References

1 Abramowicz, M.A., “Centrifugal force: a few surprises”, Mon. Not. R. Astron. Soc., 245, 733–746, (1990).
2 Abramowicz, M.A., “Relativity of inwards and outwards: an example”, Mon. Not. R. Astron. Soc., 256, 710–718, (1992).
3 Abramowicz, M.A., Bengtsson, I., Karas, V., and Rosquist, K., “Poincaré ball embeddings of the optical geometry”, Class. Quantum Grav., 19, 3963–3976, (2002). [External Linkgr-qc/0206027].
4 Abramowicz, M.A., Carter, B., and Lasota, J.-P., “Optical reference geometry for stationary and static dynamics”, Gen. Relativ. Gravit., 20, 1172–1183, (1988).
5 Abramowicz, M.A., and Lasota, J.-P., “A note on a paradoxical property of the Schwarzschild solution”, Acta Phys. Pol., B5, 327–329, (1974).
6 Abramowicz, M.A., and Prasanna, A.R., “Centrifugal force reversal near a Schwarzschild black hole”, Mon. Not. R. Astron. Soc., 245, 720–728, (1990).
7 Alsing, P.M., “The optical-mechanical analogy for stationary metrics in general relativity”, Am. J. Phys., 66, 779–790, (1998).
8 Ames, W.L., and Thorne, K.S., “The optical appearance of a star that is collapsing through its gravitational radius”, Astrophys. J., 151, 659–670, (1968).
9 Anderson, M.R., “Gravitational lensing by curved cosmic strings”, in Kochanek, C.S., and Hewitt, J.N., eds., Astrophysical Applications of Gravitational Lensing, Proceedings of the 173rd Symposium of the International Astronomical Union, held in Melbourne, Australia, 9 – 14 July 1995, IAU Symposia, vol. 173, pp. 377–378, (Kluwer, Dordrecht, 1996).
10 Ansorg, M., “Timelike geodesic motions within the general relativistic gravitational field of the rigidly rotating disk of dust”, J. Math. Phys., 39, 5984–6000, (1998).
11 Arnold, V.I., Gusein-Zade, S.M., and Varchenko, A.N., Singularities of Differentiable Maps. Vol. 1: The Classification of Critical Points, Caustics and Wave Fronts, Monographs in Mathematics, vol. 82, (Birkhäuser, Boston, 1985).
12 Asaoka, I., “X-ray spectra at infinity from a relativistic accretion disk around a Kerr black hole”, Publ. Astron. Soc. Japan, 41, 763–778, (1989).
13 Atkinson, R.d., “On light tracks near a very massive star”, Astron. J., 70, 517–523, (1965).
14 Bao, G., Hadrava, P., and Ostgaard, E., “Emission-line profiles from a relativistic accretion disk and the role of its multiple images”, Astrophys. J., 435, 55–65, (1994).
15 Bao, G., Hadrava, P., and Ostgaard, E., “Multiple images and light curves of an emitting source on a relativistic eccentric orbit around a black hole”, Astrophys. J., 425, 63–71, (1994).
16 Bardeen, J.M., “Timelike and null geodesics in the Kerr metric”, in DeWitt, C., and DeWitt, B.S., eds., Black Holes, Based on lectures given at the 23rd session of the Summer School of Les Houches, 1972, pp. 215–239, (Gordon and Breach, New York, 1973).
17 Bardeen, J.M., and Cunningham, C.T., “The optical appearance of a star orbiting an extreme Kerr black hole”, Astrophys. J., 183, 237–264, (1973).
18 Bardeen, J.M., and Wagoner, R.V., “Uniformly rotating disks in general relativity”, Astrophys. J. Lett., 158, L65–L69, (1969).
19 Bardeen, J.M., and Wagoner, R.V., “Relativistic Disks. I. Uniform Rotation”, Astrophys. J., 167(3), 359–423, (1971).
20 Barraco, D., Kozameh, C.N., Newman, E.T., and Tod, P., “Geodesic Deviation and Minikowski Space”, Gen. Relativ. Gravit., 22, 1009–1019, (1990).
21 Barriola, M., and Vilenkin, A., “Gravitational field of a global monopole”, Phys. Rev. Lett., 63, 341–343, (1989).
22 Bartelmann, M., and Schneider, P., “Weak gravitational lensing”, Phys. Rep., 340, 291–472, (2001). [External Linkastro-ph/9912508].
23 Bażański, S.L., “Some properties of light propagation in relativity”, in Rembieliński, J., ed., Particles, Fields, and Gravitation, AIP Conference Proceedings, vol. 453, pp. 421–430, (American Institute of Physics, Woodbury, 1998).
24 Bażański, S.L., and Jaranowski, P., “Geodesic deviation in the Schwarzschild space-time”, J. Math. Phys., 30, 1794–1803, (1989).
25 Beem, J., Ehrlich, P., and Easley, K., Global Lorentzian Geometry, Monographs and Textbooks in Pure and Applied Mathematics, vol. 202, (Dekker, New York, 1996), 2nd edition.
26 Bernal, A.N., and Sánchez, M., “On smooth Cauchy hypersurfaces and Geroch’s splitting theorem”, Commun. Math. Phys., 243, 461–470, (2003). [External Linkgr-qc/0306108].
27 Bernal, A.N., and Sánchez, M., “Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes”, arXiv e-print, (2004). [External Linkgr-qc/0401112].
28 Berry, M.V., and Upstill, C., “Catastrophe optics: Morphologies of caustics and their diffraction patterns”, Progress in Optics, vol. XVII, pp. 257–346, (North-Holland, Amsterdam, 1980).
29 Bezerra, V.B., “Gravitational analogue of the Aharonov–Bohm effect in four and three dimensions”, Phys. Rev. D, 35, 2031–2033, (1987).
30 Bilić, N., Nikolić, H., and Viollier, R.D., “Fermion stars as gravitational lenses”, Astrophys. J., 537, 909–915, (2000). [External Linkastro-ph/9912381].
31 Birch, P., “Is the universe rotating?”, Nature, 298, 451–454, (1982).
32 Blake, C., and Wall, J., “A velocity dipole in the distribution of radio galaxies”, Nature, 416, 150–152, (2002). [External Linkastro-ph/0203385].
33 Blandford, R.D., “The future of gravitational optics”, Publ. Astron. Soc. Pac., 113, 1309–1311, (2001). [External Linkastro-ph/0110392].
34 Blandford, R.D., and Narayan, R., “Fermat’s principle, caustics, and the classification of gravitational lens images”, Astrophys. J., 310, 568–582, (1986). [External LinkADS].
35 Born, M., and Wolf, E., Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, (Cambridge University Press, Cambridge, 2002).
36 Boyer, R.H., and Lindquist, R.W., “Maximal analytic extension of the Kerr metric”, J. Math. Phys., 8, 265–281, (1967).
37 Bozza, V., “Gravitational lensing in the strong field limit”, Phys. Rev. D, 66, 103001, (2002). [External Linkgr-qc/0208075].
38 Bozza, V., “Quasiequatorial gravitational lensing by spinning black holes in the strong field limit”, Phys. Rev. D, 67, 103006, (2003). [External Linkgr-qc/0210109].
39 Bozza, V., Capozziello, S., Iovane, G., and Scarpetta, G., “Strong field limit of black hole gravitational lensing”, Gen. Relativ. Gravit., 33, 1535–1548, (2001). [External Linkgr-qc/0102068].
40 Bozza, V., and Mancini, L., “Time delay in black hole gravitational lensing as a distance estimator”, Gen. Relativ. Gravit., 36, 435–450, (2004). [External Linkgr-qc/0305007].
41 Brill, D., “A simple derivation of the general redshift formula”, in Farnsworth, D., Fink, J., Porter, J., and Thompson, A., eds., Methods of local and global differential geometry in general relativity, Proceedings of the Regional Conference on Relativity held at the University of Pittsburgh, Pittsburgh, Pennsylvania, July 13 – 17, 1970, Lecture Notes in Physics, vol. 14, pp. 45–47, (Springer, Berlin; New York, 1972).
42 Brill, D., “Observational contacts of general relativity”, in Israel, W., ed., Relativity, Astrophysics, and Cosmology, Proceedings of the Summer School held 14 – 26 August 1972 at the Banff Centre, Banff, Alberta, Astrophysics and Space Science Library, vol. 38, pp. 127–152, (Reidel, Dordrecht; Boston, 1973).
43 Brinkmann, H.W., “Einstein spaces which are mapped conformally on each other”, Math. Ann., 94, 119–145, (1925).
44 Bromley, B.C., Melia, F., and Liu, S., “Polarimetric Imaging of the Massive Black Hole at the Galactic Center”, Astrophys. J. Lett., 555, L83–L86, (2001). [External Linkastro-ph/0106180].
45 Bruckman, W., and Esteban, E.P., “An alternative calculation of light bending and time delay by a gravitational field”, Am. J. Phys., 61, 750–754, (1993).
46 Budic, R., and Sachs, R.K., “Scalar time functions: differentiability”, in Cahen, M., and Flato, M., eds., Differential Geometry and Relativity: A volume in honour of André Lichnerowicz on his 60th birthday, pp. 215–224, (Reidel, Dordrecht; Boston, 1976).
47 Calvani, M., and de Felice, F., “Vortical null orbits, repulsive barriers, energy confinement in Kerr metric”, Gen. Relativ. Gravit., 9, 889–902, (1978).
48 Calvani, M., de Felice, F., and Nobili, L., “Photon trajectories in the Kerr–Newman metric”, J. Phys. A, 13, 3213–3219, (1980).
49 Calvani, M., Nobili, L., and de Felice, F., “Are naked singularities really visible?”, Lett. Nuovo Cimento, 23, 539–542, (1978).
50 Calvani, M., and Turolla, R., “Complete description of photon trajectories in the Kerr–Newman space-time”, J. Phys. A, 14, 1931–1942, (1981).
51 Candela, A.M., Flores, J.L., and Sánchez, M., “On general plane fronted waves. Geodesics”, Gen. Relativ. Gravit., 35, 631–649, (2003).
52 Carathéodory, C., Calculus of variations and partial differential equations of the first order, (Chelsea Publishing, New York, 1982), 2nd edition.
53 Carter, B., “Global structure of the Kerr family of gravitational fields”, Phys. Rev., 174, 1559–1571, (1968).
54 Chandrasekhar, S., The Mathematical Theory of Black Holes, The International Series of Monographs on Physics, vol. 69, (Clarendon, Oxford, 1983).
55 Chetouani, L., and Clément, G., “Geometrical optics in the Ellis geometry”, Gen. Relativ. Gravit., 16, 111–119, (1984).
56 Chrobok, T., and Perlick, V., “Classification of image distortions in terms of Petrov types”, Class. Quantum Grav., 18, 3059–3079, (2001). [External Linkgr-qc/0012088].
57 Chruściel, P.T., and Galloway, G.J., “Horizons Non-Differentiable on a Dense Set”, Commun. Math. Phys., 193, 449–470, (1998).
58 Clarke, C.J.S., Ellis, G.F.R., and Vickers, J.A., “The large-scale bending of cosmic strings”, Class. Quantum Grav., 7, 1–14, (1990).
59 Claudel, C.-M., Virbhadra, K.S., and Ellis, G.F.R., “The geometry of photon surfaces”, J. Math. Phys., 42, 818–838, (2001). [External Linkgr-qc/0005050].
60 Clément, G., “Stationary solutions in three-dimensional general relativity”, Int. J. Theor. Phys., 24, 267–275, (1985).
61 Connors, P.A., and Stark, R.F., “Observable gravitational effects on polarised radiation coming from near a black hole”, Nature, 269, 128–129, (1977).
62 Cowling, S.A., “Triangulation lines in stationary space-times with axial symmetry”, Astrophys. Space Sci., 95, 79–85, (1983).
63 Cowling, S.A., “Gravitational light deflection in the Solar System”, Mon. Not. R. Astron. Soc., 209, 415–427, (1984).
64 Cramer, J.G., Forward, R.L., Morris, M.S., Visser, M., Benford, G., and Landis, G., “Natural wormholes as gravitational lenses”, Phys. Rev. D, 51, 3117–3120, (1996). [External Linkastro-ph/9409051].
65 Cunningham, C.T., “The effects of redshifts and focusing on the spectrum of an accretion disk around a Kerr black hole”, Astrophys. J., 202, 788–802, (1975).
66 Cunningham, C.T., “Optical appearance of distant objects to observers near and inside a Schwarzschild black hole”, Phys. Rev. D, 12, 323–328, (1975).
67 Cunningham, C.T., and Bardeen, J.M., “The optical appearance of a star orbiting an extreme Kerr black hole”, Astrophys. J. Lett., 173, L137–L142, (1972).
68 Dabrowski, M.P., and Osarczuk, J., “Gravitational lensing properties of the Reissner–Nordström type neutron star”, in Kayser, R., Schramm, T., and Nieser, L., eds., Gravitational Lenses, Proceedings of a conference held in Hamburg, Germany, 9 – 13 September 1991, Lecture Notes in Physics, vol. 406, p. 366, (Springer, Berlin; New York, 1992).
69 Dabrowski, M.P., and Osarczuk, J., “Light curves of relativistic charged neutron star”, Astrophys. Space Sci., 229, 139–155, (1995).
70 Dabrowski, M.P., and Schunck, F.E., “Boson stars as gravitational lenses”, Astrophys. J., 535, 316–324, (2000). [External Linkastro-ph/9807039].
71 Dabrowski, M.P., and Stelmach, J., “A redshift-magnitude formula for the universe with cosmological constant and radiation pressure”, Astron. J., 92, 1272–1277, (1986).
72 Darwin, C.G., “The gravity field of a particle”, Proc. R. Soc. London, Ser. A, 249, 180–194, (1958).
73 Darwin, C.G., “The gravity field of a particle. II”, Proc. R. Soc. London, Ser. A, 263, 39–50, (1961).
74 Dautcourt, G., “Spacetimes admitting a universal redshift function”, Astron. Nachr., 308, 293–298, (1987).
75 de Felice, F., Nobili, L., and Calvani, M., “Blackhole physics: some effects of gravity on the radiation emission”, Astron. Astrophys., 30, 111–118, (1974).
76 De Paolis, F., Geralico, A., Ingrosso, G., and Nucita, A.A., “The black hole at the galactic center as a possible retro-lens for the S2 orbiting star”, Astron. Astrophys., 409, 809–812, (2003). [External Linkastro-ph/0307493].
77 Deser, S., Jackiw, R., and ’t Hooft, G., “Three-dimensional Einstein gravity: Dynamics of flat space”, Ann. Phys. (N.Y.), 152, 220–235, (1984).
78 Dold, A., Lectures on Algebraic Topology, Grundlehren der mathematischen Wissenschaften, vol. 20, (Springer, Berlin; New York, 1980), 2nd edition.
79 Dowker, J.S., and Kennedy, G., “Finite temperature and boundary effects in static space-times”, J. Phys. A, 11, 895–920, (1978).
80 Droste, J., “The field of a single centre in Einstein’s theory of gravitation, and the motion of a particle in that field”, Proc. K. Ned. Akad. Wetensch., 19, 197, (1916).
81 Dultzin-Hacyan, D., and Hacyan, S., “Comments on the optical appearance of white holes”, Rev. Mex. Astron. Astrof., 2, 263–268, (1977).
82 Durrer, R., Gauge invariant cosmological perturbation theory. A general study and its application to the texture scenario of structure formation, (Gordon and Breach, Lausanne, 1994). [External Linkastro-ph/9311041].
83 Dwivedi, I.H., “Photon redshift and the appearance of a naked singularity”, Phys. Rev. D, 58, 064004, (1998).
84 Dwivedi, I.H., and Kantowski, R., “The luminosity of a collapsing star”, in Farnsworth, D., Fink, J., Porter, J., and Thompson, A., eds., Methods of Local and Global Differential Geometry in General Relativity, Proceedings of the Regional Conference on Relativity held at the University of Pittsburgh, Pittsburgh, Pennsylvania, July 13 – 17, 1970, Lecture Notes in Physics, vol. 14, pp. 126–130, (Springer, Berlin; New York, 1972).
85 Dyer, C.C., “Optical scalars and the spherical gravitational lens”, Mon. Not. R. Astron. Soc., 180, 231–242, (1977).
86 Dyer, C.C., and Roeder, R.C., “The distance-redshift relation for universes with no intergalactic medium”, Astrophys. J. Lett., 174, L115–L117, (1972).
87 Dyer, C.C., and Roeder, R.C., “Distance-redshift relations for universes with some intergalactic medium”, Astrophys. J. Lett., 180, L31–L34, (1973). [External LinkADS].
88 Ehlers, J., “Zum Übergang von der Wellenoptik zur geometrischen Optik in der allgemeinen Relativitätstheorie”, Z. Naturforsch., 22a, 1328–1323, (1967).
89 Ehlers, J., “Survey of general relativity theory”, in Israel, W., ed., Relativity, Astrophysics, and Cosmology, Proceedings of the summer school held 14 – 26 August 1972 at the Banff Centre, Banff, Alberta, Atrophysics and Space Science Library, vol. 38, pp. 1–125, (Reidel, Dordrecht; Boston, 1973).
90 Ehlers, J., “Foundations of gravitational lens theory. (Geometry of light cones)”, Ann. Phys. (Leipzig), 9, 307–320, (2000).
91 Ehlers, J., Frittelli, S., and Newman, E.T., “Gravitational lensing from a spacetime perspective”, in Ashtekar, A., Cohen, R., Howard, D., Renn, J., Sarkar, S., and Shimony, A., eds., Revisiting the foundations of relativistic physics: Festschrift in honor of John Stachel, Boston Studies in the Philosophy of Science, vol. 234, (Kluwer, Dordrecht; Boston, 2003).
92 Ehlers, J., and Kundt, W., “Exact solutions of gravitational field equations”, in Witten, L., ed., Gravitation: An Introduction to Current Research, pp. 49–101, (Wiley, New York, 1962).
93 Ehlers, J., and Newman, E.T., “The theory of caustics and wave front singularities with physical applications”, J. Math. Phys., 41, 3344–3378, (2000). [External Linkgr-qc/9906065].
94 Ehrlich, P., and Emch, G., “Gravitational waves and causality”, Rev. Math. Phys., 4, 163–221, (1992).
95 Ehrlich, P., and Emch, G., “Geodesic and causal behavior of gravitational plane waves: astigmatic conjugacy”, in Greene, R., and Yau, S.T., eds., Differential Geometry, Pt. 2: Geometry in Mathematical Physics and Related Topics, Proceedings of the Summer Research Institute on Differential Geometry, held at the University of California, Los Angeles, July 8 – 28, 1990, Proceedings of Symposia in Pure Mathematics, vol. 54, pp. 203–209, (American Mathematical Society, Providence, 1993).
96 Eiroa, E.F., Romero, G.E., and Torres, D.F., “Reissner–Nordström black hole lensing”, Phys. Rev. D, 66, 024010, (2002). [External Linkgr-qc/0203049].
97 Ellis, G.F.R., “Relativistic cosmology”, in Sachs, R.K., ed., General Relativity and Cosmology, Proceedings of the 47th International School of Physics “Enrico Fermi”, Varena, Italy, 30th June – 12 July 1969, pp. 104–182, (Academic Press, New York, 1971).
98 Ellis, G.F.R., “Limits to verification in cosmology”, Ann. N.Y. Acad. Sci., 336, 130–160, (1980).
99 Ellis, G.F.R., Bassett, B.A.C.C., and Dunsby, P.K.S., “Lensing and caustic effects on cosmological distances”, Class. Quantum Grav., 15, 2345–2361, (1998). [External Linkgr-qc/9801092].
100 Ellis, G.F.R., Nel, S.D., Maartens, R., Stoeger, W.R., and Whitman, A.P., “Ideal observational cosmology”, Phys. Rep., 124, 315–417, (1985).
101 Ellis, G.F.R., and van Elst, H., “Deviation of geodesics in FLRW spacetime geometries”, in Harvey, A., ed., On Einstein’s path. Essays in honor of Engelbert Schücking, p. 203, (Springer, New York, 1999). [External Linkgr-qc/9709060].
102 Ellis, H.G., “Ether flow through a drainhole: A particle model in general relativity”, J. Math. Phys., 14, 104–118, (1973).
103 Etherington, I.M.H., “On the definition of distance in general relativity”, Philos. Mag. and J. of Science, 15, 761–773, (1933).
104 Evans, J., Islam, A., and Nandi, K.K., “The optical-mechanical analogy in general relativity: Exact Newtonian forms for the equation of motion of particles and photons”, Gen. Relativ. Gravit., 28, 413–439, (1996).
105 Evans, J., Nandi, K.K., and Islam, A., “The optical-mechanical analogy in general relativity: New methods for the paths of light and of the planets”, Am. J. Phys., 64, 1404–1415, (1006).
106 Falcke, H., and Hehl, F.W., eds., The Galactic Black Hole: Lectures on General Relativity and Astrophysics, DPG Summer School, Bad Honnef, Germany, 26 – 31 August 2001, Series in High Energy Physics, Cosmology and Gravitation, (IoP Publishing, Bristol, 2003).
107 Falcke, H., Melia, F., and Agol, E., “Viewing the Shadow of the Black Hole at the Galactic Center”, Astrophys. J. Lett., 528, L13–L16, (2000). [External LinkDOI], [External LinkADS], [External Linkastro-ph/9912263].
108 Fanton, C., Calvani, M., de Felice, F., and Cadez, A., “Detecting accretion disks in active galactic nuclei”, Publ. Astron. Soc. Japan, 49, 159–169, (1997).
109 Faraoni, V., “Nonstationary gravitational lenses and the Fermat principle”, Astrophys. J., 398, 425–428, (1992). [External Linkastro-ph/9205001].
110 Faraoni, V., “Multiple imaging by gravitational waves”, Int. J. Mod. Phys. D, 7, 409–429, (1998). [External Linkastro-ph/9707236].
111 Faulkner, J., Hoyle, F., and Narlikar, J.V., “On the behavior of radiation near massive bodies.”, Astrophys. J., 140, 1100–1105, (1964).
112 Federer, H., Geometric measure theory, Grundlehren der mathematischen Wissenschaften, vol. 153, (Springer, Berlin; New York, 1969).
113 Flamm, L., “Beiträge zur Einsteinschen Gravitationstheorie”, Phys. Z., 17, 448–453, (1916).
114 Ford, L.H., and Vilenkin, A., “A gravitational analogue of the Aharonov–Bohm effect”, J. Phys. A, 14, 2353–2357, (1981).
115 Frankel, T., Gravitational Curvature: An Introduction to Einstein’s Theory, (Freeman, San Francisco, 1979).
116 Frauendiener, J., “Conformal infinity”, Living Rev. Relativity, 3, lrr-2000-4, (2000). URL (cited on 30 October 2003):
http://www.livingreviews.org/lrr-2000-4.
117 Friedrich, H., and Stewart, J.M., “Characteristic Initial Data and Wavefront Singularities in General Relativity”, Proc. R. Soc. London, Ser. A, 385, 345–371, (1983). [External LinkDOI], [External LinkADS].
118 Frittelli, S., Kling, T.P., and Newman, E.T., “Spacetime perspective of Schwarzschild lensing”, Phys. Rev. D, 61, 064021, (2000). [External Linkgr-qc/0001037].
119 Frittelli, S., Kling, T.P., and Newman, E.T., “Image distortion from optical scalars in nonperturbative gravitational lensing”, Phys. Rev. D, 63, 023007, (2001). [External Linkgr-qc/0011108].
120 Frittelli, S., Kling, T.P., and Newman, E.T., “Image distortion in nonperturbative gravitational lensing”, Phys. Rev. D, 63, 023006, (2001). [External Linkgr-qc/0011107].
121 Frittelli, S., Kling, T.P., and Newman, E.T., “Fermat potentials for nonperturbative gravitational lensing”, Phys. Rev. D, 65, 123007, (2002). [External Linkgr-qc/0205014].
122 Frittelli, S., and Newman, E.T., “Exact universal gravitational lensing equation”, Phys. Rev. D, 59, 124001, (1999). [External Linkgr-qc/9810017].
123 Frittelli, S., and Newman, E.T., “Dynamics of Fermat potentials in nonperturbative gravitational lensing”, Phys. Rev. D, 65, 123006, (2002). [External Linkgr-qc/0205014].
124 Frittelli, S., Newman, E.T., and Silva-Ortigoza, G., “The eikonal equation in asymptotically flat space-times”, J. Math. Phys., 40, 1041–1056, (1999).
125 Frittelli, S., Newman, E.T., and Silva-Ortigoza, G., “The eikonal equation in flat space: Null surfaces and their singularities. I”, J. Math. Phys., 40, 383–407, (1999). [External Linkgr-qc/9809019].
126 Frittelli, S., and Oberst, T.E., “Image distortion by thick lenses”, Phys. Rev. D, 65, 023005, (2001).
127 Frittelli, S., and Petters, A.O., “Wavefronts, caustic sheets, and caustic surfing in gravitational lensing”, J. Math. Phys., 43, 5578–5611, (2002). [External Linkastro-ph/0208135].
128 Ftaclas, C., Kearney, M.W., and Pechenick, K.R., “Hot spots on neutron stars. II. The observer’s sky”, Astrophys. J., 300, 203–208, (1986).
129 Fukue, J., and Yokoyama, T., “Color photographs of an accretion disk around a black hole”, Publ. Astron. Soc. Japan, 40, 15–24, (1988).
130 Gal’tsov, D.V., and Masár, E., “Geodesics in spacetimes containing cosmic strings”, Class. Quantum Grav., 6, 1313–1341, (1989).
131 Garfinkle, D., “Traveling waves in strongly gravitating cosmic strings”, Phys. Rev. D, 41, 1112–1115, (1990).
132 Geroch, R., “Domain of dependence”, J. Math. Phys., 11, 417–449, (1970).
133 Geroch, R., “Space-time structure from a global viewpoint”, in Sachs, R.K., ed., General Relativity and Cosmology, Proceedings of the 47th International School of Physics “Enrico Fermi”, Varena, Italy, 30th June – 12 July 1969, pp. 71–103, (Academic Press, New York, 1971).
134 Geroch, R., and Traschen, J., “Strings and other distributional sources in general relativity”, Phys. Rev. D, 36, 1017–1031, (1987).
135 Giannoni, F., and Masiello, A., “On a Fermat principle in general relativity. A Morse theory for light rays”, Gen. Relativ. Gravit., 28, 855–897, (1996).
136 Giannoni, F., Masiello, A., and Piccione, P., “A variational theory for light rays in stably causal Lorentzian manifolds: Regularity and multiplicity results”, Commun. Math. Phys., 187, 375–415, (1997).
137 Giannoni, F., Masiello, A., and Piccione, P., “A Morse theory for light rays on stably causal Lorentzian manifolds”, Ann. Inst. Henri Poincare A, 69, 359–412, (1998).
138 Giannoni, F., Masiello, A., and Piccione, P., “Convexity and the finiteness of the number of geodesics. Applications to the multiple-image effect”, Class. Quantum Grav., 16, 731–748, (2001).
139 Giannoni, F., Masiello, A., and Piccione, P., “On the finiteness of light rays between a source and an observer on conformally stationary space-times”, Gen. Relativ. Gravit., 33, 491–514, (2001).
140 Gibbons, G.W., and Perry, M.J., “Black holes and thermal Green functions”, Proc. R. Soc. London, Ser. A, 358, 467–494, (1978).
141 Godfrey, B.B., “Mach’s Principle, the Kerr Metric, and Black-Hole Physics”, Phys. Rev. D, 1, 2721–2725, (1970). [External LinkADS].
142 Gordon, W., “Zur Lichtfortpflanzung nach der Relativitätstheorie”, Ann. Phys. (Leipzig), 72, 421–456, (1923).
143 Gott III, J.R., “Gravitational lensing effects of vacuum strings: Exact solutions”, Astrophys. J., 288, 422–427, (1985).
144 Gould, A., “Femtolensing of gamma-ray bursters”, Astrophys. J. Lett., 386, L5–L7, (1992).
145 Hagihara, Y., “Theory of the relativistic trajectories in a gravitational field of Schwarzschild”, Jpn. J. Astron. Geophys., 8, 67–176, (1931).
146 Hanni, R.S., “Wave fronts near a black hole”, Phys. Rev. D, 16, 933–936, (1977).
147 Harris, S., “Conformally stationary spacetimes”, Class. Quantum Grav., 9, 1823–1827, (1992).
148 Hasse, W., “The apparent size of distant objects”, Gen. Relativ. Gravit., 19, 515–524, (1987).
149 Hasse, W., Kriele, M., and Perlick, V., “Caustics of wavefronts in general relativity”, Class. Quantum Grav., 13, 1161–1182, (1996).
150 Hasse, W., and Perlick, V., “Geometrical and kinematical characterization of parallax-free world models”, J. Math. Phys., 29, 2064–2068, (1988).
151 Hasse, W., and Perlick, V., “On spacetime models with an isotropic Hubble law”, Class. Quantum Grav., 16, 2559–2576, (1999).
152 Hasse, W., and Perlick, V., “Gravitational lensing in spherically symmetric static spacetimes with centrifugal force reversal”, Gen. Relativ. Gravit., 34, 415–433, (2002). [External Linkgr-qc/0108002].
153 Hawking, S.W., and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, 1973).
154 Helliwell, T.M., and Konkowski, D.A., “Cosmic strings: Gravitation without local curvature”, Am. J. Phys., 55, 401–407, (1987).
155 Herlt, E., and Stephani, H., “Wave optics of the spherical gravitational lens. I. Diffraction of a plane electromagnetic wave by a large star”, Int. J. Theor. Phys., 15, 45–65, (1976).
156 Herlt, E., and Stephani, H., “Wave optics of the spherical gravitational lens. II. Diffraction of a plane gravitational wave by a black hole”, Int. J. Theor. Phys., 17, 189–199, (1978).
157 Hilbert, D., “Die Grundlagen der Physik”, Nachr. Koenigl. Gesellsch. Wiss. Goettingen, Math.-Phys. Kl., 1917, 53–76, (1917).
158 Hiscock, W.A., “Exact gravitational field of a string”, Phys. Rev. D, 31, 3288–3290, (1985).
159 Hledík, S., “Embedding diagrams of the ordinary and optical reference geometry of black-hole spacetimes and their astrophysical relevance”, in Hledík, S., and Stuchlík, Z., eds., Workshops on black holes and neutron stars, Proceedings of RAGtime 2/3, held in Opava, Czech Republic, 11 – 13/8 – 10 October 2000/2001, pp. 25–52, (Silesian University in Opava, Opava, Czech Republic, 2001).
160 Holz, D.E., and Wald, R.M., “New method for determining cumulative gravitational lensing effects in inhomogeneous universes”, Phys. Rev. D, 58, 063501, 1–23, (1998). [External Linkastro-ph/9708036].
161 Holz, D.E., and Wheeler, J.A., “Retro-MACHOs: π in the sky?”, Astrophys. J., 578, 330–334, (2002). [External Linkastro-ph/0209039].
162 Hubeny, V.E., and Rangamani, M., “Causal structures of pp-waves”, J. High Energy Phys., 2002(12), 043, (2002). [External Linkhep-th/0211195].
163 Huterer, D., and Vachaspati, T., “Gravitational lensing by cosmic strings in the era of wide-field surveys”, Phys. Rev. D, 68, 041301, (2003). [External Linkastro-ph/0305006].
164 Iriondo, M., Kozameh, C.N., and Rojas, A.T., “Null cones from I+ and Legendre submanifolds”, J. Math. Phys., 40, 2483–2493, (1999). [External Linkgr-qc/9805027].
165 Iyer, B.R., Vishveshwara, C.V., and Dhurandhar, S.V., “Ultracompact (R < 3M) objects in general relativity”, Class. Quantum Grav., 2, 219–228, (1985).
166 Jaffe, J., “The escape of light from within a massive object”, Mon. Not. R. Astron. Soc., 149, 395–401, (1970).
167 Janis, A.I., Newman, E.T., and Winicour, J., “Reality of the Schwarzschild singularity”, Phys. Rev. Lett., 20, 878–880, (1968).
168 Jaroszynski, M., and Kurpiewski, A., “Optics near Kerr black holes: spectra of advection dominated accretion flows”, Astron. Astrophys., 326, 419–426, (1997). [External Linkastro-ph/9705044].
169 Jensen, B., and Soleng, H., “General-relativistic model of a spinning cosmic string”, Phys. Rev. D, 45, 3528–3533, (1992).
170 Jin, K.J., Zhang, Y.Z., and Zhu, Z.H., “Gravitational lensing effects of fermion–fermion stars: strong field case”, Phys. Lett. A, 264, 335–340, (2000). [External Linkgr-qc/9907035].
171 Jordan, P., Ehlers, J., and Sachs, R.K., Beiträge zur Theorie der reinen Gravitationsstrahlung, Akad. Wiss. Lit. Mainz, Abh. Math. Nat. Kl., (Akad. Wiss. Lit., Mainz, 1961).
172 Kantowski, R., “Another interpretation of the optical scalars”, J. Math. Phys., 9, 336–338, (1968).
173 Kantowski, R., “The Effects of Inhomogeneities on Evaluating the Mass Parameter Ωm and the Cosmological Constant Λ”, Astrophys. J., 507, 483–496, (1998).
174 Karas, V., and Bao, G., “On the light curve of an orbiting SPOT”, Astron. Astrophys., 257, 531–533, (1992).
175 Karas, V., Vokrouhlický, D., and Polnarev, A.G., “In the vicinity of a rotating black hole – A fast numerical code for computing observational effects”, Mon. Not. R. Astron. Soc., 257, 569–575, (1992).
176 Karlovini, M., Rosquist, K., and Samuelsson, L., “Ultracompact stars with multiple necks”, Mod. Phys. Lett. A, 17, 197–203, (2002). [External Linkgr-qc/0009073].
177 Kaufman, S.E., “A complete redshift-magnitude formula”, Astron. J., 76, 751–755, (1971).
178 Kaup, D.J., “Klein–Gordon geons”, Phys. Rev., 172, 1331–1342, (1968).
179 Kermack, W.O., McCrea, W.H., and Whittaker, E.T., “Properties of null geodesics and their applications to the theory of radiation”, Proc. R. Soc. Edinburgh, 53, 31–47, (1932).
180 Kerr, R.P., “Gravitational field of a spinning mass as an example of algebraically special metrics”, Phys. Rev. Lett., 11, 237–238, (1963).
181 Kim, S.W., and Cho, Y.M., “Gravitational lensing effect of a wormhole”, in Jantzen, R.T., and Mac Keiser, G., eds., The Seventh Marcel Grossman Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theories, Proceedings of the Meeting held at Stanford University, 24 – 30 July 1994, pp. 1147–1148, (World Scientific, Singapore, 1996).
182 Kling, T.P., and Newman, E.T., “Null cones in Schwarzschild geometry”, Phys. Rev. D, 59, 124002, (1999). [External Linkgr-qc/9809037].
183 Kling, T.P., Newman, E.T., and Perez, A., “Comparative studies of lensing methods”, Phys. Rev. D, 62, 024025, (2000). [External Linkgr-qc/0003057]. Erratum Phys. Rev. D 62 (2000) 109901.
184 Kopeikin, S.M., and Schäfer, G., “Lorentz covariant theory of light propagation in gravitational fields of arbitrary-moving bodies”, Phys. Rev. D, 60, 124002, (1999). [External Linkgr-qc/9902030].
185 Kottler, F., “Über die physikalischen Grundlagen der Einsteinschen Gravitationstheorie”, Ann. Phys. (Berlin), 56, 401–461, (1918).
186 Kovner, I., “Fermat principle in gravitational fields”, Astrophys. J., 351, 114–120, (1990).
187 Kozameh, C.N., Lamberti, P., and Reula, O.A., “Global aspects of light cone cuts”, J. Math. Phys., 32, 3423–3426, (1991).
188 Kozameh, C.N., and Newman, E.T., “Theory of light cone cuts of null infinity”, J. Math. Phys., 24, 2481–2489, (1983).
189 Kristian, J., and Sachs, R.K., “Observations in cosmology”, Astrophys. J., 143, 379–399, (1966).
190 Kristiansson, S., Sonego, S., and Abramowicz, M.A., “Optical space of the Reissner–Nordström solutions”, Gen. Relativ. Gravit., 30, 275–288, (1998).
191 Krori, K.D., Goswami, D., and Das, K., “A stationary solution for cosmic strings”, Class. Quantum Grav., 10, 125–129, (1993).
192 Kunzinger, M., and Steinbauer, R., “A rigorous solution concept for geodesic and geodesic deviation equations in impulsive gravitational waves”, J. Math. Phys., 40, 1479–1489, (1999). [External Linkgr-qc/9806009].
193 Lake, K., “Bending of light and the cosmological constant”, Phys. Rev. D, 65, 087301, (2002). [External Linkgr-qc/0103057].
194 Lake, K., and Roeder, R.C., “Effects of a nonvanishing cosmological constant on the spherically symmetric vacuum manifold”, Phys. Rev. D, 15, 3513–3519, (1977).
195 Lake, K., and Roeder, R.C., “On the optical appearance of white holes”, Astrophys. J., 226, 37–49, (1978).
196 Lake, K., and Roeder, R.C., “The present appearance of white holes”, Nature, 273, 449–450, (1978).
197 Lake, K., and Roeder, R.C., “Note on the optical appearance of a star collapsing through its gravitational radius”, Astrophys. J., 232, 277–281, (1979).
198 Lakshminarayanan, V., Ghatak, A.K., and Thyagarajan, K., Lagrangian Optics, (Kluwer, Boston, 2001).
199 Landau, L.D., and Lifshitz, E.M., The classical theory of fields, (Pergamon Press; Addison-Wesley, Oxford; Reading, 1962), 2nd edition.
200 Lano, R.P., “The brightness of a black hole due to gravitational lensing”, Astrophys. Space Sci., 159, 125–132, (1989).
201 Larrañaga Rubio, E.A., “Time delay in gravitational lensing by a charged black hole of string theory”, arXiv e-print, (2003). [External Linkgr-qc/0309108].
202 Laue, H., and Weiss, M., “Maximally extended Reissner–Nordström manifold with cosmological constant”, Phys. Rev. D, 16, 3376–3379, (1977).
203 Lawrence, J.K., “Gravitational deflection of null radiation by relativistic, spherical masses”, Astrophys. J., 230, 249–254, (1979).
204 “Lentilles gravitationelles - Gravitational Lensing”, project homepage, University of Liège, (2003). URL (cited on 30 October 2003):
External Linkhttp://vela.astro.ulg.ac.be/themes/extragal/gravlens.
205 Lerner, L., “A simple calculation of the deflection of light in a Schwarzschild gravitational field”, Am. J. Phys., 65, 1194–1196, (1997).
206 Letelier, P.S., “Multiple cosmic strings”, Class. Quantum Grav., 4, L75–L77, (1987).
207 Levi-Civita, T., “La teoria di Einstein e il principio di Fermat”, Nuovo Cimento, 16, 105–114, (1918).
208 Linet, B., “The static metrics with cylindrical symmetry describing a model of cosmic strings”, Gen. Relativ. Gravit., 17, 1109–1115, (1985).
209 Low, R., “The geometry of the space of null geodesics”, J. Math. Phys., 30, 809–811, (1989).
210 Low, R., “Celestial spheres, light cones, and cuts”, J. Math. Phys., 34, 315–319, (1993).
211 Low, R., “Stable singularities of wave-fronts in general relativity”, J. Math. Phys., 39, 3332–3335, (1998). [External Linkgr-qc/0108012].
212 Luminet, J.-P., “Image of a spherical black hole with thin accretion disk”, Astron. Astrophys., 75, 228–235, (1979).
213 Luneburg, R.K., Mathematical Theory of Optics, (University of California Press, Berkeley, 1964).
214 Marder, L., “Flat space-times with gravitational fields”, Proc. R. Soc. London, Ser. A, 252, 45–50, (1959).
215 Marder, L., “Locally isometric spacetimes”, in Recent Developments in General Relativity, pp. 333–338, (Pergamon Press, Oxford; New York, 1962).
216 Margerin, C., “General conjugate loci are not closed”, in Greene, R., and Yau, S.T., eds., Differential Geometry, Pt. 3: Riemannian Geometry, Proceedings of the Summer Research Institute on Differential Geometry, held at the University of California, Los Angeles, July 8 – 28, 1990, Proceedings of Symposia in Pure Mathematics, vol. 54, pp. 465–478, (American Mathematical Society, Providence, 1993).
217 Markov, M., “On possible existence of neutrino superstars”, Phys. Lett., 10, 122–123, (1964).
218 Mashhoon, B., “Wave propagation in a gravitational field”, Phys. Lett. A, 122, 299–304, (1987).
219 Masiello, A., Variational methods in Lorentzian geometry, (Longman; Wiley, Harlow; New York, 1994).
220 Mattig, W., “Über den Zusammenhang zwischen Rotverschiebung und scheinbarer Helligkeit”, Astron. Nachr., 284, 109–111, (1957).
221 McKenzie, R.H., “A gravitational lens produces an odd number of images”, J. Math. Phys., 26, 1592–1596, (1985).
222 Mészáros, P., and Riffert, H., “Gravitational light bending near neutron stars. II. Accreting pulsar spectra as a function of phase”, Astrophys. J., 327, 712–722, (1988).
223 Metzenthen, W.E., “Appearance of distant objects to an observer in a charged-black-hole spacetime”, Phys. Rev. D, 42, 1105–1117, (1990).
224 Metzner, A.W.K., “Observable Properties of large relativistic masses”, J. Math. Phys., 4, 1194–1205, (1963).
225 Milnor, J.W., Morse Theory: Based on lecture notes by M. Spivak and R. Wells, Annals of Mathematics Studies, vol. 51, (Princeton University Press, Princeton, 1963).
226 Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, 1973).
227 Mollerach, S., and Roulet, E., Gravitational Lensing and Microlensing, (World Scientific, River Edge, NJ, 2002).
228 Morris, M.S., and Thorne, K.S., “Wormholes in spacetime and their use for interstellar travel”, Am. J. Phys., 56, 395–412, (1988).
229 Morris, M.S., Thorne, K.S., and Yurtsever, U., “Wormholes, time machines, and the weak energy condition”, Phys. Rev. Lett., 61, 1446–1449, (1988).
230 Morse, M., The Calculus of Variations in the Large, Colloquium Publications, vol. 18, (American Mathematical Society, Providence, 1934).
231 Mustapha, N., Bassett, B.A.C.C., Hellaby, C., and Ellis, G.F.R., “The distortion of the area distance-redshift relation in inhomogeneous isotropic universes”, Class. Quantum Grav., 15, 2363–2379, (1998). [External Linkgr-qc/9708043].
232 Nandi, K.K., and Islam, A., “On the optical-mechanical analogy in general relativity”, Am. J. Phys., 63, 251–256, (1995).
233 Narlikar, J.V., and Apparao, K.M.V., “White holes and high energy astrophysics”, Astrophys. Space Sci., 35, 321–336, (1975).
234 Nemiroff, R.J., “Visual distortions near a neutron star and black hole”, Am. J. Phys., 61, 619–632, (1993)Related online version:
External Linkhttp://www.phy.mtu.edu/bht/rjn_bht.html.
235 Nemiroff, R.J., and Ftaclas, C., “Our Sun as a gravitational lens”, Bull. Am. Astron. Soc., 29, 827, (1997).
236 Neugebauer, G., Kleinwächter, A., and Meinel, R., “Relativistically rotating dust”, Helv. Phys. Acta, 69, 472, (1996). [External Linkgr-qc/0301107].
237 Neugebauer, G., and Meinel, R., “The Einsteinian gravitational field of the rigidly rotating disk of dust”, Astrophys. J. Lett., 414, L97–L99, (1993).
238 Newman, R.P.A.C., “The global structure of simple space-times”, Commun. Math. Phys., 123, 17–52, (1989).
239 Newman, R.P.C., and Clarke, C.J.S., “An R4 spacetime with a Cauchy surface which is not R3”, Class. Quantum Grav., 4, 53–60, (1987).
240 Nollert, H.-P., Ruder, H., Herold, H., and Kraus, U., “The relativistic ‘looks’ of a neutron star”, Astron. Astrophys., 208, 153–156, (1989).
241 Noonan, T., “Image distortion by gravitational lensing”, Astrophys. J., 270, 245–249, (1983).
242 Nordström, G., “On the energy of the gravitational field in Einstein’s theory”, Proc. K. Ned. Akad. Wetensch., 20, 1238–1245, (1918).
243 Novello, M., Visser, M., and Volovik, G., eds., Artificial Black Holes, (World Scientific, Singapore; River Edge, 2002).
244 Nucamendi, U., and Sudarsky, D., “Quasi-asymptotically flat spacetimes and their ADM mass”, Class. Quantum Grav., 14, 1309–1327, (1997). [External Linkgr-qc/9611043].
245 Ohanian, H., “The caustics of gravitational ‘lenses’ ”, Astrophys. J., 271, 551–555, (1983).
246 Ohanian, H., “The black hole as a gravitational lens”, Am. J. Phys., 55, 428–432, (1987).
247 O’Neill, B., Semi-Riemannian Geometry: With Applications to Relativity, Pure and Applied Mathematics, vol. 103, (Academic Press, New York, 1983).
248 O’Neill, B., The Geometry of Kerr Black Holes, (A.K. Peters, Wellesley, 1995).
249 Oppenheimer, J.R., and Snyder, H., “On Continued Gravitational Contraction”, Phys. Rev., 56, 455–459, (1939). [External LinkDOI], [External LinkADS].
250 Padmanabhan, T., and Subramanian, K., “The focusing equation, caustics and the condition of multiple imaging by thick gravitational lenses”, Mon. Not. R. Astron. Soc., 233, 265–284, (1988).
251 Palais, R., “Morse theory on Hilbert manifolds”, Topology, 2, 299–340, (1963).
252 Palais, R., and Smale, S., “A generalized Morse theory”, Bull. Am. Math. Soc., 70, 165–172, (1964).
253 Pande, A.K., and Durgapal, M.C., “Trapping of photons in spherical static configurations”, Class. Quantum Grav., 3, 547–550, (1986).
254 Panov, V.F., and Sbytov, Y.G., “Accounting for Birch’s observed anisotropy of the universe: cosmological rotation?”, Sov. Phys. JETP, 74, 411–415, (1992).
255 Panov, V.F., and Sbytov, Y.G., “Behavior of a bundle of rays forming the image of a source in cosmological models with rotation”, Sov. Phys. JETP, 87, 417–420, (1998).
256 Pechenick, K.R., Ftaclas, C., and Cohen, J.M., “Hot spots on neutron stars – The near-field gravitational lens”, Astrophys. J., 274, 846–857, (1983).
257 Penrose, R., “The apparent shape of a relativistically moving sphere”, Proc. Cambridge Philos. Soc., 55, 137–139, (1959).
258 Penrose, R., “Conformal treatment of infinity”, in DeWitt, C.M., and DeWitt, B.S., eds., Relativity, Groups and Topology. Relativité, Groupes et Topologie, Lectures delivered at Les Houches during the 1963 session of the Summer School of Theoretical Physics, University of Grenoble, pp. 565–584, (Gordon and Breach, New York, 1964).
259 Penrose, R., “A remarkable property of plane waves in general relativity”, Rev. Mod. Phys., 37, 215–220, (1965).
260 Penrose, R., “General-relativistic energy flux and elementary optics”, in Hoffmann, B., ed., Perspectives in Geometry and Relativity: Essays in honor of Václav Hlavatý, pp. 259–274, (Indiana University Press, Bloomington, 1966).
261 Penrose, R., Techniques of Differential Topology in Relativity, Regional Conference Series in Applied Mathematics, vol. 7, (SIAM, Philadelphia, 1972).
262 Penrose, R., and Rindler, W., Spinors and Space-Time, 2 vols., (Cambridge University Press, Cambridge, 1984).
263 Perelman, G., “Ricci flow with surgery on three-manifolds”, arXiv e-print, (2003). [External Linkmath.DG/0303109].
264 Perlick, V., “On Fermat’s principle in general relativity. I. The general case.”, Class. Quantum Grav., 7, 1319–1331, (1990).
265 Perlick, V., “On Fermat’s principle in general relativity. II. The conformally stationary case.”, Class. Quantum Grav., 7, 1849–1867, (1990).
266 Perlick, V., “Infinite dimensional Morse theory and Fermat’s principle in general relativity. I.”, J. Math. Phys., 36, 6915–6928, (1995).
267 Perlick, V., “Criteria for multiple imaging in Lorentzian manifolds”, Class. Quantum Grav., 13, 529–537, (1996).
268 Perlick, V., “Gravitational lensing from a geometric viewpoint”, in Schmidt, B., ed., Einstein’s Field Equations and their Physical Implications: Selected Essays in Honour of Jürgen Ehlers, Lecture Notes in Physics, vol. 540, pp. 373–425, (Springer, Berlin, 2000).
269 Perlick, V., Ray Optics, Fermat’s Principle, and Applications to General Relativity, Lecture Notes in Physics. Monographs, vol. m61, (Springer, Berlin; New York, 2000).
270 Perlick, V., “Global properties of gravitational lens maps in a Lorentzian manifold setting”, Commun. Math. Phys., 220, 403–428, (2001). [External Linkgr-qc/0009105].
271 Perlick, V., “On the exact gravitational lens equation in spherically symmetric and static spacetimes”, Phys. Rev. D, 69, 064017, (2004). [External Linkgr-qc/0307072].
272 Perlick, V., and Piccione, P., “A general-relativistic Fermat principle for extended light sources and extended receivers.”, Gen. Relativ. Gravit., 30, 1461–1476, (1998).
273 Peters, P.C., “Null geodesic deviation. I. Conformally flat space-times”, J. Math. Phys., 16, 1780–1785, (1976).
274 Petters, A.O., “On relativistic corrections to microlensing effects: applications to the Galactic black hole”, Mon. Not. R. Astron. Soc., 338, 457–464, (2003). [External Linkastro-ph/0208500].
275 Petters, A.O., Levine, H., and Wambsganss, J., Singularity Theory and Gravitational Lensing, (Birkhäuser, Basel; Boston, 1998).
276 Pham, Q.M., “Inductions électromagnétiques en rélativité général et principe de Fermat”, Arch. Ration. Mech. Anal., 1, 54–80, (1957).
277 Pineault, S., and Roeder, R.C., “Applications of geometrical optics to the Kerr metric. Analytical results”, Astrophys. J., 212, 541–549, (1977).
278 Pineault, S., and Roeder, R.C., “Applications of geometrical optics to the Kerr metric. II. Numerical results”, Astrophys. J., 213, 548–557, (1977).
279 Podolsky, J., “The structure of the extreme Schwarzschild–de Sitter space-time”, Gen. Relativ. Gravit., 31, 1703–1725, (1999).
280 Podurets, M.A., “Asymptotic behavior of the optical luminosity of a star in gravitational collapse”, Sov. Astron., 8, 868–873, (1965).
281 Poincaré, H., “Sur les lignes géodésiques des surfaces convexes”, Trans. Amer. Math. Soc., 6, 237–274, (1905).
282 Polnarev, A.G., and Turchaninov, V.I., “On light propagation near a rotating black hole. I”, Acta Astron., 29, 81–85, (1979).
283 Pretorius, F., and Israel, W., “Quasi-spherical light cones of the Kerr geometry”, Class. Quantum Grav., 15, 2289–2301, (1998). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9803080].
284 Pyne, T., and Birkinshaw, M., “Beyond the thin lens approximation”, Astrophys. J., 458, 46–56, (1996). [External Linkastro-ph/9504060].
285 Rauch, K.P., and Blandford, R.D., “Optical caustics in a Kerr spacetime and the origin of rapid X-ray variability in active galactic nuclei”, Astrophys. J., 421, 46–68, (1994).
286 Reissner, H., “Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie”, Ann. Phys. (Berlin), 59, 106–120, (1916).
287 Riffert, H., and Mészáros, P., “Gravitational light bending near neutron stars. I. Emission from columns and hot spots”, Astrophys. J., 325, 207–217, (1988).
288 Rosquist, K., “Trigonometric parallaxes of distant objects: What they could tell about the universe”, Astrophys. J., 331, 648–652, (1988).
289 Rosquist, K., “Letter: A Moving Medium Simulation of Schwarzschild Black Hole Optics”, Gen. Relativ. Gravit., 36, 1977–1982, (2004). [External Linkgr-qc/0309104].
290 Ruffini, R., and Bonazzola, S., “Systems of self-gravitating particles in general relativity and the concept of an equation of state”, Phys. Rev., 187, 1767–1783, (1969).
291 Sachs, R.K., “Gravitational waves in general relativity VI. The outgoing radiation condition”, Proc. R. Soc. London, Ser. A, 264, 309–338, (1961).
292 Safonova, M., Torres, D.F., and Romero, G.E., “Microlensing by natural wormholes: Theory and simulations”, Phys. Rev. D, 65, 023001, 1–15, (2002). [External Linkgr-qc/0105070].
293 Sasaki, M., “Cosmological gravitational lens equation – Its validity and limitation”, Prog. Theor. Phys., 90, 753–781, (1993).
294 Sazhin, M.V., Longo, G., Capaccioli, M., Alcalá, J.M., Silvotti, R., Covone, G., Khovanskaya, O., Pavlov, M., Pannella, M., Radovich, M., and Testa, V., “CSL-1: chance projection effect or serendipitous discovery of a gravitational lens induced by a cosmic string?”, Mon. Not. R. Astron. Soc., 343, 353–359, (2003). [External Linkastro-ph/0302547].
295 Schastok, J., Soffel, M.H., Ruder, H., and Schneider, M., “Stellar sky as seen from the vicinity of a black hole”, Am. J. Phys., 55, 336–341, (1987).
296 Schneider, P., “A new formulation of gravitational lens theory, time-delay, and Fermat’s principle”, Astron. Astrophys., 143, 413–420, (1985). [External LinkADS].
297 Schneider, P., and Bartelmann, M., “Gravitational Lensing Bibliography”, personal homepage, Max Planck Institute for Astrophysics. URL (cited on 28 October 2003):
External Linkhttp://www.mpa-garching.mpg.de/~peter/biblio.html.
298 Schneider, P., Ehlers, J., and Falco, E.E., Gravitational Lenses, Astronomy and Astrophysics Library, (Springer, Berlin; New York, 1992).
299 Schrödinger, E., Expanding Universes, (Cambridge University Press, Cambridge, 1956).
300 Schunck, F.E., and Liddle, A.R., “Boson stars in the centre of galaxies?”, in Hehl, F.W., Kiefer, C., and Metzler, R.J.K., eds., Black Holes: Theory and Observation, Proceedings of the 179th W.E. Heraeus Seminar, held at Bad Honnef, Germany, 18 – 22 August 1997, Lecture Notes in Physics, vol. 514, p. 285, (Springer, Berlin, 1997).
301 Schwarzschild, K., “Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie”, Sitzungsber. K. Preuss. Akad. Wiss., Phys.-Math. Kl., 1916(XII), 189–196, (1916).
302 Seitz, S., Schneider, P., and Ehlers, J., “Light propagation in arbitrary spacetimes and the gravitational lens approximation”, Class. Quantum Grav., 11, 2345–2373, (1994). [External Linkastro-ph/9403056].
303 Serre, J.P., “Homologie singulière des espaces fibrés. Applications.”, Ann. Math., 54, 425–505, (1951).
304 Shapiro, S.L., “Radiation from stellar collapse to a black hole”, Astrophys. J., 472, 308–326, (1996).
305 Sharp, N.A., “Geodesics in black hole space-times”, Gen. Relativ. Gravit., 10, 659–670, (1979).
306 Sikora, M., “On light propagation near a rotating black hole. II”, Acta Astron., 29, 87–92, (1979).
307 Sokolov, D.D., and Starobinsky, A.A., “The structure of the curvature tensor at conical singularities.”, Sov. Phys. Dokl., 22, 312–313, (1977).
308 Stachel, J., “Globally stationary but locally static spacetimes: A gravitational analog of the Aharonov–Bohm effect”, Phys. Rev. D, 26, 1281–1290, (1982).
309 Steinbauer, R., “Geodesics and geodesic deviation for impulsive gravitational waves”, J. Math. Phys., 39, 2201–2212, (1998). [External Linkgr-qc/9710119].
310 Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., and Herlt, E., Exact Solutions of Einstein’s Field Equations, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 2003), 2nd edition.
311 Straumann, N., General Relativity and Relativistic Astrophysics, (Springer, Berlin; New York, 1984).
312 Stuchlík, Z., and Hledík, S., “Embedding diagrams of the optical geometry of Kerr backgrounds”, Acta Phys. Slov., 49, 795–803, (1999).
313 Stuchlík, Z., and Hledík, S., “Some properties of the Schwarzschild–de Sitter and Schwarzschild–anti-de Sitter spacetimes”, Phys. Rev. D, 60, 044006, 1–15, (1999).
314 Stuchlík, Z., Hledík, S., Soltés, J., and Ostgaard, E., “Null geodesics and embedding diagrams of the interior Schwarzschild–de Sitter spacetimes with uniform density”, Phys. Rev. D, 64, 044004, 1–17, (2002).
315 Stuckey, W.M., “The Schwarzschild black hole as a gravitational mirror”, Am. J. Phys., 61, 448–456, (1993).
316 Su, F.S., and Mallet, R.L., “The effect of the Kerr metric on the plane of polarization of an electromagnetic wave”, Astrophys. J., 238, 1111–1125, (1980).
317 Surpi, G.C., and Harari, D.D., “Weak lensing by large-scale structure and the polarization properties of distant radio sources”, Astrophys. J., 515, 455–464, (1999). [External Linkastro-ph/9709087].
318 Synge, J.L., “An alternative treatment of Fermat’s principle for a stationary gravitational field.”, Philos. Mag. and J. of Science, 50, 913–916, (1925).
319 Synge, J.L., “The escape of photons from gravitationally intense stars”, Mon. Not. R. Astron. Soc., 131, 463–466, (1966).
320 Terrell, J., “Invisibility of the Lorentz contraction”, Phys. Rev., 116, 1041–1045, (1959).
321 Thomas, R.C., and Kantowski, R., “Age-redshift relation for standard cosmology”, Phys. Rev. D, 62, 103507, 1–5, (2000).
322 Tolman, R.C., “On the estimate of distance in a curved universe with a non-static line element”, Proc. Natl. Acad. Sci. USA, 16, 511–520, (1930).
323 Torres, D.F., Capozziello, S., and Liambase, G., “Supermassive boson star at the galactic center?”, Phys. Rev. D, 62, 104012, (2000).
324 Tsiklauri, D., and Viollier, R.D., “Dark matter concentration in the galactic center”, Astrophys. J., 500, 591–595, (1998). [External Linkastro-ph/9805273].
325 Turyshev, S.G., and Andersson, B.G., “The 550-au mission: a critical discussion”, Mon. Not. R. Astron. Soc., 341, 577–582, (2003). [External Linkgr-qc/0205126].
326 Uhlenbeck, K., “A Morse theory for geodesics on a Lorentz manifold”, Topology, 14, 69–90, (1975).
327 Ulmer, A., and Goodman, J., “Femtolensing: Beyond the semiclassical approximation”, Astrophys. J., 442, 67–75, (1995). [External Linkastro-ph/9406042].
328 Vázquez, S.E., and Esteban, E.P., “Strong field gravitational lensing by a Kerr black hole”, Nuovo Cimento B, 119, 489–519, (2004). [External Linkgr-qc/0308023].
329 Viergutz, S.U., “Image generation in Kerr geometry. I. Analytical investigations on the stationary emitter-observer problem”, Astron. Astrophys., 272, 355, (1993).
330 Viergutz, S.U., “Radiation from arbitrarily shaped objects in the vicinity of Kerr black holes”, Astrophys. Space Sci., 205, 155–161, (1993).
331 Vilenkin, A., “Gravitational fields of vacuum domain walls and strings”, Phys. Rev. D, 23, 852–857, (1981).
332 Vilenkin, A., “Cosmic strings as gravitational lenses”, Astrophys. J. Lett., 282, L51–L53, (1984).
333 Vilenkin, A., and Shellard, E.P.S., Cosmic Strings and Other Topological Defects, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, 1994).
334 Viollier, R.D., Trautmann, D., and Tupper, G.B., “Supermassive neutrino stars and galactic nuclei”, Phys. Lett. B, 306, 79–85, (1993).
335 Virbhadra, K.S., “Janis–Newman–Winicour and Wyman solutions are the same”, Int. J. Mod. Phys. A, 12, 4831–4836, (1997). [External Linkgr-qc/9701021].
336 Virbhadra, K.S., and Ellis, G.F.R., “Schwarzschild black hole lensing”, Phys. Rev. D, 62, 084003, 1–8, (2000). [External Linkastro-ph/9904193].
337 Virbhadra, K.S., and Ellis, G.F.R., “Gravitational lensing by naked singularities”, Phys. Rev. D, 65, 103004, 1–10, (2002).
338 Virbhadra, K.S., Narasimha, D., and Chitre, S.M., “Role of the scalar field in gravitational lensing”, Astron. Astrophys., 337, 1–8, (1998). [External Linkastro-ph/9801174].
339 Vollick, D.N., and Unruh, W.G., “Gravitational lensing properties of curved cosmic strings”, Phys. Rev. D, 44, 2388–2396, (1991).
340 von Eshleman, R., “Gravitational lens of the sun – Its potential for observations and communications over interstellar distances”, Science, 205, 1133–1135, (1979).
341 Wald, R.M., General Relativity, (University of Chicago Press, Chicago, 1984).
342 Walker, A.G., “Distance in an expanding universe”, Mon. Not. R. Astron. Soc., 94, 159–167, (1934).
343 Wambsganss, J., “Gravitational Lensing in Astronomy”, Living Rev. Relativity, 1, lrr-1998-12, (1998). URL (cited on 30 October 2003):
http://www.livingreviews.org/lrr-1998-12.
344 Weinberg, S., “Apparent luminosities in a locally inhomogeneous universe”, Astrophys. J. Lett., 208, L1–L3, (1976).
345 Weiskopf, D., and Ansorg, M., “Visualization of the general relativistic rigidly rotating disk of dust”, Ann. Phys. (Leipzig), 9, SI–179–185, (2000).
346 Weisstein, E., “Poincaré conjecture proved – this time for real”, online resource, Wolfram Research, (2003). URL (cited on 30 October 2003):
External Linkhttp://mathworld.wolfram.com/news/2003-04-15/poincare/.
347 Weyl, H., “Zur Gravitationstheorie”, Ann. Phys. (Berlin), 54, 117–145, (1917).
348 Weyl, H., “Über die statischen kugelsymmetrischen Lösungen von Einsteins “kosmologischen” Gravitationsgleichungen”, Phys. Z., 20, 31–34, (1919).
349 Weyl, H., Raum, Zeit, Materie, (Springer, Berlin, 1923), 5th edition.
350 Whitehead, J.C.H., “On the covering of a complete space by the geodesics through a point”, Ann. Math., 136, 679–704, (1935).
351 Whittaker, E.T., “On the definition of distance in curved space and the displacement of the spectral lines of distant sources”, Proc. R. Soc. London, Ser. A, 133, 93–105, (1931).
352 Winterberg, F., and Phillips, W.G., “Gravitational self-lens effect”, Phys. Rev. D, 8, 3329–3337, (1973).