In the HartleHawking approach to quantum cosmology, the initial wave function of the universe is described by a path integral for a compact manifold with a single spatial boundary , as in Figure 4 .

The path integral (75) cannot, in general, be evaluated exactly, even in 2+1 dimensions. Indeed, there are general reasons to expect the expression to be illdefined: A conformal excitation contributes to with the wrong sign, and the action is unbounded below [142] . In the (2+1)dimensional Lorentzian dynamical triangulation models of Section 3.7, however, it is known that these wrong sign contributions are unimportant [12] ; they are overwhelmed by the much larger number of wellbehaved geometries in the path integral. This has led to a suggestion [100, 99] that the conformal contribution is canceled by a FaddeevPopov determinant (see also [198]), and some preliminary supporting computations have been made in a proper time gauge [100] .
Assuming that the “conformal factor problem” is solved, a saddle point evaluation of the path integral is arguably a good approximation. For simplicity, let us ignore the matter contribution to the wave function. Saddle points are then Einstein manifolds, with actions proportional to the volume. An easy computation shows that the leading contribution to Equation (75) is a sum of terms of the form
where is an Einstein metric on , is the volume of with the metric rescaled to constant curvature , and the prefactor is related, as in Section 3.10, to the RaySinger torsion of .For , threemanifolds that admit Einstein metrics are all elliptic  that is, they have constant positive curvature, and can be described as quotients of the threesphere by discrete groups of isometries. The largest value of comes from the threesphere itself, and one might expect it to dominate the sum over topologies. As shown in [71], though, the number of topologically distinct lens spaces with volumes less than grows fast enough that these spaces dominate, leading to a divergent partition function for closed threemanifolds. The implications for the HartleHawking wave function have not been examined explicitly, but it seems likely that a divergence will appear there as well.
For , threemanifolds that admit Einstein metrics are hyperbolic, and the single largest contribution to Equation (76) comes from the smallest such manifold. This contribution has been worked out in detail, for a genus 2 boundary, in [134] . Here, too, however, manifolds with larger volumes  although individually exponentially suppressed  are numerous enough to lead to a divergence in the partition function [71] . In this case, the HartleHawking wave function has been examined as well, and it has been shown that the wave function acquires infinite peaks at certain specific spatial geometries: Again, topologically complicated manifolds whose individual contributions are small occur in large enough numbers to dominate the path integral, and “entropy” wins out over “action” [69] .
The benefit of restricting to 2+1 dimensions here is a bit different from the advantages seen earlier. We are now helped not so much by the simplicity of the geometry (although this helps in the computation of the prefactors ), but by the fact that threemanifold topology is much better understood than fourmanifold topology. It is only quite recently that similar results for sums over topologies have been found in four dimensions [79, 80, 229, 19] .
As noted in Section 3.6, recent work on spin foams has also suggested a new nonperturbative approach to evaluating the sum over topologies. Building on work by Boulatov [60], Freidel and Loupre have recently considered a variant of the PonzanoRegge model, and have shown that although the sum over topologies diverges, it is Borel summable [132] . This result involves a clever representation of a spacetime triangulation as a Feynman graph in a field theory on a group manifold, allowing the sum over topologies to be reexpressed as a sum of field theory Feynman diagrams. The model considered in [132] is not exactly the PonzanoRegge model, and it is not clear that it is really “ordinary” quantum gravity. Moreover, study of the physical meaning of the Borel resummed partition function has barely begun. Nonetheless, these results suggest that a full treatment of the sum over topologies in (2+1)dimensional quantum gravity may not be hopelessly out of reach.
There are also indications that string theory might have something to say about the sum over topologies [111] . In particular, the AdS/CFT correspondence may impose boundary conditions that limit the topologies allowed in the sum. Whether such results can be extended to spatially closed manifolds remains unclear.
http://www.livingreviews.org/lrr20051  © Max Planck Society and
the author(s)
Problems/comments to 