Consider now the Einstein equations coupled to a perfect fluid with the radiation equation of state . Then, it has been shown [181, 182, 88] that solutions with an isotropic singularity are determined uniquely by certain free data given at the singularity. The data that can be given are, roughly speaking, half as much as in the case of a regular Cauchy hypersurface. The method of proof is to derive an existence and uniqueness theorem for a suitable class of singular hyperbolic equations. In [13] this was extended to the equation of state for any satisfying .

What happens to this theory when the fluid is replaced by a
different matter model? The study of the case of a collisionless
gas of massless particles was initiated in [14]. The equations were put into a form similar to that which was
so useful in the fluid case and therefore likely to be conducive
to proving existence theorems. Then theorems of this kind were
proved in the homogeneous special case. These were extended to
the general (*i.e.*
inhomogeneous) case in [12]. The picture obtained for collisionless matter is very
different from that for a perfect fluid. Much more data can be
given freely at the singularity in the collisionless case.

These results mean that the problem of isotropic singularities has largely been solved. There do, however, remain a couple of open questions. What happens if the massless particles are replaced by massive ones? What happens if the matter is described by the Boltzmann equation with non-trivial collision term? Does the result in that case look more like the Vlasov case or more like the Euler case?

Theorems on Existence and Global Dynamics for the
Einstein Equations
Alan D. Rendall
http://www.livingreviews.org/lrr-2002-6
© Max-Planck-Gesellschaft. ISSN 1433-8351 Problems/Comments to livrev@aei-potsdam.mpg.de |