References

1 Abrahams, A.M., Anderson, A., Choquet-Bruhat, Y., and York Jr, J.W., “Einstein and Yang–Mills theories in hyperbolic form without gauge fixing”, Phys. Rev. Lett., 75, 3377–3381, (1996). [External Linkgr-qc/9506072].
2 Alcubierre, M., Brügmann, B., Holz, D.E., Takahashi, R., Brandt, S., Seidel, E., and Thornburg, J., “Symmetry without symmetry: Numerical simulation of axisymmetric systems using Cartesian grids”, Int. J. Mod. Phys. D, 10, 273–289, (2001). [External LinkDOI].
3 Andersson, L., and Chruściel, P.T., “On ‘hyperboloidal’ Cauchy data for vacuum Einstein equations and obstructions to smoothness of ‘null-infinity”’, Phys. Rev. Lett., 70(19), 2829–2832, (1993). [External LinkDOI], [External Linkgr-qc/9304019].
4 Andersson, L., and Chruściel, P.T., “On hyperboloidal Cauchy data for vacuum Einstein equations and obstructions to smoothness of scri”, Commun. Math. Phys., 161(3), 533–568, (1994). [External LinkDOI].
5 Andersson, L., Chruściel, P.T., and Friedrich, H., “On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einstein’s field equations”, Commun. Math. Phys., 149, 587–612, (1992). [External LinkDOI].
6 Arnowitt, R., Deser, S., and Misner, C.W., “The dynamics of general relativity”, in Witten, L., ed., Gravitation: An Introduction to Current Research, pp. 227–265, (Wiley, New York; London, 1962). [External LinkDOI], [External LinkADS], [External Linkgr-qc/0405109].
7 Ashtekar, A., “Asymptotic structure of the gravitational field at spatial infinity”, in Held, A., ed., General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, vol. 2, pp. 37–69, (Plenum Press, New York, 1980).
8 Ashtekar, A., “Asymptotic properties of isolated systems: recent developments”, in Bertotti, B., de Felice, F., and Pascolini, A., eds., General Relativity and Gravitation, Invited papers and discussion reports of the 10th International Conference on General Relativity and Gravitation, Padua, July 3 – 8, 1983, pp. 37–68, (Reidel; Kluwer, Dordrecht; Boston, 1984).
9 Ashtekar, A., Asymptotic Quantization, (Bibliopolis, Naples, Italy, 1987).
10 Ashtekar, A., Bombelli, L., and Reula, O.A., “The covariant phase space of asymptotically flat gravitational fields”, in Francaviglia, M., and Holm, D., eds., Mechanics, Analysis and Geometry: 200 Years after Lagrange, pp. 417–450, (North-Holland, Amsterdam; New York, 1991).
11 Ashtekar, A., and Hansen, R.O., “A unified treatment of null and spatial infinity. I. Universal structure, asymptotic symmetries and conserved quantities at spatial infinity”, J. Math. Phys., 19, 1542–1566, (1978). [External LinkDOI].
12 Ashtekar, A., and Romano, J.D., “Spatial infinity as a boundary of spacetime”, Class. Quantum Grav., 9, 1069–1100, (1992).
13 Ashtekar, A., and Streubel, M., “Symplectic geometry of radiative modes and conserved quantities at null infinity”, Proc. R. Soc. London, Ser. A, 376, 585–607, (1981).
14 Ashtekar, A., and Xanthopoulos, B.C., “Isometries compatible with the asymptotic flatness at null infinity: A complete description”, J. Math. Phys., 19, 2216–2222, (1978). [External LinkDOI].
15 Bartnik, R., “The spherically symmetric Einstein–Yang–Mills equations”, in Perjes, Z., ed., Relativity Today, Proceedings of the Third Hungarian Relativity Workshop, Tihany 1989, pp. 221–240, (Nova Science, Commack, 1992).
16 Bateman, H., “The transformations of the electrodynamical equations”, Proc. London Math. Soc. (2), 8, 223–264, (1910). [External LinkDOI].
17 Baumgarte, T.W., and Shapiro, S.L., “Numerical integration of Einstein’s field equations”, Phys. Rev. D, 59, 024007, 1–7, (1998). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9810065].
18 Beig, R., “Integration of Einstein’s equations near spatial infinity”, Proc. R. Soc. London, Ser. A, 391, 295–304, (1984).
19 Beig, R., and Schmidt, B.G., “Einstein’s equations near spatial infinity”, Commun. Math. Phys., 87, 65–80, (1982). [External LinkDOI].
20 Beig, R., and Simon, W., “Proof of a multipole conjecture due to Geroch”, Commun. Math. Phys., 78, 75–82, (1980). [External LinkDOI]. Related online version (cited on 3 June 2005):
External Linkhttp://projecteuclid.org/euclid.cmp/1103908502.
21 Bičák, J., Hoenselaers, C., and Schmidt, B.G., “The solutions of the Einstein equations for uniformly accelerated particles without nodal symmetries. II. Self-accelerating particles”, Proc. R. Soc. London, Ser. A, 390, 411–419, (1983).
22 Bičák, J., and Schmidt, B.G., “Asymptotically flat radiative space-times with boost-rotation symmetry”, Phys. Rev. D, 40, 1827–1853, (1989).
23 Bishop, N.T., “Some aspects of the characteristic initial value problem in numerical relativity”, in d’Inverno, R.A., ed., Approaches to Numerical Relativity, Proceedings of the International Workshop on Numerical Relativity, Southampton, December 1991, pp. 20–33, (Cambridge University Press, Cambridge; New York, 1992). [External LinkADS].
24 Bishop, N.T., Gómez, R., Isaacson, R.A., Lehner, L., Szilágyi, B., and Winicour, J., “Cauchy-characteristic matching”, in Bhawal, B., and Iyer, B.R., eds., Black Holes, Gravitational Radiation and the Universe: Essays in Honour of C.V. Vishveshwara, Fundamental Theories of Physics, pp. 383–408, (Kluwer, Dordrecht; Boston, 1999). [External LinkADS], [External Linkgr-qc/9801070].
25 Bonazzola, S., Gourgoulhon, E., and Marck, J.-A., “Spectral methods in general relativistic astrophysics”, J. Comput. Appl. Math., 109, 433–473, (1999). [External LinkDOI], [External LinkADS].
26 Bondi, H., Pirani, F.A.E., and Robinson, I., “Gravitational waves in general relativity III. Exact plane waves”, Proc. R. Soc. London, Ser. A, 251, 519–533, (1959).
27 Bondi, H., van der Burg, M.G.J., and Metzner, A.W.K., “Gravitational Waves in General Relativity. VII. Waves from Axi-Symmetric Isolated Systems”, Proc. R. Soc. London, Ser. A, 269, 21–52, (1962). [External LinkDOI], [External LinkADS].
28 Bonnor, W.B., and Rotenberg, M.A., “Gravitational waves from isolated sources”, Proc. R. Soc. London, Ser. A, 289, 247–274, (1966).
29 Choquet-Bruhat, Y., and York, J.W., “The Cauchy problem”, in Held, A., ed., General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, vol. 1, pp. 99–172, (Plenum, New York, 1980).
30 Christodoulou, D., “The formation of black holes and singularities in spherically symmetric gravitational collapse”, Commun. Pure Appl. Math., 44, 339–373, (1991). [External LinkDOI].
31 Christodoulou, D., and Klainerman, S., The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical Series, vol. 41, (Princeton University Press, Princeton, 1993).
32 Chruściel, P.T., and Delay, E., “Erratum: Existence of non-trivial, vacuum, asymptotically simple spacetimes”, Class. Quantum Grav., 19, 3389, (2002). [External LinkDOI].
33 Chruściel, P.T., and Delay, E., “Existence of non-trivial, vacuum, asymptotically simple space-times”, Class. Quantum Grav., 19, L71–L79, (2002). [External LinkDOI], [External Linkgr-qc/0203053].
34 Chruściel, P.T., MacCallum, M.A.H., and Singleton, D.B., “Gravitational waves in general relativity. XIV. Bondi expansions and the ‘polyhomogeneity’ of I”, Philos. Trans. R. Soc. London, Ser. A, 350(1692), 113–141, (1995). [External Linkgr-qc/9305021].
35 Corvino, J., “Scalar curvature deformation and a gluing construction for the Einstein constraint equations”, Commun. Math. Phys., 214, 137–189, (2000). [External LinkDOI].
36 Corvino, J., and Schoen, R.M., “On the asymptotics for the vacuum Einstein constraint equations”, J. Differ. Geom., 73, 185–217, (2006). [External Linkgr-qc/0301071].
37 Courant, R., Friedrichs, K.O., and Lewy, H., “Über die partiellen Differenzengleichungen der mathematischen Physik”, Math. Ann., 100, 32–74, (1928). [External LinkDOI].
38 Cunningham, E., “The principle of relativity in electrodynamics and an extension thereof”, Proc. London Math. Soc. (2), 8, 77–98, (1910). [External LinkDOI].
39 Cutler, C., and Wald, R.M., “Existence of radiating Einstein–Maxwell solutions which are C on all of I and I+”, Class. Quantum Grav., 6, 453–466, (1989).
40 Dixon, W.G., “Analysis of the Newman–Unti integration procedure for asymptotically flat space-times”, J. Math. Phys., 11, 1238–1248, (1970). [External LinkDOI].
41 Ehlers, J., and Sachs, R.K., “Erhaltungssätze für die Wirkung in elektromagnetischen und gravischen Strahlungsfeldern”, Z. Phys., 155, 498–506, (1959). [External LinkDOI].
42 Einstein, A., “Über Gravitationswellen”, Sitzungsber. K. Preuss. Akad. Wiss., 1918, 154–167, (1918).
43 Engquist, B., and Majda, A., “Absorbing Boundary Conditions for the Numerical Simulation of Waves”, Math. Comput., 31(139), 629–651, (1977). [External LinkDOI], [External LinkADS].
44 Frauendiener, J., “Geometric description of energy-momentum pseudotensors”, Class. Quantum Grav., 6, L237–L241, (1989). [External LinkDOI].
45 Frauendiener, J., “Numerical treatment of the hyperboloidal initial value problem for the vacuum Einstein equations. I. The conformal field equations”, Phys. Rev. D, 58, 064002, 1–10, (1998). [External Linkgr-qc/9712050].
46 Frauendiener, J., “Numerical treatment of the hyperboloidal initial value problem for the vacuum Einstein equations. II. The evolution equations”, Phys. Rev. D, 58, 064003, 1–18, (1998). [External Linkgr-qc/9712052].
47 Frauendiener, J., “Calculating initial data for the conformal Einstein equations by pseudo-spectral methods”, J. Comput. Appl. Math., 109, 475–491, (1999). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9806103].
48 Frauendiener, J., Conformal methods in numerical relativity, Habilitation, (Universität Tübingen, Tübingen, 1999).
49 Frauendiener, J., “Numerical treatment of the hyperboloidal initial value problem for the vacuum Einstein equations. III. On the determination of radiation”, Class. Quantum Grav., 17(2), 373–387, (2000). [External LinkDOI], [External Linkgr-qc/9808072].
50 Frauendiener, J., “Discretizations of axisymmetric systems”, Phys. Rev. D, 66, 104027, 1–11, (2002). [External Linkgr-qc/0207092].
51 Frauendiener, J., “Some aspects of the numerical treatment of the conformal field equations”, in Frauendiener, J., and Friedrich, H., eds., Conformal Structure of Spacetime: Geometry, Analysis, Numerics, Lecture Notes in Physics, vol. 604, pp. 261–282, (Springer, Berlin; New York, 2002).
52 Frauendiener, J., and Hein, M., “Numerical evolution of axisymmetric, isolated systems in general relativity”, Phys. Rev. D, 66, 124004, 1–10, (2002). [External Linkgr-qc/0207094].
53 Friedrich, H., “On the regular and the asymptotic characteristic initial value problem for Einstein’s vacuum field equations”, in Walker, M., ed., Proceedings of the Third Gregynog Relativity Workshop Gravitational Radiation Theory, Munich, 25–28 June 1979, vol. 204, (Max Planck Institute for Physics and Astrophysics, Munich, 1979).
54 Friedrich, H., “The Asymptotic Characteristic Initial Value Problem for Einstein’s Vacuum Field Equations as an Initial Value Problem for a First-Order Quasilinear Symmetric Hyperbolic System”, Proc. R. Soc. London, Ser. A, 378, 401–421, (1981). [External LinkDOI], [External LinkADS].
55 Friedrich, H., “On the regular and the asymptotic characteristic initial value problem for Einstein’s vacuum field equations”, Proc. R. Soc. London, Ser. A, 375, 169–184, (1981). [External LinkADS].
56 Friedrich, H., “On the existence of analytic null asymptotically flat solutions of Einstein’s field equations”, Proc. R. Soc. London, Ser. A, 381, 361–371, (1982).
57 Friedrich, H., “Cauchy problems for the conformal vacuum field equations in general relativity”, Commun. Math. Phys., 91, 445–472, (1983). [External LinkDOI], [External LinkADS].
58 Friedrich, H., “On the hyperbolicity of Einstein’s and other gauge field equations”, Commun. Math. Phys., 100, 525–543, (1985). [External LinkDOI].
59 Friedrich, H., “On Purely Radiative Space-Times”, Commun. Math. Phys., 103, 36–65, (1986). [External LinkDOI]. Related online version (cited on 03 June 2005):
External Linkhttp://projecteuclid.org/euclid.cmp/1104114624.
60 Friedrich, H., “On the Existence of n-Geodesically Complete or Future Complete Solutions of Einstein’s Field Equations with Smooth Asymptotic Structure”, Commun. Math. Phys., 107, 587–609, (1986). [External LinkDOI].
61 Friedrich, H., “On Static and Radiative Space-Times”, Commun. Math. Phys., 119, 51–73, (1988). [External LinkDOI]. Related online version (cited on 3 June 2005):
External Linkhttp://projecteuclid.org/euclid.cmp/1104162270.
62 Friedrich, H., “On the global existence and the asymptotic behavior of solutions to the Einstein–Maxwell–Yang–Mills equations”, J. Differ. Geom., 34, 275–345, (1991).
63 Friedrich, H., “Asymptotic structure of space-time”, in Janis, A.I., and Porter, J.R., eds., Recent Advances in General Relativity: Essays in Honor of Ted Newman, Papers from the Discussion Conference on Recent Advances in General Relativity, held at the University of Pittsburgh, May 3 – 5, 1990, Einstein Studies, vol. 4, pp. 146–181, (Birkhäuser, Boston, 1992).
64 Friedrich, H., “Einstein equations and conformal structure: Existence of anti-de Sitter-type spacetimes”, J. Geom. Phys., 17, 125–184, (1995). [External LinkDOI].
65 Friedrich, H., “Hyperbolic reductions for Einstein’s equations”, Class. Quantum Grav., 13, 1451–1469, (1996). [External LinkDOI], [External LinkADS].
66 Friedrich, H., “Einstein’s equation and conformal structure”, in Huggett, S.A., Mason, L.J., Tod, K.P., Tsou, S.S., and Woodhouse, N.M.J., eds., The Geometric Universe: Science, Geometry, and the Work of Roger Penrose, Proceedings of the Symposium ‘Geometric Issues in the Foundations of Science’, Oxford, 1996, pp. 81–98, (Oxford University Press, Oxford, U.K.; New York, 1998).
67 Friedrich, H., “Gravitational fields near space-like and null infinity”, J. Geom. Phys., 24, 83–163, (1998). [External LinkDOI].
68 Friedrich, H., “Conformal Einstein Evolution”, in Friedrich, H., and Frauendiener, J., eds., The Conformal Structure of Space-Time: Geometry, Analysis, Numerics, Lecture Notes in Physics, vol. 604, pp. 1–50, (Springer, Berlin; New York, 2002). [External Linkgr-qc/0209018], [External LinkGoogle Books].
69 Friedrich, H., “Conformal Geodesics on Vacuum Space-times”, Commun. Math. Phys., 235(3), 513–543, (2003). [External LinkDOI], [External Linkgr-qc/0201006].
70 Friedrich, H., “Radiative gravitational fields and asymptotically static or stationary initial data”, arXiv e-print, (April 2003). [External Linkgr-qc/0304003].
71 Friedrich, H., and Kánnár, J., “Bondi-type systems near space-like infinity and the calculation of the NP-constants”, J. Math. Phys., 41(4), 2195–2232, (2000). [External LinkDOI], [External Linkgr-qc/9910077].
72 Friedrich, H., and Nagy, G., “The initial boundary value problem for Einstein’s Field equations”, Commun. Math. Phys., 201(3), 619–655, (1999). [External LinkDOI].
73 Friedrich, H., and Schmidt, B.G., “Conformal geodesics in general relativity”, Proc. R. Soc. London, Ser. A, 414(1846), 171–195, (1987).
74 Fritelli, S., and Reula, O.A., “On the Newtonian limit of general relativity”, Commun. Math. Phys., 166, 221–235, (1994). [External LinkDOI].
75 Geroch, R., “Local characterization of singularities in general relativity”, J. Math. Phys., 9, 450–465, (1968). [External LinkDOI].
76 Geroch, R., “Multipole Moments. I. Flat Space”, J. Math. Phys., 11(6), 1955–1961, (1970).
77 Geroch, R., “Multipole Moments. II. Curved Space”, J. Math. Phys., 11, 2580–2588, (1970).
78 Geroch, R., “Space-time structure from a global point of view”, in Sachs, R.K., ed., General Relativity and Cosmology, Proceedings of the International School of Physics “Enrico Fermi”, Course 47, June 30 – July 12, 1969, pp. 71–103, (Academic Press, New York, 1971).
79 Geroch, R., “Asymptotic structure of space-time”, in Esposito, F.P., and Witten, L., eds., Asymptotic Structure of Spacetime, Proceedings of a Symposium on Asymptotic Structure of Space-Time (SOASST), held at the University of Cincinnati, Ohio, June 14 – 18, 1976, pp. 1–105, (Plenum Press, New York, 1977).
80 Geroch, R., Held, A., and Penrose, R., “A spacetime calculus based on pairs of null directions”, J. Math. Phys., 14, 874–881, (1973). [External LinkDOI].
81 Geroch, R., and Horowitz, G.T., “Asymptotically simple does not imply asymptotically Minkowskian”, Phys. Rev. Lett., 40, 203–206, (1978).
82 Geroch, R., and Winicour, J., “Linkages in general relativity”, J. Math. Phys., 22, 803–812, (1981). [External LinkDOI].
83 Glass, E.N., and Goldberg, J.N., “Newman–Penrose constants and their invariant transformations”, J. Math. Phys., 11(12), 3400–3412, (1970). [External LinkDOI].
84 Goldberg, J.N., “Invariant transformations and Newman–Penrose constants”, J. Math. Phys., 8(11), 2161–2166, (1967). [External LinkDOI].
85 Goldberg, J.N., “Invariant transformations, conservation laws, and energy-momentum”, in Held, A., ed., General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, vol. 1, pp. 469–489, (Plenum Press, New York, 1980).
86 Gustafsson, B., Kreiss, H.-O., and Oliger, J., Time Dependent Problems and Difference Methods, (Wiley, New York, 1995).
87 Hansen, R.O., “Multipole moments of stationary space-times”, J. Math. Phys., 15, 46–52, (1974). [External LinkDOI].
88 Hawking, S.W., and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, 1973). [External LinkGoogle Books].
89 Hübner, P., Numerische und analytische Untersuchungen von (singulären,) asymptotisch flachen Raumzeiten mit konformen Techniken, Ph.D. Thesis, (Ludwig-Maximilians-Universität, Munich, 1993).
90 Hübner, P., “Method for calculating the global structure of (singular) spacetimes”, Phys. Rev. D, 53(2), 701–721, (1994). [External Linkgr-qc/9409029].
91 Hübner, P., “General relativistic scalar-field models and asymptotic flatness”, Class. Quantum Grav., 12(3), 791–808, (1995). [External LinkDOI], [External Linkgr-qc/9408012].
92 Hübner, P., “Numerical approach to the global structure of space-time”, Helv. Phys. Acta, 69, 316–320, (1996).
93 Hübner, P., “More about vacuum spacetimes with toroidal null infinities”, Class. Quantum Grav., 15, L21–L25, (1998). [External LinkDOI].
94 Hübner, P., “How to avoid artificial boundaries in the numerical calculation of black hole space-times”, Class. Quantum Grav., 16(7), 2145–2164, (1999). [External Linkgr-qc/9804065].
95 Hübner, P., “A scheme to numerically evolve data for the conformal Einstein equation”, Class. Quantum Grav., 16(9), 2823–2843, (1999). [External Linkgr-qc/9903088].
96 Huggett, S.A., Mason, L.J., Tod, K.P., Tsou, S.S., and Woodhouse, N.M.J., eds., The Geometric Universe: Science, Geometry, and the Work of Roger Penrose, Proceedings of the Symposium ‘Geometric Issues in the Foundations of Science’, Oxford, 1996, (Oxford University Press, Oxford, U.K.; New York, 1998).
97 Hungerbühler, R., Lösung kugelsymmetrischer Systeme in der Allgemeinen Relativitätstheorie mit Pseudospektralmethoden, Diploma Thesis, (Universität Tübingen, Tübingen, 1997).
98 Husa, S., “Problems and Successes in the Numerical Approach to the Conformal Field Equations”, in Frauendiener, J., and Friedrich, H., eds., Conformal Structure of Spacetime: Geometry, Analysis, Numerics, Lecture Notes in Physics, vol. 604, pp. 239–259, (Springer, Berlin; New York, 2002). [External Linkgr-qc/0204043].
99 Husa, S., “Into Thin Air - Climbing a Smooth Route to Null Infinity”, Talk given at KITP Program ‘Gravitational Interaction of Compact Objects’, 05 June 2003, lecture notes, Kavli Institute for Theoretical Physics, (2003). URL (cited on 11 July 2003):
External Linkhttp://online.kitp.ucsb.edu/online/gravity03/husa/.
100 Husa, S., “Numerical relativity with the conformal field equations”, in Fernádez-Jambrina, L., and González-Romero, L.M., eds., Current Trends in Relativistic Astrophysics: Theoretical, Numerical, Observational, Proceedings of the 24th Spanish Relativity Meeting on Relativistic Astrophysics, Madrid, 2001, Lecture Notes in Physics, vol. 617, pp. 159–192, (Springer, Berlin; New York, 2003). [External LinkADS], [External Linkgr-qc/0204057].
101 Isenberg, J.A., and Park, J., “Asymptotically hyberbolic nonconstant mean curvature solutions of the Einstein constraint equations”, Class. Quantum Grav., 14, A189–A201, (1997). [External LinkDOI].
102 Jordan, P., Ehlers, J., and Sachs, R.K., Beiträge zur Theorie der reinen Gravitationsstrahlung, Akad. Wiss. Lit. Mainz, Abh. Math. Nat. Kl., (Akad. Wiss. Lit., Mainz, 1961).
103 Kánnár, J., “Hyperboloidal initial data for the vacuum Einstein equations with cosmological constant”, Class. Quantum Grav., 13(11), 3075–3084, (1996). [External LinkDOI].
104 Kánnár, J., “On the existence of 𝒞 solutions to the asymptotic characteristic initial value problem in general elativity”, Proc. R. Soc. London, Ser. A, 452, 945–952, (1996).
105 Kozameh, C.N., “Dynamics of null surfaces in general relativity”, in Dadhich, N., and Narlikar, J.V., eds., Gravitation and Relativity: At the Turn of the Millenium, Proceedings of the 15th International Conference on General Relativity and Gravitation (GR-15), held at IUCAA, Pune, India, December 16-21, 1997, pp. 139–152, (IUCAA, Pune, India, 1998).
106 Lichnerowicz, A., Théories Relativistes de la Gravitation et de l’Électromagnétisme: Relativité Générale et Théories Unitaires, (Masson, Paris, 1955).
107 Lichnerowicz, A., “Sur les ondes et radiations gravitationnelles”, C. R. Acad. Sci., 246, 893–896, (1958).
108 Marder, L., “Gravitational waves in general relativity I. Cylindrical waves”, Proc. R. Soc. London, Ser. A, 244, 524–537, (1958).
109 Marder, L., “Gravitational waves in general relativity II. The reflexion of cylindrical waves”, Proc. R. Soc. London, Ser. A, 246, 133–143, (1958).
110 Marder, L., “Gravitational waves in general relativity V. An exact spherical wave”, Proc. R. Soc. London, Ser. A, 261, 91–96, (1961).
111 McCarthy, P.J., “Representations of the Bondi–Metzner-Sachs group I. Determination of the representations”, Proc. R. Soc. London, Ser. A, 330, 517–535, (1972).
112 McCarthy, P.J., “Structure of the Bondi–Metzner–Sachs Group”, J. Math. Phys., 13, 1837–1842, (1972). [External LinkDOI], [External LinkADS].
113 McCarthy, P.J., “Representations of the Bondi–Metzner–Sachs group II. Properties and classification of the representations”, Proc. R. Soc. London, Ser. A, 333, 317–336, (1973).
114 McLennan, J.A., “Conformal invariance and conservation laws for relativistic wave equations for zero rest mass”, Nuovo Cimento, 3, 1360–1379, (1956).
115 Newman, E.T., “Heaven and Its Properties”, Gen. Relativ. Gravit., 7, 107–111, (1976). [External LinkDOI].
116 Newman, E.T., and Penrose, R., “An Approach to Gravitational Radiation by a Method of Spin Coefficients”, J. Math. Phys., 3, 566–578, (1962). [External LinkDOI], [External LinkADS]. Errata: J. Math. Phys. 4 (1963) 998.
117 Newman, E.T., and Penrose, R., “Note on the Bondi–Metzner–Sachs Group”, J. Math. Phys., 7, 863–870, (1966). [External LinkDOI], [External LinkADS].
118 Newman, E.T., and Penrose, R., “New Conservation Laws for Zero Rest-Mass Fields in Asymptotically Flat Space-Time”, Proc. R. Soc. London, Ser. A, 305, 175–204, (1968). [External LinkDOI], [External LinkADS].
119 Newman, E.T., and Tod, K.P., “Asymptotically flat space-times”, in Held, A., ed., General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, vol. 2, pp. 1–36, (Plenum Press, New York, 1980).
120 Newman, E.T., and Unti, T.W.J., “Behavior of Asymptotically Flat Empty Spaces”, J. Math. Phys., 3, 891–901, (1962). [External LinkDOI], [External LinkADS].
121 Newman, R.P.A.C., “The global structure of simple space-times”, Commun. Math. Phys., 123, 17–52, (1989). [External LinkDOI].
122 Penrose, R., “A generalized inverse for matrices”, Proc. Cambridge Philos. Soc., 51, 406–413, (1955). [External LinkDOI].
123 Penrose, R., “A spinor approach to general relativity”, Ann. Phys. (N.Y.), 10, 171–201, (1960). [External LinkDOI].
124 Penrose, R., “The light cone at infinity”, in Infeld, L., ed., Relativistic Theories of Gravitation, Asymptotic structure, null infinity, pp. 369–373, (Pergamon Press, Oxford, 1964).
125 Penrose, R., “Zero Rest-Mass Fields Including Gravitation: Asymptotic Behaviour”, Proc. R. Soc. London, Ser. A, 284, 159–203, (1965). [External LinkDOI], [External LinkADS].
126 Penrose, R., “Structure of space-time”, in DeWitt, C.M., and Wheeler, J.A., eds., Battelle Rencontres: 1967 Lectures in Mathematics and Physics, pp. 121–235, (W.A. Benjamin, New York, 1968).
127 Penrose, R., “Relativistic symmetry groups”, in Barut, A.O., ed., Group Theory in Non-Linear Problems, Proceedings of the NATO Advanced Study Institute, held in Istanbul, Turkey, August 7 – 18, 1972, NATO ASI Series C, vol. 7, pp. 1–58, (Reidel, Dordrecht; Boston, 1974).
128 Penrose, R., “Nonlinear gravitons and curved twistor theory”, Gen. Relativ. Gravit., 7, 31–52, (1976). [External LinkDOI].
129 Penrose, R., “Null hypersurface initial data for classical fields of arbitrary spin and for general relativity”, Gen. Relativ. Gravit., 12, 225–264, (1980). originally published in Bergmann, P.G., Aerospace Research Laboratories Report, 63-56.
130 Penrose, R., “Quasi-local mass and angular momentum in general relativity”, Proc. R. Soc. London, Ser. A, 381, 53–63, (1982).
131 Penrose, R., “The central programme of twistor theory”, Chaos Solitons Fractals, 10, 581–611, (1999). [External LinkDOI].
132 Penrose, R., “Some remarks on twistor theory”, in Harvey, A., ed., On Einstein’s Path: Essays in Honor of Engelbert Schucking, Proceedings of a symposium, held at the New York University, 12 – 13 December, 1996, pp. 353–366, (Springer, New York, 1999).
133 Penrose, R., and Rindler, W., Spinors and space-time, Vol. 1: Two-spinor calculus and relativistic fields, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 1984). [External LinkGoogle Books].
134 Penrose, R., and Rindler, W., Spinors and space-time, Vol. 2: Spinor and twistor methods in space-time geometry, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 1986). [External LinkGoogle Books].
135 Pirani, F.A.E., “Invariant Formulation of Gravitational Radiation Theory”, Phys. Rev., 105(3), 1089–1099, (1957). [External LinkDOI].
136 Pirani, F.A.E., “Gravitational waves in general relativity IV. The gravitational field of a fast-moving particle”, Proc. R. Soc. London, Ser. A, 252, 96–101, (1959).
137 Rendall, A.D., “Local and Global Existence Theorems for the Einstein Equations”, Living Rev. Relativity, 5, lrr-2002-6, (2000). URL (cited on 23 July 2003):
http://www.livingreviews.org/lrr-2002-6.
138 Robinson, D.C., “Conserved quantities of Newman and Penrose”, J. Math. Phys., 10(9), 1745–1753, (1969). [External LinkDOI].
139 Rosen, N., “Plane polarised waves in the general theory of relativity”, Phys. Z. Sowjetunion, 12, 366–372, (1937).
140 Sachs, R., and Bergmann, P.G., “Structure of Particles in Linearized Gravitational Theory”, Phys. Rev., 112, 674–680, (1958). [External LinkDOI].
141 Sachs, R.K., “Propagation laws for null and type III gravitational waves”, Z. Phys., 157, 462–477, (1960). [External LinkDOI].
142 Sachs, R.K., “Gravitational waves in general relativity VI. The outgoing radiation condition”, Proc. R. Soc. London, Ser. A, 264, 309–338, (1961).
143 Sachs, R.K., “Asymptotic Symmetries in Gravitational Theory”, Phys. Rev., 128, 2851–2864, (1962). [External LinkDOI], [External LinkADS].
144 Sachs, R.K., “Gravitational Waves in General Relativity. VIII. Waves in Asymptotically Flat Space-Time”, Proc. R. Soc. London, Ser. A, 270, 103–126, (1962). [External LinkDOI], [External LinkADS].
145 Sachs, R.K., “Characteristic initial value problem for gravitational theory”, in Infeld, L., ed., Relativistic Theories of Gravitation, pp. 93–105, (Pergamon Press, Oxford, 1964).
146 Sachs, R.K., “Gravitational radiation”, in DeWitt, C.M., and DeWitt, B., eds., Relativity, Groups and Topology, Lectures delivered at Les Houches during the 1963 session of the Summer School of Theoretical Physics, University of Grenoble, pp. 523–562, (Gordon and Breach, New York, 1964).
147 Schmidt, B.G., “A new definition of conformal and projective infinity of space-times”, Commun. Math. Phys., 36, 73–90, (1974). [External LinkDOI].
148 Schmidt, B.G., “Conformal bundle boundaries”, in Esposito, F.P., and Witten, L., eds., Asymptotic Structure of Space-Time, Proceedings of a Symposium on Asymptotic Structure of Space-Time (SOASST), held at the University of Cincinnati, Ohio, June 14 – 18, 1976, pp. 429–440, (Plenum Press, New York, 1977).
149 Schmidt, B.G., “Asymptotic structure of isolated systems”, in Ehlers, J., ed., Isolated Gravitating Systems in General Relativity (Sistemi gravitazionali isolati in relatività generale), Proceedings of the International School of Physics “Enrico Fermi”, Course 67, Varenna on Lake Como, Villa Monastero, 28 June - 10 July 1976, pp. 11–49, (North-Holland, Amsterdam; New York, 1978).
150 Schmidt, B.G., “On the uniqueness of boundaries at infinity of asymptotically flat spacetimes”, Class. Quantum Grav., 8, 1491–1504, (1991). [External LinkDOI].
151 Schmidt, B.G., “Vacuum space-times with toroidal null infinities”, Class. Quantum Grav., 13, 2811–2816, (1996). [External LinkDOI].
152 Simon, W., and Beig, R., “The multipole structure of stationary space-times”, J. Math. Phys., 24, 1163–1171, (1983). [External LinkDOI].
153 Sommers, P., “The geometry of the gravitational field at spacelike infinity”, J. Math. Phys., 19, 549–554, (1978). [External LinkDOI], [External LinkADS].
154 Streubel, M., “ ‘Conserved’ quantities for isolated gravitational systems”, Gen. Relativ. Gravit., 9, 551–561, (1978). [External LinkDOI].
155 “The Cactus Code”, project homepage, Max Planck Institute for Gravitational Physics. URL (cited on 11 July 2003):
External Linkhttp://www.cactuscode.org/.
156 Trautman, A., “Boundary Conditions at infinity for physical theories”, Bull. Acad. Polon. Sci. Cl. III, 6, 403–406, (1958).
157 Trautman, A., “Radiation and boundary conditions in the theory of gravitation”, Bull. Acad. Polon. Sci. Cl. III, 6, 407–412, (1958).
158 Trefethen, L.N., “Group velocity in finite difference schemes”, SIAM Rev., 24, 113–136, (1982). [External LinkDOI].
159 Trefethen, L.N., “Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations”, unknown status, (1996). Graduate textbook, privately published.
160 Valiente Kroon, J.A., “Conserved quantities for polyhomogeneous space-times”, Class. Quantum Grav., 15, 2479–2491, (1998). [External Linkgr-qc/9805094].
161 Valiente Kroon, J.A., “Logarithmic Newman–Penrose constants for arbitrary polyhomogeneous spacetimes”, Class. Quantum Grav., 16, 1653–1665, (1999). [External LinkDOI], [External Linkgr-qc/9812004].
162 Valiente Kroon, J.A., “A New Class of Obstructions to the Smoothness of Null Infinity”, Commun. Math. Phys., 244, 133–156, (2004). [External LinkDOI], [External Linkgr-qc/0211024].
163 Wald, R.M., General Relativity, (University of Chicago Press, Chicago, 1984).
164 Winicour, J., “Angular momentum in general relativity”, in Held, A., ed., General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, vol. 2, pp. 71–96, (Plenum Press, New York, 1980).
165 Winicour, J., “Logarithmic asymptotic flatness”, Found. Phys., 15, 605–616, (1985). [External LinkDOI].
166 Winicour, J., “Characteristic Evolution and Matching”, Living Rev. Relativity, 4(3), lrr-2001-3, (2001). URL (cited on 23 July 2003):
http://www.livingreviews.org/lrr-2001-3.