11 Augmentation Systems

UpdateJump To The Next Update Information

Navigation based on GPS can fail in many different ways. Transmitted power is low, leading to ease of jamming and loss of signal under forest canopies or in urban canyons. Clock failures in satellites can go undetected for hours if a monitor station is not in view, leading to unreliable signal transmissions. Among nations other than the United States, there is an element of distrust of military control of the GPS. Such disadvantages have led to a number of so-called “augmentations” of GPS designed to provide users with additional GPS-like signals, or correction signals, that increase the reliability of GPS navigation. In addition, there are several new independent Global Satellite Navigation Systems being developed and deployed. We shall describe these developments since the implementation of relativistic effects differs from one system to the next.

WAAS (Wide-Area Augmentation System) provides improved reliability and accuracy over the continential U.S.A. system of 24 receivers at precisely known locations continually monitors signals from GPS satellites and computes corrections that are uploaded to leased geosynchronous satellites for retransmission to users who have WAAS-enabled receivers. No new relativity effects are involved; the corrections account primarily for clock drifts and ionospheric and tropospheric delays. EGNOS (European Geostationary Navigation Overlay System) is a similar system for improving navigation over Europe. MTSAT is a Japanese augmentation system.

The Japanese QZSS (Quasi-Zenith Satellite System) is a satellite-based augmentation system consisting of three satellites in geosynchronous orbits (a = 42,164 km, but with large eccentricity, e ≈ 0.1). The ground tracks of the satellites describe a figure 8 on earth’s surface. At apogee, where the satellites are moving most slowly, the satellites spend more time above Japan. For atomic clocks in such satellites, relativistic effects would cause a fractional frequency shift of about –5.39 × 10–10 (see Figure 2View Image). Also, the eccentricity effect is much larger than in GPS for two reasons: both the semimajor axis a and the eccentricity are larger than in GPS. The eccentricity effect, given by Eq. (38View Equation), has an amplitude of about 290 ns. Although the satellites carry atomic clocks the system is termed an augmentation system since it is not globally available.

  Go to previous page Go up Go to next page