References

1 Abbott, L.F., “The background field method beyond one loop”, Nucl. Phys. B, 185, 189–203, (1981).
2 Aharony, O., Gubser, S.S., Maldacena, J.M., Ooguri, H., and Oz, Y., “Large N field theories, string theory and gravity”, Phys. Rep., 323, 183–386, (2000). [External Linkhep-th/9905111].
3 Antoniadis, I., Bachas, C.P., and Kounnas, C., “Four-dimensional superstrings”, Nucl. Phys. B, 289, 87–108, (1987).
4 Bardeen, W.A., “Self-Dual Yang–Mills Theory, Integrability and Multiparton Amplitudes”, Prog. Theor. Phys. Suppl., 123, 1–8, (1996).
5 Batalin, I.A., and Vilkovisky, G.A., “Relativistic S-matrix of dynamical systems with boson and fermion constraints”, Phys. Lett. B, 69, 309–312, (1977).
6 Bel, L., “Sur la radiation gravitationelle”, C. R. Acad. Sci., 247, 1094–1096, (1958). and C. R. Acad. Sci. 248 (1959) 1297.
7 Berends, F.A., and Gastmans, R., “On the high-energy behavior in quantum gravity”, Nucl. Phys. B, 88, 99–108, (1975).
8 Berends, F.A., and Giele, W.T., “The six-gluon process as an example of Weyl-van der Waerden spinor calculus”, Nucl. Phys. B, 294, 700–732, (1987).
9 Berends, F.A., and Giele, W.T., “Recursive calculations for processes with n gluons”, Nucl. Phys. B, 306, 759–808, (1988).
10 Berends, F.A., Giele, W.T., and Kuijf, H., “On relations between multi-gluon and multigraviton scattering”, Phys. Lett. B, 211, 91–94, (1988).
11 Bern, Z., Chalmers, G., Dixon, L.J., and Kosower, D.A., “One loop N gluon amplitudes with maximal helicity violation via collinear limits”, Phys. Rev. Lett., 72, 2134–2137, (1994). [External Linkhep-ph/9312333].
12 Bern, Z., De Freitas, A., and Dixon, L.J., “Two-loop helicity amplitudes for gluon gluon scattering in QCD and supersymmetric Yang–Mills theory”, J. High Energy Phys., 2002(03), 018, (2002). [External Linkhep-ph/0201161].
13 Bern, Z., De Freitas, A., Dixon, L.J., and Wong, H.L., “Supersymmetric regularization, two-loop QCD amplitudes and coupling shifts”, Phys. Rev. D, 66, 085002, 1–25, (2002). [External Linkhep-ph/0202271].
14 Bern, Z., De Freitas, A., and Wong, H.L., “Coupling Gravitons to Matter”, Phys. Rev. Lett., 84, 3531–3534, (2000). [External Linkhep-th/9912033].
15 Bern, Z., Dixon, L.J., Dunbar, D.C., Julia, B., Perelstein, M., Rozowsky, J.S., Seminara, D., and Trigiante, M., “Counterterms in Supergravity”, in Bernard, D., Bonora, L., Corrigan, E., Gomez, C., Julia, B., Mussardo, G., and Nahm, W., eds., Non-perturbative Quantum Effects 2000, Proceedings of 4th Annual European TMR Conference on Integrability, Non-perturbative Effects and Symmetry in Quantum Field Theory, Paris, France, 7 – 13 September 2000, (SISSA, Trieste, 2000). [External Linkhep-th/0012230]. URL (cited on 27 May 2009):
External Linkhttp://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=6.
16 Bern, Z., Dixon, L.J., Dunbar, D.C., and Kosower, D.A., “One-loop n-point gauge theory amplitudes, unitarity and collinear limits”, Nucl. Phys. B, 425, 217–260, (1994). [External Linkhep-ph/9403226].
17 Bern, Z., Dixon, L.J., Dunbar, D.C., and Kosower, D.A., “Fusing gauge theory tree amplitudes into loop amplitudes”, Nucl. Phys. B, 435, 59–101, (1995). [External Linkhep-ph/9409265].
18 Bern, Z., Dixon, L.J., Dunbar, D.C., and Kosower, D.A., “One-loop self-dual and N = 4 super Yang–Mills”, Phys. Lett. B, 394, 105–115, (1997). [External Linkhep-th/9611127].
19 Bern, Z., Dixon, L.J., Dunbar, D.C., Perelstein, M., and Rozowsky, J.S., “On the relationship between Yang–Mills theory and gravity and its implication for ultraviolet divergences”, Nucl. Phys. B, 530, 401–456, (1998). [External Linkhep-th/9802162].
20 Bern, Z., Dixon, L.J., and Kosower, D.A., “Progress in one-loop QCD computations”, Annu. Rev. Nucl. Part. Sci., 46, 109–148, (1996). [External Linkhep-ph/9602280].
21 Bern, Z., Dixon, L.J., and Kosower, D.A., “A two-loop four-gluon helicity amplitude in QCD”, J. High Energy Phys., 2000(01), 027, (2000). [External Linkhep-ph/0001001].
22 Bern, Z., Dixon, L.J., Perelstein, M., and Rozowsky, J.S., “One-loop n-point helicity amplitudes in (self-dual) gravity”, Phys. Lett. B, 444, 273–283, (1998). [External Linkhep-th/9809160].
23 Bern, Z., Dixon, L.J., Perelstein, M., and Rozowsky, J.S., “Multi-leg one-loop gravity amplitudes from gauge theory”, Nucl. Phys. B, 546, 423–479, (1999). [External Linkhep-th/9811140].
24 Bern, Z., and Dunbar, D.C., “A mapping between Feynman and string motivated one-loop rules in gauge theories”, Nucl. Phys. B, 379, 562–601, (1992).
25 Bern, Z., Dunbar, D.C., and Shimada, T., “String based methods in perturbative gravity”, Phys. Lett. B, 312, 277–284, (1993). [External Linkhep-th/9307001].
26 Bern, Z., and Grant, A.K., “Perturbative gravity from QCD amplitudes”, Phys. Lett. B, 457, 23–32, (1999). [External Linkhep-th/9904026].
27 Bern, Z., and Kosower, D.A., “The computation of loop amplitudes in gauge theories”, Nucl. Phys. B, 379, 451–461, (1992).
28 Bern, Z., and Morgan, A.G., “Massive loop amplitudes from unitarity”, Nucl. Phys. B, 467, 479–509, (1996). [External Linkhep-ph/9511336].
29 Bern, Z., Rozowsky, J.S., and Yan, B., “Two-loop four-gluon amplitudes in N = 4 super-Yang–Mills”, Phys. Lett. B, 401, 273–282, (1997). [External Linkhep-ph/9702424].
30 Cangemi, D., “Self-dual Yang–Mills theory and one-loop maximally helicity violating multi-gluon amplitudes”, Nucl. Phys. B, 484, 521–537, (1997). [External Linkhep-th/9605208].
31 Carlip, S., “Quantum gravity: A progress report”, Rep. Prog. Phys., 64, 885–942, (2001). [External Linkgr-qc/0108040].
32 Chalmers, G., “On the finiteness of N = 8 quantum supergravity”, arXiv e-print, (2000). [External Linkhep-th/0008162].
33 Chalmers, G., and Siegel, W., “The self-dual sector of QCD amplitudes”, Phys. Rev. D, 54, 7628–7633, (1997). [External Linkhep-th/9606061].
34 Collins, J.C., Renormalization: An introduction to renormalization, the renormalization group, and the operator-product expansion, (Cambridge University Press, Cambridge; New York, 1984).
35 Cutkosky, R.E., “Singularities and discontinuities of Feynman amplitudes”, J. Math. Phys., 1, 429, (1960).
36 De Causmaecker, P., Gastmans, R., Troost, W., and Wu, T.T., “Helicity amplitudes for massless QED”, Phys. Lett. B, 105, 215–218, (1981).
37 Deser, S., “The Immortal Bel Robinson Tensor”, in Martín, J., Ruiz, E., Atrio, F., and Molina, A., eds., Relativity and Gravitation in General, Proceeding of the Spanish Relativity Meeting in Honour of the 65th Birthday of Lluís Bel, Salamanca, Spain 22 – 25 September 1998, (World Scientific, Singapore, 1999). [External Linkgr-qc/9901007].
38 Deser, S., Franklin, J.S., and Seminara, D., “Graviton graviton scattering, Bel–Robinson and energy”, Class. Quantum Grav., 16, 2815–2821, (1999). [External Linkgr-qc/9905021].
39 Deser, S., Kay, J.H., and Stelle, K.S., “Renormalizability properties of supergravity”, Phys. Rev. Lett., 38, 527–530, (1977).
40 Deser, S., and Seminara, D., “Counterterms/M-theory corrections to D = 11 supergravity”, Phys. Rev. Lett., 82, 2435–2438, (1999). [External Linkhep-th/9812136].
41 Deser, S., and Seminara, D., “Tree amplitudes and two-loop counterterms in D = 11 supergravity”, Phys. Rev. D, 62, 084010, 1–8, (2000). [External Linkhep-th/0002241].
42 Deser, S., Tsao, H.S., and van Nieuwenhuizen, P., “One-loop divergences of the Einstein–Yang–Mills system”, Phys. Rev. D, 10, 3337–3342, (1974).
43 Deser, S., and van Nieuwenhuizen, P., “Nonrenormalizability of the quantized Dirac–Einstein system”, Phys. Rev. D, 10, 411–420, (1974).
44 DeWitt, B.S., “Quantum Theory of Gravity. II. The Manifestly Covariant Theory”, Phys. Rev., 162, 1195–1239, (1967).
45 DeWitt, B.S., “Quantum Theory of Gravity. III. Applications of the Covariant Theory”, Phys. Rev., 162, 1239–1256, (1967).
46 DeWitt, B.S., in Isham, C., Penrose, R., and Sciama, D.W., eds., Quantum Gravity 2: A Second Oxford Symposium, Proceedings of the Second Oxford Symposium on Quantum Gravity, held in April 1980 in Oxford, (Clarendon; Oxford University Press, Oxford; New York, 1981).
47 Di Vecchia, P., Magnea, L., Lerda, A., Marotta, R., and Russo, R., “Two-loop scalar diagrams from string theory”, Phys. Lett. B, 388, 65–76, (1996). [External Linkhep-th/9607141].
48 Dixon, L.J., “Calculating scattering amplitudes efficiently”, in Soper, D.E., ed., QCD and Beyond, Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics (TASI ’95), Boulder, Colorado, USA, 4 – 30 June 1995, (World Scientific, Singapore; River Edge, 1996). [External Linkhep-ph/9601359].
49 Dixon, L.J., Harvey, J.A., Vafa, C., and Witten, E., “Strings on orbifolds”, Nucl. Phys. B, 261, 678–686, (1985).
50 Dixon, L.J., Harvey, J.A., Vafa, C., and Witten, E., “Strings on orbifolds. 2”, Nucl. Phys. B, 274, 285–314, (1986).
51 Donoghue, J.F., “General relativity as an effective field theory: The leading quantum corrections”, Phys. Rev. D, 50, 3874–3888, (1994). [External LinkDOI], [External Linkgr-qc/9405057].
52 Duff, M.J., “Self-Duality and Helicity in Supergravity”, in van Nieuwenhuizen, P., and Freedman, D.Z., eds., Supergravity, Proceedings of the Supergravity Workshop at Stony Brook, 27 – 29 September 1979, (North Holland, Amsterdam; New York, 1979).
53 Duff, M.J., and Isham, C.J., “Selfduality, helicity, and coherent states in non-abelian gauge theories”, Nucl. Phys. B, 162, 271–284, (1980).
54 Dunbar, D.C., Julia, B., Seminara, D., and Trigiante, M., “Counterterms in type I supergravities”, J. High Energy Phys., 2000(01), 046, (2000). [External Linkhep-th/9911158].
55 Dunbar, D.C., and Norridge, P.S., “Calculation of graviton scattering amplitudes using string-based methods”, Nucl. Phys. B, 433, 181–206, (1995). [External Linkhep-th/9408014].
56 Dunbar, D.C., and Norridge, P.S., “Infinities within graviton scattering amplitudes”, Class. Quantum Grav., 14, 351–365, (1997). [External Linkhep-th/9512084].
57 Dunbar, D.C., and Turner, N.W., “Ultra-violet infinities and counterterms in higher-dimensional Yang–Mills”, Phys. Lett. B, 547, 278–290, (2002). [External Linkhep-th/0203104].
58 Ellis, R.K., Stirling, W.J., and Webber, B.R., QCD and Collider Physics, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology, vol. 8, (Cambridge University Press, Cambridge; New York, 1996).
59 Faddeev, L.D., and Popov, V.N., “Feynman diagrams for the Yang–Mills field”, Phys. Lett. B, 25, 29–30, (1967).
60 Faddeev, L.D., and Popov, V.N., “Covariant quantization of the gravitational field”, Sov. Phys. Usp., 16, 777, (1974).
61 Fradkin, E.S., and Vilkovisky, G.A., “Quantization of relativistic systems with constraints”, Phys. Lett. B, 55, 224–226, (1975).
62 Friedan, D., Martinec, E.J., and Shenker, S.H., “Conformal invariance, supersymmetry and string theory”, Nucl. Phys. B, 271, 93, (1986).
63 Frizzo, A., Magnea, L., and Russo, R., “Scalar field theory limits of bosonic string amplitudes”, Nucl. Phys. B, 579, 379–410, (2000). [External Linkhep-th/9912183].
64 Gasser, J., and Leutwyler, H., “Chiral perturbation theory: expansions in the mass of the strange quark”, Nucl. Phys. B, 250, 465–516, (1985).
65 Gervais, J.L., and Neveu, A., “Feynman rules for massive gauge fields with dual diagram topology”, Nucl. Phys. B, 46, 381–401, (1972).
66 Goroff, M.H., and Sagnotti, A., “The ultraviolet behavior of Einstein gravity”, Nucl. Phys. B, 266, 709–736, (1986).
67 Green, M.B., Gutperle, M., and Vanhove, P., “One loop in eleven dimensions”, Phys. Lett. B, 409, 177–184, (1997). [External Linkhep-th/9706175].
68 Green, M.B., Kwon, H.-h., and Vanhove, P., “Two loops in eleven dimensions”, Phys. Rev. D, 61, 104010, 1–19, (2000). [External Linkhep-th/9910055].
69 Green, M.B., Schwarz, J.H., and Brink, L., “N = 4 Yang–Mills and N = 8 supergravity as limits of string theories”, Nucl. Phys. B, 198, 474–492, (1982).
70 Green, M.B., Schwarz, J.H., and Witten, E., Superstring Theory, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, New York, 1987).
71 Grisaru, M.T., “Two loop renormalizability of supergravity”, Phys. Lett. B, 66, 75–76, (1977).
72 Grisaru, M.T., and Pendleton, H.N., “Some properties of scattering amplitudes in supersymmetric theories”, Nucl. Phys. B, 124, 81–92, (1977).
73 Grisaru, M.T., Pendleton, H.N., and van Nieuwenhuizen, P., “Supergravity and the S matrix”, Phys. Rev. D, 15, 996–1006, (1977).
74 Grisaru, M.T., and Siegel, W., “Supergraphity. (II.) Manifestly covariant rules and higher-loop finiteness”, Nucl. Phys. B, 201, 292–314, (1982). Erratum: Nucl. Phys. B 206 (1982) 496.
75 Grisaru, M.T., van Nieuwenhuizen, P., and Vermaseren, J.A., “One loop renormalizability of pure supergravity and of Maxwell–Einstein theory in extended supergravity”, Phys. Rev. Lett., 37, 1662–1666, (1976).
76 Gross, D.J., Harvey, J.A., Martinec, E.J., and Rohm, R., “Heterotic string theory. 1. The free heterotic string”, Nucl. Phys. B, 256, 253–284, (1985).
77 Gross, D.J., Harvey, J.A., Martinec, E.J., and Rohm, R., “Heterotic string theory. 2. The interacting heterotic string”, Nucl. Phys. B, 267, 75–124, (1986).
78 Gross, D.J., and Witten, E., “Superstring modifications of Einstein’s equations”, Nucl. Phys. B, 277, 1–10, (1986).
79 Hehl, F.W., McCrea, J.D., Mielke, E.W., and Neeman, Y., “Metric Affine Gauge Theory Of Gravity: Field Equations, Noether Identities, World Spinors, And Breaking Of Dilation Invariance”, Phys. Rep., 258, 1–171, (1995). [External Linkgr-qc/9402012].
80 Henneaux, M., “Hamiltonian form of the path integral for theories with a gauge freedom”, Phys. Rep., 126, 1–66, (1985).
81 Howe, P.S., and Stelle, K.S., “The ultraviolet properties of supersymmetric field theories”, Int. J. Mod. Phys. A, 4, 1871–1912, (1989).
82 Howe, P.S., Stelle, K.S., and Townsend, P.K., “Superactions”, Nucl. Phys. B, 191, 445–464, (1981).
83 Ivanenko, D., and Sardanashvily, G., “The Gauge Treatment Of Gravity”, Phys. Rep., 94, 1–45, (1983).
84 Kallosh, R.E., “Counterterms in extended supergravities”, Phys. Lett. B, 99, 122–127, (1981).
85 Kaplan, D.B., “Effective Field Theories”, arXiv e-print, (1995). [External Linknucl-th/9506035]. Lectures at the 7th summer school in nuclear physics symmetries in Seattle, WA, June 18 – 30, 1995.
86 Kawai, H., Lewellen, D.C., and Tye, S.H., “A relation between tree amplitudes of closed and open strings”, Nucl. Phys. B, 269, 1–23, (1986).
87 Kawai, H., Lewellen, D.C., and Tye, S.H., “Construction of fermionic string models in four-dimensions”, Nucl. Phys. B, 288, 1–76, (1987).
88 Kleiss, R., and Stirling, W.J., “Spinor techniques for calculating proton anti-proton to W or Z plus jets”, Nucl. Phys. B, 262, 235, (1985).
89 Koba, Z., and Nielsen, H.B., “Manifestly crossing invariant parametrization of N meson amplitude”, Nucl. Phys. B, 12, 517, (1969).
90 Kosower, D.A., “Light-cone recurrence relations for QCD amplitudes”, Nucl. Phys. B, 335, 23–44, (1990).
91 Kosower, D.A., Lee, B.H., and Nair, V.P., “Multi gluon scattering: a string based calculation”, Phys. Lett. B, 201, 85–89, (1988).
92 Landau, L.D., “On analytic properties of vertex parts in quantum field theory”, Nucl. Phys., 13, 181–192, (1959).
93 Leznov, A.N., “On equivalence of four-dimensional selfduality equations to continual analog of the main chiral field problem”, Theor. Math. Phys., 73, 1233–1237, (1988). Teor. Mat. Fiz. 73 (1988) 302.
94 Leznov, A.N., and Mukhtarov, M.A., “Deformation of algebras and solution of selfduality equation”, J. Math. Phys., 28, 2574–2578, (1987).
95 Maldacena, J.M., “The large N limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys., 2, 231–252, (1998). [External Linkhep-th/9711200]. also in: Int. J. Theor. Phys. 38 (1999) 1113–1133.
96 Mandelstam, S., “Determination of the Pion-Nucleon Scattering Amplitude from Dispersion Relations and Unitarity. General Theory”, Phys. Rev., 112, 1344–1360, (1958).
97 Mandelstam, S., “Analytic Properties of Transition Amplitudes in Perturbation Theory”, Phys. Rev., 115, 1741–1751, (1959).
98 Mandelstam, S., “Light-cone superspace and the ultraviolet finiteness of the N = 4 model”, Nucl. Phys. B, 213, 149–168, (1983).
99 Mangano, M.L., and Parke, S.J., “Multiparton amplitudes in gauge theories”, Phys. Rep., 200, 301–367, (1991).
100 Mangano, M.L., Parke, S.J., and Xu, Z., “Duality and multi-gluon scattering”, Nucl. Phys. B, 298, 653–672, (1988).
101 Manohar, A.V., “Effective field theories”, arXiv e-print, (1996). [External Linkhep-ph/9606222]. 1996 Schladming Lectures: Perturbative and nonperturbative aspects of quantum field theory in Schladming, Austria, March 2 – 9, 1996.
102 Narain, K.S., “New heterotic string theories in uncompactified dimensions less than 10”, Phys. Lett. B, 169, 41–46, (1986).
103 Narain, K.S., Sarmadi, M.H., and Witten, E., “A note on toroidal compactification of heterotic string theory”, Nucl. Phys. B, 279, 369, (1987).
104 Parke, S.J., and Taylor, T.R., “Perturbative QCD utilizing extended supersymmetry”, Phys. Lett. B, 157, 81–84, (1985). Erratum: Phys. Lett. B 174 (1985) 465.
105 Parke, S.J., and Taylor, T.R., “Amplitude for n-Gluon Scattering”, Phys. Rev. Lett., 56, 2459–2460, (1986).
106 Paton, J.E., and Chan, H.M., “Generalized Veneziano model with isospin”, Nucl. Phys. B, 10, 516, (1969).
107 Peskin, M.E., and Schroeder, D.V., An Introduction to Quantum Field Theory, (Westview Press, Boulder, 1995).
108 Plebanski, J.F., “Some solutions of complex Einstein equations”, J. Math. Phys., 16, 2395, (1975).
109 Plebanski, J.F., and Przanowski, M., “The Lagrangian of a self-dual gravitational field as a limit of the SDYM lagrangian”, Phys. Lett. A, 212, 22–28, (1996). [External Linkhep-th/9605233].
110 Polchinski, J., String Theory. Vol. 1: An introduction to the bosonic string, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 1998).
111 Polchinski, J., String Theory. Vol. 2: Superstring theory and beyond, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 1998).
112 Roland, K., “Multiloop gluon amplitudes in pure gauge theories”, Phys. Lett. B, 289, 148–152, (1992).
113 Roland, K., and Sato, H.T., “Multiloop world-line Green functions from string theory”, Nucl. Phys. B, 480, 99–124, (1996). [External Linkhep-th/9604152].
114 Roland, K., and Sato, H.T., “Multiloop ϕ3 amplitudes from bosonic string theory”, Nucl. Phys. B, 515, 488–508, (1998). [External Linkhep-th/9709019].
115 Rozowsky, J.S., “Feynman diagrams and cutting rules”, arXiv e-print, (1997). [External Linkhep-ph/9709423].
116 Russo, J.G., and Tseytlin, A.A., “One-loop four-graviton amplitude in eleven-dimensional supergravity”, Nucl. Phys. B, 508, 245–259, (1997). [External Linkhep-th/9707134].
117 Sannan, S., “Gravity as the limit of the type II superstring theory”, Phys. Rev. D, 34, 1749–1758, (1986).
118 Scherk, J., and Schwarz, J.H., “Dual Model Approach to a Renormalizable Theory of Gravitation”, in Schwarz, J.H., ed., Superstrings: The first 15 years of superstring theory, vol. 1, pp. 218–222, (World Scientific, Singapore; Philadelphia, 1985).
119 Schmidt, M.G., and Schubert, C., “Multiloop calculations in the string inspired formalism: The single spinor loop in QED”, Phys. Rev. D, 53, 2150–2159, (1996). [External Linkhep-th/9410100].
120 Schubert, C., “Perturbative quantum field theory in the string-inspired formalism”, Phys. Rep., 355, 73–234, (2001). [External Linkhep-th/0101036].
121 Selivanov, K.G., “Gravitationally dressed Parke-Taylor amplitudes”, Mod. Phys. Lett. A, 12, 3087–3090, (1997). [External Linkhep-th/9711111].
122 Siegel, W., “Supersymmetric dimensional regularization via dimensional reduction”, Phys. Lett. B, 84, 193–196, (1979).
123 Siegel, W., “Superspace duality in low-energy superstrings”, Phys. Rev. D, 48, 2826–2837, (1993). [External Linkhep-th/9305073].
124 Siegel, W., “Two vierbein formalism for string inspired axionic gravity”, Phys. Rev. D, 47, 5453–5459, (1993). [External Linkhep-th/9302036].
125 Siegel, W., “Manifest Duality in Low-Energy Superstrings”, in Halpern, M.B., Sevrin, A., and Rivlis, G., eds., Strings ’93, Proceedings of the conference, May 24 – 29, 1993, Berkeley, USA, (World Scientific, Singapore; River Edge, 1995). [External Linkhep-th/9308133].
126 Singleton, D., “General relativistic analog solutions for Yang–Mills theory”, Theor. Math. Phys., 117, 1351–1363, (1998). [External Linkhep-th/9904125].
127 Smirnov, V.A., “Analytical result for dimensionally regularized massless on-shell double box”, Phys. Lett. B, 460, 397–404, (1999). [External Linkhep-ph/9905323].
128 Stelle, K.S., “Extended Supercurrents and the Ultraviolet Finiteness of N = 4 Supersymmetric Yang–Mills Theory”, in Duff, M.J., and Isham, C.J., eds., Quantum structure of space and time, Proceedings of the Nuffield Workshop, Imperial College, London, 3 – 21 August, 1981, pp. 337–361, (Cambridge University Press, Cambridge; New York, 1982).
129 Stelle, K.S., “Revisiting supergravity and super Yang–Mills renormalization”, in Lukierski, J., and Rembielinski, J., eds., New Developments in Fundamental Interaction Theories, Proceedings of the 37th Karpacz Winterschool of Theoretical Physics, Karpacz, Poland, 6 – 15 February, 2001, AIP Conference Proceedings, vol. 589, pp. 108–117, (American Institute of Physics, Melville, 2001). [External Linkhep-th/0203015].
130 ’t Hooft, G., in Jancewicz, B., ed., Functional and Probabilistic Methods in Quantum Field Theory, Vol. 1, XII-th Winter School of Theoretical Physics in Karpacz, February 17 – March 2, 1975, Acta Universitatis Wratislavensis, vol. 368, (Wydaw. Uniw. Wroclawskiego, Wroclaw, Poland, 1976).
131 ’t Hooft, G., and Veltman, M.J.G., “Regularization and renormalization of gauge fields”, Nucl. Phys. B, 44, 189–213, (1972).
132 ’t Hooft, G., and Veltman, M.J.G., “One loop divergencies in the theory of gravitation”, Ann. Inst. Henri Poincare A, 20, 69–94, (1974).
133 Tausk, J.B., “Non-planar massless two-loop Feynman diagrams with four on-shell legs”, Phys. Lett. B, 469, 225–234, (1999). [External Linkhep-ph/9909506].
134 Tomboulis, E., “On the two loop divergences of supersymmetric gravitation”, Phys. Lett. B, 67, 417–420, (1977).
135 Utiyama, R., “Invariant theoretical interpretation of interactions”, Phys. Rev., 101, 1597–1607, (1956).
136 van de Ven, A.E.M., “Two loop quantum gravity”, Nucl. Phys. B, 378, 309–366, (1992).
137 van Neerven, W.L., “Dimensional regularization of mass and infrared singularities in two-loop on-shell vertex functions”, Nucl. Phys. B, 268, 453–488, (1986).
138 Veltman, M.J.G., “Quantum theory of Gravitation”, in Balian, R., and Zinn-Justin, J., eds., Methods in Field Theory (Méthodes en théorie des champs), Proceedings of the Les Houches Summer School, Session XXVIII, 28 July – 6 September 1975, pp. 265–327, (North-Holland; American Elsevier, Amsterdam; New York, 1976).
139 Weinberg, S., “Infrared Photons and Gravitons”, Phys. Rev., 140(2), B516–B524, (1965).
140 Weinberg, S., “Phenomenological Lagrangians”, Physica A, 96, 327–340, (1979).
141 Weinberg, S., The Quantum Theory of Fields, 3 Vols., (Cambridge University Press, Cambridge; New York, 1995).
142 Xu, Z., Zhang, D.H., and Chang, L., “Helicity amplitudes for multiple bremsstrahlung in massless nonabelian gauge theories”, Nucl. Phys. B, 291, 392–428, (1987).
143 Yang, C.N., “Condition of Self-Duality for SU(2) Gauge Fields on Euclidean Four-Dimensional Space”, Phys. Rev. Lett., 38, 1377–1379, (1977).
144 Yoneya, T., “Connection of dual models to electrodynamics and gravidynamics”, Prog. Theor. Phys., 51, 1907–1920, (1974).