Go to previous page Go up Go to next page

5 Noise Kernel and Point-Separation

In this section we explore further the properties of the noise kernel and the stress-energy bi-tensor. Similar to what was done for the stress-energy tensor it is desirable to relate the noise kernel defined at separated points to the Green function of a quantum field. We pointed out earlier [154Jump To The Next Citation Point] that field quantities defined at two separated points may possess important information which could be the starting point for probes into possible extended structures of spacetime. Of more practical concern is how one can define a finite quantity at one point or in some small region around it from the noise kernel defined at two separated points. When we refer to, say, the fluctuations of energy density in ordinary (point-wise) quantum field theory, we are in actuality asking such a question. This is essential for addressing fundamental issues like

Thus, for comparison with ordinary phenomena at low energy we need to find a reasonable prescription for obtaining a finite quantity of the noise kernel in the limit of ordinary (point-defined) quantum field theory. Regularization schemes used in obtaining a finite expression for the stress-energy tensor have been applied to the noise kernel2. This includes the simple normal ordering [194295] and smeared field operator [242Jump To The Next Citation Point] methods applied to the Minkowski and Casimir spaces, zeta-function [8718953] for spacetimes with an Euclidean section, applied to the Casimir effect [69] and the Einstein Universe [241Jump To The Next Citation Point], or the covariant point-separation methods applied to the Minkowski [242Jump To The Next Citation Point], hot flat space and the Schwarzschild spacetime [245Jump To The Next Citation Point]. There are differences and deliberations on whether it is meaningful to seek a point-wise expression for the noise kernel, and if so what is the correct way to proceed – e.g., regularization by a subtraction scheme or by integrating over a test-field. Intuitively the smear field method [242] may better preserve the integrity of the noise kernel as it provides a sampling of the two point function rather than using a subtraction scheme which alters its innate properties by forcing a nonlocal quantity into a local one. More investigation is needed to clarify these points, which bear on important issues like the validity of semiclassical gravity. We shall set a more modest goal here, to derive a general expression for the noise kernel for quantum fields in an arbitrary curved spacetime in terms of Green functions and leave the discussion of point-wise limit to a later date. For this purpose the covariant point-separation method which highlights the bi-tensor features, when used not as a regularization scheme, is perhaps closest to the spirit of stochastic gravity.

The task of finding a general expression of the noise-kernel for quantum fields in curved spacetimes was carried out by Phillips and Hu in two papers using the “modified” point separation scheme [281Jump To The Next Citation Point1283Jump To The Next Citation Point]. Their first paper [243Jump To The Next Citation Point] begins with a discussion of the procedures for dealing with the quantum stress tensor bi-operator at two separated points, and ends with a general expression of the noise kernel defined at separated points expressed as products of covariant derivatives up to the fourth order of the quantum field’s Green function. (The stress tensor involves up to two covariant derivatives.) This result holds for x ⁄= y without recourse to renormalization of the Green function, showing that N ′′(x,y) abc d is always finite for x ⁄= y (and off the light cone for massless theories). In particular, for a massless conformally coupled free scalar field on a four dimensional manifold, they computed the trace of the noise kernel at both points and found this double trace vanishes identically. This implies that there is no stochastic correction to the trace anomaly for massless conformal fields, in agreement with results arrived at in [44Jump To The Next Citation Point58Jump To The Next Citation Point208Jump To The Next Citation Point] (see also Section 3). In their second paper [245Jump To The Next Citation Point] a Gaussian approximation for the Green function (which is what limits the accuracy of the results) is used to derive finite expressions for two specific classes of spacetimes, ultrastatic spacetimes, such as the hot flat space, and the conformally- ultrastatic spacetimes, such as the Schwarzschild spacetime. Again, the validity of these results may depend on how we view the relevance and meaning of regularization. We will only report the result of their first paper here.

 5.1 Point separation
  5.1.1 n-tensors and end-point expansions
 5.2 Stress-energy bi-tensor operator and noise kernel
  5.2.1 Finiteness of the noise kernel
  5.2.2 Explicit form of the noise kernel
  5.2.3 Trace of the noise kernel

  Go to previous page Go up Go to next page