References

1 Abramowitz, M. and Stegun, I.A., eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, (Dover, Mineola, NY, 1972). [External LinkGoogle Books].
2 Ando, M., et al., “DECIGO and DECIGO pathfinder”, Class. Quantum Grav., 27, 084010, (2010). [External LinkDOI].
3 Ando, M., et al., “Stable Operation of a 300-m Laser Interferometer with Sufficient Sensitivity to Detect Gravitational-Wave Events within Our Galaxy”, Phys. Rev. Lett., 86, 3950–3954, (2001). [External LinkDOI].
4 Arun, K.G., Blanchet, L., Iyer, B.R. and Qusailah, M.S., “The 2.5PN gravitational wave polarizations from inspiralling compact binaries in circular orbits”, Class. Quantum Grav., 21, 3771–3801, (2004). [External LinkDOI].
5 Arun, K.G., Blanchet, L., Iyer, B.R. and Qusailah, M.S., “The 2.5PN gravitational wave polarizations from inspiralling compact binaries in circular orbits”, Class. Quantum Grav., 22, 3115–3117, (2005). [External LinkDOI].
6 Bardeen, J.M. and Press, W.H., “Radiation fields in the Schwarzschild background”, J. Math. Phys., 14, 7–19, (1973). [External LinkDOI].
7 Blanchet, L., “Energy losses by gravitational radiation in inspiraling compact binaries to 5/2 post-Newtonian order”, Phys. Rev. D, 54, 1417–1438, (1996). [External LinkDOI].
8 Blanchet, L., “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries”, Living Rev. Relativity, 9, lrr-2006-4, (2006). URL (accessed 31 August 2010):
http://www.livingreviews.org/lrr-2006-4.
9 Blanchet, L., “Post-Newtonian theory and the two-body problem”, in Blanchet, L., Spallicci, A. and Whiting, B., eds., Mass and Motion in General Relativity, Proceedings of the CNRS School on Mass held in Orléans, France, 23 – 25 June 2008, Fundamental Theories of Physics, 162, (Springer, Berlin; New York, 2010). [External LinkarXiv:0907.3596].
10 Blanchet, L., Damour, T. and Esposito-Farèse, G., “Dimensional regularization of the third post-Newtonian dynamics of point particles in harmonic coordinates”, Phys. Rev. D, 69, 124007, 1–51, (2004). [External LinkDOI].
11 Blanchet, L., Damour, T., Esposito-Farèse, G. and Iyer, B.R., “Gravitational radiation from inspiralling compact binaries completed at the third post-Newtonian order”, Phys. Rev. Lett., 93, 091101, 1–4, (2004). [External LinkDOI].
12 Blanchet, L., Damour, T. and Iyer, B.R., “Gravitational waves from inspiralling compact binaries: Energy loss and waveform to second-post-Newtonian order”, Phys. Rev. D, 51, 5360–5386, (1995). [External LinkDOI].
13 Blanchet, L., Damour, T., Iyer, B.R., Will, C.M. and Wiseman, A.G., “Gravitational-Radiation Damping of Compact Binary Systems to Second Post-Newtonian Order”, Phys. Rev. Lett., 74, 3515–3518, (1995). [External LinkDOI], [External Linkgr-qc/9501027].
14 Blanchet, L. and Faye, G., “General relativistic dynamics of compact binaries at the third post-Newtonian order”, Phys. Rev. D, 63, 062005, 1–43, (2001). [External LinkDOI].
15 Blanchet, L., Faye, G., Iyer, B.R. and Joguet, B., “Gravitational-wave inspiral of compact binariy systems to 7/2 post-Newtonian order”, Phys. Rev. D, 65, 061501(R), 1–5, (2002). [External LinkDOI].
16 Blanchet, L., Faye, G., Iyer, B.R. and Joguet, B., “Erratum: Gravitational-wave inspiral of compact binary systems to 7/2 post-Newtonian order”, Phys. Rev. D, 71, 129902(E), 1–2, (2005). [External LinkDOI].
17 Blanchet, L., Faye, G., Iyer, B.R. and Sinha, S., “The third post-Newtonian gravitational wave polarizations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits”, Class. Quantum Grav., 25, 165003, 1–44, (2008). [External LinkDOI].
18 Blanchet, L., Iyer, B.R. and Joguet, B., “Gravitational waves from inspiralling compact binaries: Energy loss to third post-Newtonian order”, Phys. Rev. D, 65, 064005, 1–41, (2002). [External LinkDOI].
19 Blanchet, L., Iyer, B.R. and Joguet, B., “Erratum: Gravitational waves from inspiralling compact binaries: Energy loss to third post-Newtonian order”, Phys. Rev. D, 71, 129903(E), 1–1, (2005). [External LinkDOI].
20 Breuer, R.A., Gravitational Perturbation Theory and Synchrotron Radiation, Lecture Notes in Physics,  44, (Springer, Berlin, 1975).
21 Chandrasekhar, S., “On the equations governing the perturbations of the Schwarzschild black hole”, Proc. R. Soc. London, Ser. A, 343, 289–298, (1975).
22 Chandrasekhar, S., The Mathematical Theory of Black Holes, The International Series of Monographs on Physics,  69, (Clarendon, Oxford, 1983). [External LinkGoogle Books].
23 Chrzanowski, P.L., “Vector potential and metric perturbations of a rotating black hole”, Phys. Rev. D, 11, 2042–2062, (1975). [External LinkDOI].
24 Cutler, C., Finn, L.S., Poisson, E. and Sussman, G.J., “Gravitational radiation from a particle in circular orbit around a black hole. II. Numerical results for the nonrotating case”, Phys. Rev. D, 47, 1511–1518, (1993). [External LinkDOI].
25 Damour, T. and Deruelle, N., “Lagrangien généralisé du système de deux masses ponctuelles, à l’approximation post-post-newtonienne de la relativité générale”, C. R. Acad. Sci. Ser. II, 293, 537–540, (1981).
26 Damour, T. and Deruelle, N., “Radiation reaction and angular momentum loss in small angle gravitational scattering”, Phys. Lett. A, 87, 81–84, (1981). [External LinkDOI].
27 Damour, T., Jaranowski, P. and Schäfer, G., “Dimensional regularization of the gravitational interaction of point masses”, Phys. Lett. B, 513, 147–155, (2001). [External LinkDOI].
28 de Andrade, V.C., Blanchet, L. and Faye, G., “Third post-Newtonian dynamics of compact binaries: Noetherian conserved quantities and equivalence between the harmonic-coordinate and ADM-Hamiltonian formalisms”, Class. Quantum Grav., 18, 753–778, (2001). [External LinkDOI].
29 Dixon, W.G., “Extended bodies in general relativity: Their description and motion”, in Ehlers, J., ed., Isolated Gravitating Systems in General Relativity (Sistemi gravitazionali isolati in relatività generale), Proceedings of the International School of Physics ‘Enrico Fermi’, Course 67, Varenna on Lake Como, Villa Monastero, Italy, 28 June – 10 July, 1976, pp. 156–219, (North-Holland, Amsterdam; New York, 1979).
30 Drasco, S., Flanagan, É.É. and Hughes, S. A., “Computing inspirals in Kerr in the adiabatic regime: I. The scalar case”, Class. Quantum Grav., 22, S801–S846, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0505075].
31 Drasco, S. and Hughes, S. A., “Gravitational wave snapshots of generic extreme mass ratio inspirals”, Phys. Rev. D, 73, 024027, 1–26, (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0509101].
32 Einstein, A., Infeld, L. and Hoffmann, B., “The Gravitational Equations and the Problem of Motion”, Ann. Math., 39, 65–100, (1938). [External LinkDOI].
33 Epstein, R. and Wagoner, R.V., “Post-Newtonian generation of gravitational waves”, Astrophys. J., 197, 717–723, (1975). [External LinkDOI].
34 Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F.G., eds., Higher Transcendental Functions, Vol. I, (Krieger, Malabar, FL, 1981).
35 Fackerell, E.D. and Crossman, R.G., “Spin-weighted angular spheroidal functions”, J. Math. Phys., 18, 1849–1854, (1977). [External LinkDOI].
36 Folkner, W.M. and Seidel, D.J., “Gravitational Wave Missions from LISA to Big Bang Observer”, AIAA Space 2005 Conference, Long Beach, CA, August 8, 2005, conference paper, (2005). Online version (accessed 10 August 2010):
External Linkhttp://hdl.handle.net/2014/37836.
37 Fujita, R., Gravitational waves from a particle orbiting a Kerr black hole, Ph.D. Thesis, (Osaka University, Toyonaka, 2006).
38 Fujita, R., Hikida, W. and Tagoshi, H., “An Efficient Numerical Method for Computing Gravitational Waves Induced by a Particle Moving on Eccentric Inclined Orbits around a Kerr Black Hole”, Prog. Theor. Phys., 121, 843–874, (2009). [External LinkDOI].
39 Fujita, R. and Iyer, B.R., “Spherical harmonic modes of 5.5 post-Newtonian gravitational wave polarisations and associated factorised resummed waveforms for a particle in circular orbit around a Schwarzschild black hole”, arXiv e-print, (2010). [External LinkarXiv:1005.2266].
40 Fujita, R. and Tagoshi, H., “New Numerical Methods to Evaluate Homogeneous Solutions of the Teukolsky Equation”, Prog. Theor. Phys., 112, 415–450, (2004). [External LinkDOI].
41 Fujita, R. and Tagoshi, H., “New Numerical Methods to Evaluate Homogeneous Solutions of the Teukolsky Equation. II – Solutions of the Continued Fraction Equation –”, Prog. Theor. Phys., 113, 1165–1182, (2005). [External LinkDOI].
42 Futamase, T., “Strong-field point-particle limit and the equations of motion in the binary pulsar”, Phys. Rev. D, 36, 321–329, (1987). [External LinkDOI].
43 Futamase, T. and Itoh, Y., “The Post-Newtonian Approximation for Relativistic Compact Binaries”, Living Rev. Relativity, 10, lrr-2007-2, (2007). URL (accessed 6 August 2010):
http://www.livingreviews.org/lrr-2007-2.
44 Futamase, T. and Schutz, B.F., “Newtonian and post-Newtonian approximation are asymptotic to general relativity”, Phys. Rev. D, 28, 2363–2372, (1983). [External LinkDOI].
45 Futamase, T. and Schutz, B.F., “Gravitational radiation and the validity of the far-zone quadrupole formula in the Newtonian limit of general relativity”, Phys. Rev. D, 32, 2557–2565, (1985). [External LinkDOI].
46 Gal’tsov, D.V., “Radiation reaction in the Kerr gravitational field”, J. Phys. A, 15, 3737–3749, (1982). [External LinkDOI].
47 Gal’tsov, D.V., Matiukhin, A.A. and Petukhov, V.I., “Relativistic corrections to the gravitational radiation of a binary system and the fine structure of the spectrum”, Phys. Lett. A, 77, 387–390, (1980). [External LinkDOI].
48 Ganz, K., Hikida, W., Nakano, H., Sago, N. and Tanaka, T., “Adiabatic Evolution of Three ‘Constants’ of Motion for Greatly Inclined Orbits in Kerr Spacetime”, Prog. Theor. Phys., 117, 1041–1066, (2007). [External LinkDOI].
49 Gautschi, W., “Computational Aspects of Three-Term Recurrence Relations”, SIAM Rev., 9, 24–82, (1967). [External LinkDOI].
50 “GEO600: The German-British Gravitational Wave Detector”, project homepage, MPI for Gravitational Physics (Albert Einstein Institute). URL (accessed 09 August 2010):
External Linkhttp://geo600.aei.mpg.de/.
51 Grishchuk, L.P. and Kopeikin, S.M., “The motion of a pair of gravitating bodies, including the radiation reaction force”, Sov. Astron. Lett., 9, 230–232, (1983).
52 Hikida, W., Jhingan, S., Nakano, H., Sago, N., Sasaki, M. and Tanaka, T., “A new analytical method for self-force regularization III – eccentric orbit –”, unknown status.
53 Hughes, S.A., Drasco, S., Flanagan, É.É. and Franklin, J., “Gravitational Radiation Reaction and Inspiral Waveforms in the Adiabatic Limit”, Phys. Rev. Lett., 94, 221101, 1–12, (2005). [External LinkDOI], [External LinkarXiv:gr-qc/0504015].
54 Itoh, Y., “Equation of motion for relativistic compact binaries with the strong field point particle limit: Third post-Newtonian order”, Phys. Rev. D, 69, 064018, 1–43, (2004). [External LinkDOI].
55 Itoh, Y., “Third-and-a-half order post-Newtonian equations of motion for relativistic compact binaries using the strong field point particle limit”, Phys. Rev. D, 80, 124003, 1–17, (2009). [External LinkDOI].
56 Itoh, Y. and Futamase, T., “New derivation of a third post-Newtonian equation of motion for relativistic compact binaries without ambiguity”, Phys. Rev. D, 68, 121501(R), 1–5, (2003). [External LinkDOI].
57 Itoh, Y., Futamase, T. and Asada, H., “Equation of motion for relativistic compact binaries with the strong field point particle limit: Formulation, the first post-Newtonian and multipole terms”, Phys. Rev. D, 62, 064002, 1–12, (2000). [External LinkDOI].
58 Itoh, Y., Futamase, T. and Asada, H., “Equation of motion for relativistic compact binaries with the strong field point particle limit: The second and half post-Newtonian order”, Phys. Rev. D, 63, 064038, 1–21, (2001). [External LinkDOI].
59 Jaranowski, P. and Schäfer, G., “Third post-Newtonian higher order ADM Hamilton dynamics for two-body point-mass systems”, Phys. Rev. D, 57, 7274–7291, (1998). [External LinkDOI].
60 Jaranowski, P. and Schäfer, G., “Binary black-hole problem at the third post-Newtonian approximation in the orbital motion: Static part”, Phys. Rev. D, 60, 124003, 1–7, (1999). [External LinkDOI].
61 Kidder, L.E., “Using full information when computing modes of post-Newtonian waveforms from inspiralling compact binaries in circular orbit”, Phys. Rev. D, 77, 044016, 1–15, (2008). [External LinkDOI], [External LinkarXiv:0710.0614].
62 Königsdörffer, C., Faye, G. and Schäfer, G., “Binary black-hole dynamics at the third-and-a-half post-Newtonian order in the ADM formalism”, Phys. Rev. D, 68, 044004, 1–19, (2003). [External LinkDOI].
63 Kopeikin, S.M., “General-relativistic equations of binary motion for extended bodies, with conservative corrections and radiation damping”, Sov. Astron., 29, 516–523, (1985).
64 Leaver, E.W., “Solutions to a generalized spheroidal wave equation: Teukolsky’s equations in general relativity, and the two-center problem in molecular quantum mechanics”, J. Math. Phys., 27, 1238–1265, (1986). [External LinkDOI].
65 “LIGO Laboratory Home Page”, project homepage, California Institute of Technology. URL (accessed 21 January 2003):
External Linkhttp://www.ligo.caltech.edu/.
66 “LISA Home Page (ESA)”, project homepage, European Space Agency. URL (accessed 30 September 2003):
External Linkhttp://sci.esa.int/home/lisa.
67 “LISA Home Page (NASA)”, project homepage, Jet Propulsion Laboratory/NASA. URL (accessed 21 January 2003):
External Linkhttp://lisa.jpl.nasa.gov/.
68 Mano, S., Suzuki, H. and Takasugi, E., “Analytic solutions of the Teukolsky equation and their low frequency expansions”, Prog. Theor. Phys., 95, 1079–1096, (1996). [External LinkDOI].
69 Mano, S. and Takasugi, E., “Analytic Solutions of the Teukolsky Equation and Their Properties”, Prog. Theor. Phys., 97, 213–232, (1997). [External LinkDOI].
70 Mino, Y., “Perturbative approach to an orbital evolution around a supermassive black hole”, Phys. Rev. D, 67, 084027, 1–17, (2003). [External LinkDOI].
71 Mino, Y., Sasaki, M., Shibata, M., Tagoshi, H. and Tanaka, T., “Black Hole Perturbation”, Prog. Theor. Phys. Suppl., 128, 1–121, (1997). [External LinkDOI].
72 Nakamura, T., Oohara, K. and Kojima, Y., “General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes”, Prog. Theor. Phys. Suppl., 90, 1–218, (1987). [External LinkDOI].
73 Narayan, R., Piran, T. and Shemi, A., “Neutron star and black hole binaries in the Galaxy”, Astrophys. J., 379, L17–L20, (1991). [External LinkDOI], [External LinkADS].
74 Newman, E.T. and Penrose, R., “An Approach to Gravitational Radiation by a Method of Spin Coefficients”, J. Math. Phys., 3, 566–578, (1962). [External LinkDOI], [External LinkADS].
75 Newman, E.T. and Penrose, R., “Errata: An approach to gravitational radiation by a method of spin-coefficients”, J. Math. Phys., 4, 998–998, (1963). [External LinkDOI].
76 Nissanke, S. and Blanchet, L., “Gravitational radiation reaction in the equations of motion of compact binaries to 3.5 post-Newtonian order”, Class. Quantum Grav., 22, 1007–1031, (2005). [External LinkDOI].
77 Ohashi, A., Tagoshi, H. and Sasaki, M., “Post-Newtonian Expansion of Gravitational Waves from a Compact Star Orbiting a Rotating Black Hole in Brans–Dicke Theory: Circular Orbit Case”, Prog. Theor. Phys., 96, 713–728, (1996). [External LinkDOI].
78 Pan, Y., Buonanno, A., Fujita, R., Racine, E. and Tagoshi, H., “Post-Newtonian factorized multipolar waveforms for spinning, non-precessing black-hole binaries”, arXiv e-print, (2010). [External LinkarXiv:1006.0431].
79 Papapetrou, A., “Spinning test-particles in general relativity. I”, Proc. R. Soc. London, Ser. A, 209, 248–258, (1951). [External LinkADS].
80 Pati, M.E. and Will, C.M., “Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations: Foundations”, Phys. Rev. D, 62, 124015, 1–28, (2000). [External LinkDOI], [External Linkgr-qc/0007087].
81 Pati, M.E. and Will, C.M., “Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. II. Two-body equations of motion to second post-Newtonian order, and radiation reaction to 3.5 post-Newtonian order”, Phys. Rev. D, 65, 104008, 1–21, (2002). [External LinkDOI], [External Linkgr-qc/0201001].
82 Phinney, E.S., “The rate of neutron star binary mergers in the universe: Minimal predictions for gravity wave detectors”, Astrophys. J. Lett., 380, L17–L21, (1991). [External LinkDOI].
83 Poisson, E., “Gravitational radiation from a particle in circular orbit around a black hole. I. Analytic results for the nonrotating case”, Phys. Rev. D, 47, 1497–1510, (1993). [External LinkDOI].
84 Poisson, E., “Gravitational radiation from a particle in circular orbit around a black hole. IV. Analytical results for the slowly rotating case”, Phys. Rev. D, 48, 1860–1863, (1993). [External LinkDOI].
85 Poisson, E. and Sasaki, M., “Gravitational radiation from a particle in circular orbit around a black hole. V. Black hole absorption and tail corrections”, Phys. Rev. D, 51, 5753–5767, (1995). [External LinkDOI].
86 Press, W.H. and Teukolsky, S.A., “Perturbations of a Rotating Black Hole. II. Dynamical Stability of the Kerr Metric”, Astrophys. J., 185, 649–673, (1973). [External LinkDOI], [External LinkADS].
87 Regge, T. and Wheeler, J.A., “Stability of a Schwarzschild Singularity”, Phys. Rev., 108, 1063–1069, (1957). [External LinkDOI], [External LinkADS].
88 Rowan, S. and Hough, J., “Gravitational Wave Detection by Interferometry (Ground and Space)”, Living Rev. Relativity, 3, lrr-2000-3, (2000). URL (accessed 21 January 2002):
http://www.livingreviews.org/lrr-2000-3.
89 Sago, N., Tanaka, T., Hikida, W., Ganz, K. and Nakano, H., “Adiabatic Evolution of Orbital Parameters in Kerr Spacetime”, Prog. Theor. Phys., 115, 873–907, (2006). [External LinkDOI].
90 Sago, N., Tanaka, T., Hikida, W. and Nakano, H., “Adiabatic Radiation Reaction to Orbits in Kerr Spacetime”, Prog. Theor. Phys., 114, 509–514, (2005). [External LinkDOI].
91 Sasaki, M., “Post-Newtonian Expansion of the Ingoing-Wave Regge–Wheeler Function”, Prog. Theor. Phys., 92, 17–36, (1994). [External LinkDOI].
92 Sasaki, M. and Nakamura, T., “A class of new perturbation equations for the Kerr geometry”, Phys. Lett. A, 89, 68–70, (1982). [External LinkDOI].
93 Sasaki, M. and Nakamura, T., “Gravitational Radiation from a Kerr Black Hole. I – Formulation and a Method for Numerical Analysis –”, Prog. Theor. Phys., 67, 1788–1809, (1982). [External LinkDOI].
94 Shibata, M., Sasaki, M., Tagoshi, H. and Tanaka, T., “Gravitational waves from a particle orbiting around a rotating black hole: Post-Newtonian expansion”, Phys. Rev. D, 51, 1646–1663, (1995). [External LinkDOI].
95 Tagoshi, H., “Post-Newtonian Expansion of Gravitational Waves from a Particle in Slightly eccentric Orbit around a Rotating Black Hole”, Prog. Theor. Phys., 93, 307–333, (1995). [External LinkDOI].
96 Tagoshi, H., “Errata: Post-Newtonian Expansion of Gravitational Waves from a Particle in Slightly eccentric Orbit around a Rotating Black Hole”, Prog. Theor. Phys., 118, 577–579, (2007). [External LinkDOI].
97 Tagoshi, H. and Fujita, R., in preparation.
98 Tagoshi, H., Mano, S. and Takasugi, E., “Post-Newtonian Expansion of Gravitational Waves from a Particle in Circular Orbits around a Rotating Black Hole – Effects of Black Hole Absorption –”, Prog. Theor. Phys., 98, 829–850, (1997). [External LinkDOI].
99 Tagoshi, H. and Nakamura, T., “Gravitational waves from a point particle in circular orbit around a black hole: Logarithmic terms in the post-Newtonian expansion”, Phys. Rev. D, 49, 4016–4022, (1994). [External LinkDOI].
100 Tagoshi, H. and Sasaki, M., “Post-Newtonian Expansion of Gravitational Waves from a Particle in Circular Orbit around a Schwarzschild Black Hole”, Prog. Theor. Phys., 92, 745–771, (1994). [External LinkDOI].
101 Tagoshi, H., Shibata, M., Tanaka, T. and Sasaki, M., “Post-Newtonian expansion of gravitational waves from a particle in circular orbits around a rotating black hole: Up to O(v8) beyond the quadrupole formula”, Phys. Rev. D, 54, 1439–1459, (1996). [External LinkDOI], [External Linkgr-qc/9603028].
102 Tagoshi, H., et al. (TAMA Collaboration), “First search for gravitational waves from inspiraling compact binaries using TAMA300 data”, Phys. Rev. D, 63, 062001, 1–5, (2001). [External LinkDOI].
103 “TAMA300: The 300m Laser Interferometer Gravitational Wave Antenna”, project homepage, National Astronomical Observatory. URL (accessed 21 January 2003):
External Linkhttp://tamago.mtk.nao.ac.jp/.
104 Tanaka, T., Mino, Y., Sasaki, M. and Shibata, M., “Gravitational waves from a spinning particle in circular orbits around a rotating black hole”, Phys. Rev. D, 54, 3762–3777, (1996). [External LinkDOI].
105 Tanaka, T., Tagoshi, H. and Sasaki, M., “Gravitational Waves by a Particle in Circular Orbits around a Schwarzschild Black Hole – 5.5 Post-Newtonian Formula –”, Prog. Theor. Phys., 96, 1087–1101, (1996). [External LinkDOI].
106 Teukolsky, S.A., “Perturbations of a Rotating Black Hole. I. Fundamental Equations for Gravitational, Electromagnetic, and Neutrino-Field Perturbations”, Astrophys. J., 185, 635–647, (1973). [External LinkDOI], [External LinkADS].
107 Teukolsky, S.A. and Press, W.H., “Perturbations of a rotating black hole. III. Interaction of the hole with gravitational and electromagnetic radiation”, Astrophys. J., 193, 443–461, (1974). [External LinkDOI].
108 “Virgo”, project homepage, INFN. URL (accessed 21 January 2003):
External Linkhttp://www.virgo.infn.it/.
109 Wagoner, R.V. and Will, C.M., “Post-Newtonian gravitational radiation from orbiting point masses”, Astrophys. J., 210, 764–775, (1976). [External LinkDOI].
110 Wald, R.M., “Construction of Solutions of Gravitational, Electromagnetic, or Other Perturbation Equations from Solutions of Decoupled Equations”, Phys. Rev. Lett., 41, 203–206, (1978). [External LinkDOI].
111 Will, C.M. and Wiseman, A.G., “Gravitational radiation from compact binary systems: Gravitational waveforms and energy loss to second post-Newtonian order”, Phys. Rev. D, 54, 4813–4848, (1996). [External LinkDOI].
112 Zerilli, F.J., “Gravitational Field of a Particle Falling in a Schwarzschild Geometry Analyzed in Tensor Harmonics”, Phys. Rev. D, 2, 2141– 2160, (1970). [External LinkDOI], [External LinkADS].