9607001].
91 Heusler, M., “Uniqueness Theorems for Black Hole Space-Times”, in Hehl, F.W., Metzler, R.J.K., and Kiefer, C., eds., Black Holes: Theory and Observations, Proceedings of the 179th W.E. Heraeus Seminar, held at Bad Honnef, Germany, 18 – 22 August 1997, Lecture Notes in Physics, vol. 514, pp. 157–186, (Springer, Berlin; New York, 1998).
92 Heusler, M., Droz, S., and Straumann, N., “Stability Analysis of Self-Gravitating Skyrmions”, Phys. Lett. B, 271, 61–67, (1991).
93 Heusler, M., Droz, S., and Straumann, N., “Linear Stability of Einstein-Skyrme Black Holes”, Phys. Lett. B, 285, 21–26, (1992).
94 Heusler, M., and Straumann, N., “The First Law of Black Hole Physics for a Class of Nonlinear Matter Models”, Class. Quantum Grav., 10, 1299–1322, (1993).
95 Heusler, M., and Straumann, N., “Mass Variation Formulae for Einstein–Yang–Mills Higgs and Einstein Dilaton Black Holes”, Phys. Lett. B, 315, 55–66, (1993).
96 Heusler, M., and Straumann, N., “Staticity, Circularity, and the First Law of Black Hole Physics”, Int. J. Mod. Phys. D, 3, 199–202, (1994).
97 Heusler, M., Straumann, N., and Zhou, Z.-H., “Self-Gravitating Solutions of the Skyrme Model and their Stability”, Helv. Phys. Acta, 66, 614–632, (1993).
98 Horowitz, G.T., “Quantum States of Black Holes”, in Wald, R.M., ed., Black Holes and Relativistic Stars, Proceedings of the Symposium dedicated to the memory of Subrahmanyan Chandrasekhar, held in Chicago, December 14 – 15, 1996, pp. 241–266, (University of Chicago Press, Chicago; London, 1998). [External Linkgr-qc/9704072].
99 Israel, W., “Event Horizons in Static Vacuum Space-Times”, Phys. Rev., 164, 1776–1779, (1967).
100 Israel, W., “Event Horizons in Static Electrovac Space-Times”, Commun. Math. Phys., 8, 245–260, (1968).
101 Israel, W., “Dark stars: the evolution of an idea”, in Hawking, S.W., and Israel, W., eds., Three Hundred Years of Gravitation, pp. 199–276, (Cambridge University Press, Cambridge; New York, 1987).
102 Israel, W., and Wilson, G.A., “A Class of Stationary Electromagnetic Vacuum Fields”, J. Math. Phys., 13, 865–867, (1972).
103 Jacobson, T., and Venkatarami, S., “Topological Censorship”, Class. Quantum Grav., 12, 1055–1061, (1995).
104 Jadczyk, A., “Symmetry of Einstein–Yang–Mills Systems and Dimensional Reduction”, J. Geom. Phys., 1, 97–126, (1984).
105 Kay, B.S., and Wald, R.M., “Theorems on the Uniqueness and Thermal Properties of Stationary, Nonsingular, Quasi-free States on Space-times with a Bifurcate Horizon”, Phys. Rep., 207, 49–136, (1991).
106 Kinnersley, W., “Generation of Stationary Einstein–Maxwell Fields”, J. Math. Phys., 14, 651–653, (1973).
107 Kinnersley, W., “Symmetries of the Stationary Einstein–Maxwell Field Equations. I”, J. Math. Phys., 18, 1529–1537, (1977).
108 Kinnersley, W., and Chitre, D.M., “Symmetries of the Stationary Einstein–Maxwell Field Equations. II”, J. Math. Phys., 18, 1538–1542, (1977).
109 Kinnersley, W., and Chitre, D.M., “Symmetries of the Stationary Einstein–Maxwell Field Equations. III”, J. Math. Phys., 19, 1926–1931, (1978).
110 Kinnersley, W., and Chitre, D.M., “Symmetries of the Stationary Einstein–Maxwell Field Equations. IV”, J. Math. Phys., 19, 2037–2042, (1978).
111 Kleihaus, B., and Kunz, J., “Axially Symmetric Multi-Sphalerons in Yang–Mills Dilaton Theory”, Phys. Lett. B, 392, 135–140, (1997). [External Linkgr-qc/9609108].
112 Kleihaus, B., and Kunz, J., “Static axially symmetric Einstein–Yang–Mills-dilaton solutions: Regular solutions”, Phys. Rev. D, 57, 834–856, (1997). [External Linkgr-qc/9707045].
113 Kleihaus, B., and Kunz, J., “Static Axially Symmetric Solutions of Einstein–Yang–Mills Dilaton Theory”, Phys. Rev. Lett., 78, 2527–2530, (1997). [External Linkhep-th/9612101].
114 Kleihaus, B., and Kunz, J., “Static Black-Hole Solutions with Axial Symmetry”, Phys. Rev. Lett., 79, 1595–1598, (1997). [External Linkgr-qc/9704060].
115 Kleihaus, B., and Kunz, J., “Static Regular and Black Hole Solutions with Axial Symmetry in EYM and EYMD Theory”, arXiv e-print, (1997). [External Linkgr-qc/9710004].
116 Kobayashi, S., and Nomizu, K., Foundations of Differential Geometry, Vol. 2, (John Wiley, New York, 1969).
117 Kramer, D., Stephani, H., MacCallum, M.A.H., and Herlt, E., Exact Solutions of Einstein’s Field Equations, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 1980).
118 Kundt, W., and Trümper, M., “Orthogonal Decomposition of Axi-symmetric Stationary Space-times”, Z. Phys., 192, 419–422, (1966).
119 Künzle, H.P., “SU(N) Einstein–Yang–Mills Fields with Spherical Symmetry”, Class. Quantum Grav., 8, 2283–2297, (1991).
120 Künzle, H.P., “Analysis of the Static Spherically Symmetric SU(N) Einstein–Yang–Mills Equations”, Commun. Math. Phys., 162, 371–397, (1994).
121 Künzle, H.P., “Einstein–Yang–Mills Fields with Spherical Symmetry”, in Beem, J.K., and Duggal, K.L., eds., Differential Geometry and Mathematical Physics, AMS-CMS Special Session on Geometric Methods in Mathematical Physics, August 15 – 19, 1993, Vancouver, British Columbia, Canada, Contemporary Mathematics, vol. 170, pp. 167–184, (AMS, Providence, 1994).
122 Künzle, H.P., and Masood-ul Alam, A.K.M., “Spherically Symmetric Static SU(2) Einstein–Yang–Mills Fields”, J. Math. Phys., 31, 928–935, (1990).
123 Laplace, P.-S., Exposition du Système du Monde, (Imprimerie du Cercle-Social, Paris, France, 1796). Related online version (cited on 10 February 2005):
External Linkhttp://visualiseur.bnf.fr/CadresFenetre?Y=Texte&M=notice&O=NUMM-88763.
124 Lavrelashvili, G., and Maison, D., “Regular and Black Hole Solutions of Einstein–Yang–Mills-Dilaton Theory”, Nucl. Phys. B, 410, 407–422, (1993).
125 Lee, K., Nair, V.P., and Weinberg, E.J., “A Classical Instability of Reissner–Nordström Solutions and the Fate of Magnetically Charged Black Holes”, Phys. Rev. Lett., 68, 1100–1103, (1992). [External Linkhep-th/9111045].
126 Lichnerowicz, A., Théories Relativistes de la Gravitation et de l’Électromagnétisme: Relativité Générale et Théories Unitaires, (Masson, Paris, France, 1955).
127 Maison, D., “On the Complete Integrability of the Stationary, Axially Symmetric Einstein Equations”, J. Math. Phys., 20, 871–877, (1979).
128 Majumdar, S.D., “A Class of Exact Solutions of Einstein’s Field Equations”, Phys. Rev., 72, 390–398, (1947).
129 Masood-ul Alam, A.K.M., “Uniqueness Proof of Static Black Holes Revisited”, Class. Quantum Grav., 9, L53–L55, (1992).
130 Masood-ul Alam, A.K.M., “Uniqueness of a static charged dilaton black hole”, Class. Quantum Grav., 10, 2649–2656, (1993).
131 Mazur, P.O., “Proof of Uniqueness of the Kerr-Newman Black Hole Solution”, J. Math. Phys., 15, 3173– 3180, (1982).
132 Mazur, P.O., “Black Hole Uniqueness from a Hidden Symmetry of Einstein’s Gravity”, Gen. Relativ. Gravit., 16, 211–215, (1984).
133 Mazur, P.O., “A Global Identity for Nonlinear Sigma-Models”, Phys. Lett. A, 100, 341–344, (1984).
134 Michell, J., “On the Means of Discovering the Distance...”, Philos. Trans. R. Soc. London, 74, 35–57, (1784).
135 Milnor, J.W., Morse Theory: Based on lecture notes by M. Spivak and R. Wells, Annals of Mathematics Studies, vol. 51, (Princeton University Press, Princeton, 1963).
136 Misner, C.W., “The Flatter Regions of Newman, Unti, and Tamburino’s Generalized Schwarzschild Space”, J. Math. Phys., 4, 924–937, (1965).
137 Müller zum Hagen, H., Robinson, D.C., and Seifert, H.J., “Black Hole in Static Vacuum Space-Times”, Gen. Relativ. Gravit., 4, 53–78, (1973).
138 Müller zum Hagen, H., Robinson, D.C., and Seifert, H.J., “Black Holes in Static Electrovac Space-Times”, Gen. Relativ. Gravit., 5, 61–72, (1974).
139 Neugebauer, G., and Kramer, D., “Eine Methode zur Konstruktion stationärer Einstein-Maxwell Felder”, Ann. Phys. (Leipzig), 24, 62–71, (1969).
140 Newman, E.T., Tamburino, L.A., and Unti, T., “Empty-Space Generalization of the Schwarzschild Metric”, J. Math. Phys., 4, 915–923, (1963).
141 Oppenheimer, J.R., and Snyder, H., “On Continued Gravitational Contraction”, Phys. Rev., 56, 455–459, (1939). [External LinkDOI], [External LinkADS].
142 Oppenheimer, J.R., and Volkoff, G.M., “On Massive Neutron Cores”, Phys. Rev., 55, 374–381, (1939).
143 Papapetrou, A., “A Static Solution of the Gravitational Field for an Arbitrary Charge-Distribution”, Proc. R. Irish Acad. A, 51, 191–204, (1945).
144 Papapetrou, A., “Eine Rotationssymmetrische Lösung in der Allgemeinen Relativitätstheorie”, Ann. Phys. (Leipzig), 12, 309–315, (1953).
145 Perjes, Z., “Solutions of the Coupled Einstein–Maxwell Equations Representing the Fields of Spinning Sources”, Phys. Rev. Lett., 27, 1668–1670, (1971).
146 Rácz, I., and Wald, R.M., “Extension of Space-times with Killing Horizons”, Class. Quantum Grav., 9, 2643–2656, (1992).
147 Rácz, I., and Wald, R.M., “Global Extensions of Space-times Describing Asymptotic Finite States of Black Holes”, Class. Quantum Grav., 13, 539–552, (1995). [External Linkgr-qc/9507055].
148 Rees, M.J., “Astrophysical Evidence for Black Holes”, in Wald, R.M., ed., Black Holes and Relativistic Stars, Proceedings of the Symposium dedicated to the memory of Subrahmanyan Chandrasekhar, held in Chicago, December 14 – 15, 1996, pp. 79–101, (University of Chicago Press, Chicago; London, 1998). [External Linkastro-phys/9701161].
149 Ridgway, S.A., and Weinberg, E.J., “Are All Static Black Hole Solutions Spherically Symmetric?”, Gen. Relativ. Gravit., 27, 1017–1021, (1995). [External Linkgr-qc/9504003].
150 Ridgway, S.A., and Weinberg, E.J., “Static Black Hole Solutions without Rotational Symmetry”, Phys. Rev. D, 52, 3440–3456, (1995). [External Linkgr-qc/9503035].
151 Robinson, D.C., “Classification of Black Holes with Electromagnetic Fields”, Phys. Rev., 10, 458–460, (1974).
152 Robinson, D.C., “Uniqueness of the Kerr Black Hole”, Phys. Rev. Lett., 34, 905–906, (1975).
153 Robinson, D.C., “A Simple Proof of the Generalization of Israel’s Theorem”, Gen. Relativ. Gravit., 8, 695–698, (1977).
154 Ruback, P., “A New Uniqueness Theorem for Charged Black Holes”, Class. Quantum Grav., 5, L155–L159, (1988).
155 Schoen, R., and Yau, S.-T., “On the Proof of the Positive Mass Conjecture in General Relativity”, Commun. Math. Phys., 65, 45–76, (1979).
156 Schoen, R., and Yau, S.-T., “Proof of the positive mass theorem. II”, Commun. Math. Phys., 79, 231–260, (1981).
157 Schwarzschild, K., “Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie”, Sitzungsber. K. Preuss. Akad. Wiss., Phys.-Math. Kl., 1916(III), 424–434, (1916).
158 Schwarzschild, K., “Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie”, Sitzungsber. K. Preuss. Akad. Wiss., Phys.-Math. Kl., 1916(XII), 189–196, (1916). [External Linkphysics/9905030].
159 Shaposhnikov, M.E., “Sphalerons and Baryogenesis”, Class. Quantum Grav. Suppl., 10, 147–154, (1993).
160 Simon, W., “A Simple Proof of the Generalized Israel Theorem”, Gen. Relativ. Gravit., 17, 761–768, (1985).
161 Smarr, L.L., “Mass Formula for Kerr Black Holes”, Phys. Rev. Lett., 30, 71–73, (1973).
162 Smoller, J.A., and Wasserman, A.G., “Existence of Infinitely-Many Smooth, Static, Global Solutions of the Einstein/Yang–Mills Equations”, Commun. Math. Phys., 151, 303–325, (1993). Related online version (cited on 24 May 2005):
External Linkhttp://projecteuclid.org/euclid.cmp/1104252139.
163 Smoller, J.A., Wasserman, A.G., and Yau, S.-T., “Existence of Black Hole Solutions for the Einstein–Yang/Mills Equations”, Commun. Math. Phys., 154, 377–401, (1993). Related online version (cited on 24 May 2005):
External Linkhttp://projecteuclid.org/euclid.cmp/1104252975.
164 Smoller, J.A., Wasserman, A.G., Yau, S.-T., and McLeod, J.B., “Smooth static solutions of the Einstein–Yang–Mills equations”, Commun. Math. Phys., 143, 115–147, (1991). Related online version (cited on 24 May 2005):
External Linkhttp://projecteuclid.org/euclid.cmp/1104248845.
165 Straumann, N., General Relativity and Relativistic Astrophysics, (Springer, Berlin; New York, 1984).
166 Straumann, N., and Zhou, Z.-H., “Instability of a colored black hole solution”, Phys. Lett. B, 243, 33–35, (1990). [External LinkDOI].
167 Sudarsky, D., and Wald, R.M., “Extrema of mass, stationarity, and staticity, and solutions to the Einstein–Yang–Mills equations”, Phys. Rev. D, 46, 1453–1474, (1992).
168 Sudarsky, D., and Wald, R.M., “Mass formulas for stationary Einstein–Yang–Mills black holes and a simple proof of two staticity theorems”, Phys. Rev. D, 47, R5209–R5213, (1993). [External Linkgr-qc/9305023].
169 Sudarsky, D., and Zannias, T., “No Scalar Hair for Spherical Black Holes”, The Eight Marcel Grossmann Meeting, Jerusalem, June 22 – 27, 1997, conference paper.
170 Szabados, L.B., “Commutation properties of cyclic and null Killing symmetries”, J. Math. Phys., 28, 2688–2691, (1987).
171 Taubes, C.H., and Parker, T., “On Witten’s Proof of the Positive Energy Theorem”, Commun. Math. Phys., 84, 223–238, (1982).
172 Vishveshwara, C.V., “Generalization of the ‘Schwarzschild Surface’ to Arbitrary Static and Stationary Metrics”, J. Math. Phys., 9, 1319–1322, (1968).
173 Volkov, M.S., Brodbeck, O., Lavrelashvili, G., and Straumann, N., “The number of sphaleron instabilities of the Bartnik–McKinnon solitons and non-Abelian black holes”, Phys. Lett. B, 349, 438–442, (1995). [External Linkhep-th/9502045].
174 Volkov, M.S., and Gal’tsov, D.V., “Non-Abelian Einstein–Yang–Mills Black Holes”, J. Exp. Theor. Phys. Lett., 50, 346–350, (1989).
175 Volkov, M.S., and Straumann, N., “Slowly Rotating Non-Abelian Black Holes”, Phys. Rev. Lett., 79, 1428–1431, (1997). [External Linkhep-th/9704026].
176 Volkov, M.S., Straumann, N., Lavrelashvili, G., Heusler, M., and Brodbeck, O., “Cosmological Analogs of the Bartnik-McKinnon Solutions”, Phys. Rev. D, 54, 7243–7251, (1996). [External Linkhep-th/9605089].
177 Wald, R.M., General Relativity, (University of Chicago Press, Chicago, 1984).
178 Wald, R.M., “On the Instability of the N = 1 Einstein–Yang–Mills Black Holes and Mathematically Related Systems”, J. Math. Phys., 33, 248–255, (1992).
179 Wald, R.M., “Black Holes and Thermodynamics”, in Wald, R.M., ed., Black Holes and Relativistic Stars, Proceedings of the Symposium dedicated to the memory of Subrahmanyan Chandrasekhar, held in Chicago, December 14 – 15, 1996, pp. 155–176, (University of Chicago Press, Chicago; London, 1998). [External Linkgr-qc/9702022].
180 Weinberg, E.J., “Non-topological Magnetic Monopoles and New Magnetically Charged Black Holes”, Phys. Rev. Lett., 73, 1203–1206, (1994). [External Linkhep-th/9406021].
181 Weinberg, E.W., “Magnetically Charged Black Holes with Hair”, arXiv e-print, (1995). [External Linkgr-qc/9503032].
182 Weinstein, G., “On Rotating Black Holes in Equilibrium in General Relativity”, Commun. Pure Appl. Math., 43, 903–948, (1990).
183 Winstanley, E., and Mavromatos, N.E., “Instability of Hairy Black Holes in Spontaneously Broken Einstein–Yang–Mills–Higgs Systems”, Phys. Lett. B, 352, 242–246, (1959). [External Linkhep-th/9503034].
184 Witten, E., “A new proof of the positive energy theorem”, Commun. Math. Phys., 80, 381–402, (1981). Related online version (cited on 24 May 2005):
External Linkhttp://projecteuclid.org/euclid.cmp/1103919981.
185 Zhou, Z.-H., “Instability of SU(2) Einstein–Yang–Mills Solitons and Non-Abelian Black Holes”, Helv. Phys. Acta, 65, 767–819, (1992).
186 Zhou, Z.-H., and Straumann, N., “Nonlinear Perturbations of Einstein–Yang–Mills Solutions and Non-Abelian Black Holes”, Nucl. Phys. B, 360, 180–196, (1991).