1 Aizenman, M., and Lieb, E.H., “The Third Law of Thermodynamics and the Degeneracy of the Ground State for Lattice Systems”, J. Stat. Phys., 24, 279–297, (1981). [External LinkDOI].
2 Anderson, W.G., “Does the GSL imply an entropy bound?”, Matters of Gravity, 14, (September 1999). [External Linkgr-qc/9909022]. URL (cited on 22 April 2009):
External Link
3 Ashtekar, A., Baez, J.C., Corichi, A., and Krasnov, K.V., “Quantum Geometry and Black Hole Entropy”, Phys. Rev. Lett., 80, 904–907, (1998). [External LinkDOI], [External Linkgr-qc/9710007].
4 Ashtekar, A., Beetle, C., Dreyer, O., Fairhurst, S., Krishnan, B., Lewandowski, J., and Wisniewski, J., “Generic Isolated Horizons and Their Applications”, Phys. Rev. Lett., 85, 3564–3567, (2000). [External LinkDOI], [External Linkgr-qc/0006006].
5 Ashtekar, A., Beetle, C., and Fairhurst, S., “Isolated horizons: a generalization of black hole mechanics”, Class. Quantum Grav., 16, L1–L7, (1999). [External LinkDOI], [External Linkgr-qc/9812065].
6 Ashtekar, A., Beetle, C., and Fairhurst, S., “Mechanics of isolated horizons”, Class. Quantum Grav., 17, 253–298, (2000). [External Linkgr-qc/9907068].
7 Ashtekar, A., and Corichi, A., “Laws governing isolated horizons: Inclusion of dilaton coupling”, Class. Quantum Grav., 17, 1317–1332, (2000). [External Linkgr-qc/9910068].
8 Ashtekar, A., Corichi, A., and Krasnov, K., “Isolated Horizons: the Classical Phase Space”, Adv. Theor. Math. Phys., 3, 419–478, (2000). [External Linkgr-qc/9905089].
9 Ashtekar, A., Fairhurst, S., and Krishnan, B., “Isolated horizons: Hamiltonian evolution and the first law”, Phys. Rev. D, 62, 104025, 1–29, (2000). [External LinkDOI], [External Linkgr-qc/0005083].
10 Ashtekar, A., and Krasnov, K., “Quantum Geometry and Black Holes”, in Iyer, B., and Bhawal, B., eds., Black Holes, Gravitational Radiation and the Universe: Essays in Honor of C.V. Vishveshwara, Fundamental Theories of Physics, vol. 100, pp. 149–170, (Kluwer, Dordrecht; Boston, 1999). [External Linkgr-qc/9804039].
11 Banks, T., Susskind, L., and Peskin, M.E., “Difficulties for the Evolution of Pure States into Mixed States”, Nucl. Phys. B, 244, 125–134, (1984). [External LinkDOI].
12 Bardeen, J.M., Carter, B., and Hawking, S.W., “The four laws of black hole mechanics”, Commun. Math. Phys., 31, 161–170, (1973). [External LinkDOI].
13 Bekenstein, J.D., “Black Holes and Entropy”, Phys. Rev. D, 7, 2333–2346, (1973).
14 Bekenstein, J.D., “Generalized second law of thermodynamics in black-hole physics”, Phys. Rev. D, 9, 3292–3300, (1974).
15 Bekenstein, J.D., “Universal upper bound on the entropy-to energy ratio for bounded systems”, Phys. Rev. D, 23, 287–298, (1981).
16 Bekenstein, J.D., “Entropy bounds and the second law for black holes”, Phys. Rev. D, 27, 2262–2270, (1983).
17 Bekenstein, J.D., “Entropy content and information flow in systems with limited energy”, Phys. Rev. D, 30, 1669–1679, (1984).
18 Bekenstein, J.D., “Do We Understand Black Hole Entropy?”, in Jantzen, R.T., and Mac Keiser, G., eds., The Seventh Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, Proceedings of the meeting held at Stanford University, 24 – 30 July 1994, pp. 39–58, (World Scientific, Singapore; River Edge, NJ, 1994). [External Linkgr-qc/9409015].
19 Bekenstein, J.D., “Entropy bounds and black hole remnants”, Phys. Rev. D, 49, 1912–1921, (1994).
20 Bekenstein, J.D., “Non-Archimedean character of quantum buoyancy and the generalized second law of thermodynamics”, Phys. Rev. D, 60, 124010, 1–9, (1999). [External Linkgr-qc/9906058].
21 Bekenstein, J.D., “On Page’s examples challenging the entropy bound”, arXiv e-print, (2000). [External Linkgr-qc/0006003].
22 Bekenstein, J.D., and Schiffer, M., “Quantum Limitations on the Storage and Transmission of Information”, Int. J. Mod. Phys. C, 1, 355–422, (1990). [External LinkDOI].
23 Bisognano, J.J., and Wichmann, E.H., “On the duality condition for quantum fields”, J. Math. Phys., 17, 303–321, (1976). [External LinkDOI].
24 Bombelli, L., Koul, R.K., Lee, J., and Sorkin, R.D., “Quantum source of entropy for black holes”, Phys. Rev. D, 34, 373–383, (1986).
25 Bousso, R., “A covariant entropy conjecture”, J. High Energy Phys., 07, 004, (1999). [External LinkDOI], [External Linkhep-th/9905177].
26 Bousso, R., “Holography in general space-times”, J. High Energy Phys., 1999(06), 028, (1999). [External LinkDOI], [External Linkhep-th/9906022].
27 Bousso, R., “The Holographic Principle for General Backgrounds”, Class. Quantum Grav., 17, 997–1005, (2000). [External Linkhep-th/9911002].
28 Brout, R., Massar, S., Parentani, R., and Spindel, P., “Hawking radiation without trans-Planckian frequencies”, Phys. Rev. D, 52, 4559–4568, (1995). [External Linkhep-th/9506121].
29 Brown, J.D., and York Jr, J.W., “Microcanonical functional integral for the gravitational field”, Phys. Rev. D, 47, 1420–1431, (1993).
30 Brown, J.D., and York Jr, J.W., “Quasilocal energy and conserved charges derived from the gravitational action”, Phys. Rev. D, 47, 1407–1419, (1993). [External Linkgr-qc/9209012].
31 Callen, C., and Wilzcek, F., “On Geometric Entropy”, Phys. Lett. B, 333, 55–61, (1994). [External LinkDOI].
32 Cardoso, G.L., de Wit, B., and Mohaupt, T., “Area Law Corrections from State Counting and Supergravity”, Class. Quantum Grav., 17, 1007–1015, (2000). [External LinkDOI], [External Linkhep-th/9910179].
33 Carlip, S., “Entropy from conformal field theory at Killing horizons”, Class. Quantum Grav., 16, 3327–3348, (1999). [External LinkDOI], [External Linkgr-qc/9906126].
34 Carlip, S., “Black hole entropy from conformal field theory”, Nucl. Phys. B (Proc. Suppl.), 88, 10–16, (2000). [External LinkDOI], [External Linkgr-qc/9912118].
35 Carter, B., “Black Hole Equilibrium States”, in DeWitt, C., and DeWitt, B.S., eds., Black Holes, Based on lectures given at the 23rd session of the Summer School of Les Houches, 1972, pp. 57–214, (Gordon and Breach, New York, 1973).
36 Chruściel, P.T., Delay, E., Galloway, G.J., and Howard, R., “Regularity of Horizons and the Area Theorem”, Ann. Inst. Henri Poincare, 2, 109–178, (2001). [External Linkgr-qc/0001003].
37 Chruściel, P.T., and Wald, R.M., “Maximal Hypersurfaces in Stationary Asymptotically Flat Spacetimes”, Commun. Math. Phys., 163, 561–604, (1994). [External LinkDOI].
38 Corichi, A., Nucamendi, U., and Sudarsky, D., “Einstein–Yang–Mills isolated horizons: Phase space, mechanics, hair, and conjectures”, Phys. Rev. D, 62, 044046, 1–19, (2000). [External Linkgr-qc/0002078].
39 Corley, S., and Jacobson, T.A., “Hawking Spectrum and High Frequency Dispersion”, Phys. Rev. D, 54, 1568–1586, (1996). [External Linkhep-th/9601073].
40 Corley, S., and Jacobson, T.A., “Lattice black holes”, Phys. Rev. D, 57, 6269–6279, (1998). [External Linkhep-th/9709166].
41 Dou, D., Causal Sets, a Possible Interpretation for the Black Hole Entropy, and Related Topics, Ph.D. Thesis, (SISSA, Trieste, 1999).
42 Ellis, J., Hagelin, J.S., Nanopoulos, D.V., and Srednicki, M., “Search for Violations of Quantum Mechanics”, Nucl. Phys. B, 241, 381–405, (1984). [External LinkDOI].
43 Flanagan, É.É., Marolf, D., and Wald, R.M., “Proof of classical versions of the Bousso entropy bound and of the generalized second law”, Phys. Rev. D, 62, 084035, 1–11, (2000). [External Linkhep-th/9908070].
44 Fredenhagen, K., and Haag, R., “On the Derivation of Hawking Radiation Associated with the Formation of a Black Hole”, Commun. Math. Phys., 127, 273–284, (1990). [External LinkDOI].
45 Friedrich, H., Racz, I., and Wald, R.M., “On the Rigidity Theorem for Spacetimes with a Stationary Event Horizon or a Compact Cauchy Horizon”, Commun. Math. Phys., 204, 691–707, (1999). [External LinkDOI], [External Linkgr-qc/9811021].
46 Frolov, V.P., and Fursaev, D.V., “Mechanism of Generation of Black Hole Entropy in Sakharov’s Induced Gravity”, Phys. Rev. D, 56, 2212–2225, (1997). [External Linkhep-th/9703178].
47 Frolov, V.P., Fursaev, D.V., and Zelnikov, A.I., “Statistical Origin of Black Hole Entropy in Induced Gravity”, Nucl. Phys. B, 486, 339–352, (1997). [External LinkDOI], [External Linkhep-th/9607104].
48 Frolov, V.P., and Page, D.N., “Proof of the Generalized Second Law for Quasistatic, Semiclassical Black Holes”, Phys. Rev. Lett., 71, 3902–3905, (1993). [External LinkDOI].
49 Geroch, R., “Colloquium held at Princeton University”, unknown format, (December 1971).
50 Gibbons, G.W., and Hawking, S.W., “Action integrals and partition functions in quantum gravity”, Phys. Rev. D, 15, 2752–2756, (1977).
51 Hartle, J.B., “Generalized Quantum Theory in Evaporating Black Hole Spacetimes”, in Wald, R.M., ed., Black Holes and Relativistic Stars, pp. 195–219, (University of Chicago Press, Chicago, 1998). [External Linkgr-qc/9705022], [External LinkGoogle Books].
52 Hartle, J.B., and Hawking, S.W., “Path-integral derivation of black-hole radiance”, Phys. Rev. D, 13, 2188–2203, (1976).
53 Hawking, S.W., “Gravitational Radiationfrom Colliding Black Holes”, Phys. Rev. Lett., 26, 1344–1346, (1971). [External LinkDOI].
54 Hawking, S.W., “Particle creation by black holes”, Commun. Math. Phys., 43, 199–220, (1975). [External LinkDOI].
55 Hawking, S.W., and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, 1973). [External LinkGoogle Books].
56 Heusler, M., Black Hole Uniqueness Theorems, (Cambridge University Press, Cambridge; New York, 1996). [External LinkGoogle Books].
57 Holzhey, C., Larsen, F., and Wilzcek, F., “Geometric and Renormalized Entropy in Conformal Field Theory”, Nucl. Phys. B, 424, 443–467, (1994). [External LinkDOI].
58 Horowitz, G.T., “Quantum States of Black Holes”, in Wald, R.M., ed., Black Holes and Relativistic Stars, Proceedings of the Symposium dedicated to the memory of Subrahmanyan Chandrasekhar, held in Chicago, December 14 – 15, 1996, pp. 241–266, (University of Chicago Press, Chicago; London, 1998). [External Linkgr-qc/9704072].
59 Israel, W., “Third Law of Black-Hole Dynamics: a Formulation and Proof”, Phys. Rev. Lett., 57, 397–399, (1986). [External LinkDOI].
60 Iyer, V., and Wald, R.M., “Some properties of Noether charge and a proposal for dynamical black hole entropy”, Phys. Rev. D, 50, 846–864, (1994). [External Linkgr-qc/9403028].
61 Iyer, V., and Wald, R.M., “Comparison of Noether charge and Euclidean methods for computing the entropy of stationary black holes”, Phys. Rev. D, 52, 4430–4439, (1995). [External Linkgr-qc/9503052].
62 Jacobson, T.A., “On the origin of the outgoing black hole modes”, Phys. Rev. D, 53, 7082–7088, (1996). [External Linkhep-th/9601064].
63 Jacobson, T.A., and Mattingly, D., “Hawking radiation on a falling lattice”, Phys. Rev. D, 61, 024017, 1–10, (2000). [External Linkhep-th/9908099].
64 Kay, B.S., and Wald, R.M., “Theorems on the Uniqueness and Thermal Properties of Stationary, Nonsingular, Quasifree States on Space-Times with a Bifurcate Killing Horizon”, Phys. Rep., 207, 49–136, (1991). [External LinkDOI].
65 Lewandowski, J., “Spacetimes admitting isolated horizons”, Class. Quantum Grav., 17, L53–L59, (2000). [External Linkgr-qc/9907058].
66 Maldacena, J.M., and Strominger, A., “Black hole greybody factors and D-brane spectroscopy”, Phys. Rev. D, 55, 861–870, (1997). [External Linkhep-th/9609026].
67 Marolf, D., “String/M-branes for Relativists”, arXiv e-print, (1999). [External Linkgr-qc/9908045].
68 Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, 1973).
69 Mukohyama, S., “Aspects of black hole entropy”, arXiv e-print, (1999). [External Linkgr-qc/9912103].
70 Page, D.N., “Huge Violations of Bekenstein’s Entropy Bound”, arXiv e-print, (2000). [External Linkgr-qc/0005111].
71 Page, D.N., “Subsystem Entropy Exceeding Bekenstein’s Bound”, arXiv e-print, (2000). [External Linkhep-th/0007237].
72 Page, D.N., “Defining entropy bounds”, J. High Energy Phys., 2008(10), 007, (2008). [External LinkDOI], [External Linkhep-th/0007238].
73 Parker, L., “Quantized Fields and Particle Creation in Expanding Universes. I”, Phys. Rev., 183, 1057–1068, (1969). [External LinkDOI].
74 Peet, A.W., “TASI Lectures on Black Holes in String Theory”, arXiv e-print, (2000). [External Linkhep-th/0008241].
75 Pelath, M.A., and Wald, R.M., “Comment on entropy bounds and the generalized second law”, Phys. Rev. D, 60, 104009, 1–4, (1999). [External Linkgr-qc/9901032].
76 Penrose, R., “Singularities and Time-Asymmetry”, in Hawking, S.W., and Israel, W., eds., General Relativity: An Einstein Centenary Survey, pp. 581–638, (Cambridge University Press, Cambridge; New York, 1979).
77 Penrose, R., “Quasi-Local Mass and Angular Momentum”, Proc. R. Soc. London, A381, 53–63, (1982).
78 Racz, I., and Wald, R.M., “Global Extensions of Spacetimes Describing Asymptotic Final States of Black Holes”, Class. Quantum Grav., 13, 539–552, (1996). [External Linkgr-qc/9507055].
79 Reznik, B., “Trans-Planckian tail in a theory with a cutoff”, Phys. Rev. D, 55, 2152–2158, (1997). [External Linkgr-qc/9606083].
80 Sorkin, R.D., “Two Topics concerning Black Holes: Extremality of the Energy, Fractality of the Horizon”, in Fulling, S.A., ed., Heat Kernel Techniques and Quantum Gravity, University of Manitoba, Winnipeg, Canada, August 2 – 6, 1994, Discourses in Mathematics and Its Applications, vol. 4, pp. 387–407, (Texas A&M University, College Station, TX, 1995). [External Linkgr-qc/9508002].
81 Sorkin, R.D., “How Wrinkled is the Surface of a Black Hole?”, in Wiltshire, D., ed., First Australasian Conference on General Relativity and Gravitation, Proceedings of the conference held at the Institute for Theoretical Physics, University of Adelaide, 12 – 17 February 1996, pp. 163–174, (University of Adelaide, Adelaide, 1996). [External Linkgr-qc/9701056]. Related online version (cited on 22 April 2009):
External Link
82 Sorkin, R.D., “The Statistical Mechanics of Black Hole Thermodynamics”, in Wald, R.M., ed., Black Holes and Relativistic Stars, pp. 177–194, (University of Chicago Press, Chicago, 1998). [External Linkgr-qc/9705006], [External LinkGoogle Books].
83 Sorkin, R.D., Wald, R.M., and Zhang, Z.J., “Entropy of Self-Gravitating Radiation”, Gen. Relativ. Gravit., 13, 1127–1146, (1981). [External LinkDOI].
84 Sudarsky, D., and Wald, R.M., “Extrema of mass, stationarity, and staticity, and solutions to the Einstein–Yang–Mills equations”, Phys. Rev. D, 46, 1453–1474, (1992).
85 Sudarsky, D., and Wald, R.M., “Mass formulas for stationary Einstein–Yang–Mills black holes and a simple proof of two staticity theorems”, Phys. Rev. D, 47, R5209–R5213, (1993).
86 Susskind, L., “The world as a hologram”, J. Math. Phys., 36, 6377–6396, (1995). [External LinkDOI], [External Linkhep-th/9409089].
87 Susskind, L., and Uglum, J., “Black hole entropy in canonical quantum gravity and superstring theory”, Phys. Rev. D, 50, 2700–2711, (1994).
88 ’t Hooft, G., “On the Quantum Structure of a Black Hole”, Nucl. Phys. B, 256, 727–745, (1985). [External LinkDOI].
89 ’t Hooft, G., “On the Quantization of Space and Time”, in Markov, M.A., Berezin, V.A., and Frolov, V.P., eds., Quantum Gravity, pp. 551–567, (World Scientific, Singapore, 1988).
90 Thorne, K.S., Zurek, W.H., and Price, R.H., “The Thermal Atmosphere of a Black Hole”, in Thorne, K.S., Price, R.H., and Macdonald, D.A., eds., Black Holes: The Membrane Paradigm, pp. 280–340, (Yale University Press, New Haven, 1986).
91 Unruh, W.G., “Notes on black-hole evaporation”, Phys. Rev. D, 14, 870–892, (1976).
92 Unruh, W.G., “Experimental black hole evaporation”, Phys. Rev. Lett., 46, 1351–1353, (1981). [External LinkDOI].
93 Unruh, W.G., “Sonic analog of black holes and the effects of high frequencies on black hole evaporation”, Phys. Rev. D, 51, 2827–2838, (1995). [External Linkgr-qc/9409008].
94 Unruh, W.G., and Wald, R.M., “Acceleration radiation and the generalized second law of thermodynamics”, Phys. Rev. D, 25, 942–958, (1982).
95 Unruh, W.G., and Wald, R.M., “Entropy bounds, acceleration radiation and the generalized second law”, Phys. Rev. D, 27, 2271–2276, (1983).
96 Unruh, W.G., and Wald, R.M., “Evolution laws taking pure states to mixed states in quantum field theory”, Phys. Rev. D, 52, 2176–2182, (1995). [External Linkhep-th/9503024].
97 Visser, M., “Hawking radiation without black hole entropy”, Phys. Rev. Lett., 80, 3436–3439, (1998). [External LinkDOI], [External Linkgr-qc/9712016].
98 Wald, R.M., “On particle creation by black holes”, Commun. Math. Phys., 45, 9–34, (1975). [External LinkDOI].
99 Wald, R.M., General Relativity, (University of Chicago Press, Chicago, 1984).
100 Wald, R.M., “Black hole entropy is Noether charge”, Phys. Rev. D, 48, R3427–R3431, (1993). [External Linkgr-qc/9307038].
101 Wald, R.M., Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics, Chicago Lectures in Physics, (University of Chicago Press, Chicago, 1994). [External LinkGoogle Books].
102 Wald, R.M., “ ‘Nernst theorem’ and black hole thermodynamics”, Phys. Rev. D, 56, 6467–6474, (1997). [External Linkgr-qc/9704008].
103 Wald, R.M., “Black Holes and Thermodynamics”, in Wald, R.M., ed., Black Holes and Relativistic Stars, Proceedings of the Symposium dedicated to the memory of Subrahmanyan Chandrasekhar, held in Chicago, December 14 – 15, 1996, pp. 155–176, (University of Chicago Press, Chicago; London, 1998). [External Linkgr-qc/9702022].
104 Wald, R.M., “Gravitation, Thermodynamics, and Quantum Theory”, Class. Quantum Grav., 16, A177–A190, (1999). [External LinkDOI], [External Linkgr-qc/9901033].
105 Zurek, W.H., and Thorne, K.S., “Statistical Mechanical Origin of the Entropy of a Rotating, Charged Black Hole”, Phys. Rev. Lett., 54, 2171–2175, (1986).