After 1915, Einstein first was busy with extracting mathematical and physical consequences from general relativity (Hamiltonian, exact solutions, the energy conservation law, cosmology, gravitational waves). Although he kept thinking about how to find elementary particles in a field theory [70] and looked closer into Weyl’s theory [72], at first he only reacted to the new ideas concerning unified field theory as advanced by others. The first such idea after Förster’s, of course, was Hermann Weyl’s gauge approach to gravitation and electromagnetism, unacceptable to Einstein and to Pauli for physical reasons [246, 292].

Next came Kaluza’s five-dimensional unification of gravitation and electromagnetism, and Eddington’s affine geometry.

4.1 Weyl’s theory

4.1.1 The geometry

4.1.2 Physics

4.1.3 Reactions to Weyl’s theory I: Einstein and Weyl

4.1.4 Reactions to Weyl’s theory II: Schouten, Pauli, Eddington, and others

4.1.5 Reactions to Weyl’s theory III: Further research

4.2 Kaluza’s five-dimensional unification

4.3 Eddington’s affine theory

4.3.1 Eddington’s paper

4.3.2 Einstein’s reaction and publications

4.3.3 Comments by Einstein’s colleagues

4.3.4 Overdetermination of partial differential equations and elementary particles

4.1.1 The geometry

4.1.2 Physics

4.1.3 Reactions to Weyl’s theory I: Einstein and Weyl

4.1.4 Reactions to Weyl’s theory II: Schouten, Pauli, Eddington, and others

4.1.5 Reactions to Weyl’s theory III: Further research

4.2 Kaluza’s five-dimensional unification

4.3 Eddington’s affine theory

4.3.1 Eddington’s paper

4.3.2 Einstein’s reaction and publications

4.3.3 Comments by Einstein’s colleagues

4.3.4 Overdetermination of partial differential equations and elementary particles

http://www.livingreviews.org/lrr-2004-2 |
© Max Planck Society and the author(s)
Problems/comments to |