Go to previous page Go up Go to next page

9 Conclusion

Simple brane-world models of RS type provide a rich phenomenology for exploring some of the ideas that are emerging from M theory. The higher-dimensional degrees of freedom for the gravitational field, and the confinement of standard model fields to the visible brane, lead to a complex but fascinating interplay between gravity, particle physics, and geometry, that enlarges and enriches general relativity in the direction of a quantum gravity theory.

This review has attempted to show some of the key features of brane-world gravity from the perspective of astrophysics and cosmology, emphasizing a geometric approach to dynamics and perturbations. It has focused on 1-brane RS-type brane-worlds which have some attractive features:

The review has highlighted both the successes and the remaining open problems of the RS models and their generalizations. The open problems stem from a common basic difficulty, i.e., understanding and solving for the gravitational interaction between the bulk and the brane (which is nonlocal from the brane viewpoint). The key open problems of relevance to astrophysics and cosmology are

The RS-type models are the simplest brane-worlds with curved extra dimension that allow for a meaningful approach to astrophysics and cosmology. One also needs to consider generalizations that attempt to make these models more realistic, or that explore other aspects of higher-dimensional gravity which are not probed by these simple models. Two important types of generalization are the following:

In summary, brane-world gravity opens up exciting prospects for subjecting M theory ideas to the increasingly stringent tests provided by high-precision astronomical observations. At the same time, brane-world models provide a rich arena for probing the geometry and dynamics of the gravitational field and its interaction with matter.

  Go to previous page Go up Go to next page